Subversion Repositories Kolibri OS

Rev

Rev 4065 | Rev 5056 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1412 serge 1
/*
2
 * 2002-10-18  written by Jim Houston jim.houston@ccur.com
3
 *	Copyright (C) 2002 by Concurrent Computer Corporation
4
 *	Distributed under the GNU GPL license version 2.
5
 *
6
 * Modified by George Anzinger to reuse immediately and to use
7
 * find bit instructions.  Also removed _irq on spinlocks.
8
 *
9
 * Modified by Nadia Derbey to make it RCU safe.
10
 *
11
 * Small id to pointer translation service.
12
 *
13
 * It uses a radix tree like structure as a sparse array indexed
14
 * by the id to obtain the pointer.  The bitmap makes allocating
15
 * a new id quick.
16
 *
17
 * You call it to allocate an id (an int) an associate with that id a
18
 * pointer or what ever, we treat it as a (void *).  You can pass this
19
 * id to a user for him to pass back at a later time.  You then pass
20
 * that id to this code and it returns your pointer.
21
 
22
 * You can release ids at any time. When all ids are released, most of
3391 Serge 23
 * the memory is returned (we keep MAX_IDR_FREE) in a local pool so we
1412 serge 24
 * don't need to go to the memory "store" during an id allocate, just
25
 * so you don't need to be too concerned about locking and conflicts
26
 * with the slab allocator.
27
 */
28
 
29
#include 
3391 Serge 30
#include 
1412 serge 31
#include 
32
#include 
33
#include 
34
//#include 
35
 
4103 Serge 36
static inline void * __must_check ERR_PTR(long error)
37
{
38
	return (void *) error;
39
}
40
 
3391 Serge 41
unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size,
42
                                 unsigned long offset);
1412 serge 43
 
44
 
3391 Serge 45
#define MAX_IDR_SHIFT		(sizeof(int) * 8 - 1)
46
#define MAX_IDR_BIT		(1U << MAX_IDR_SHIFT)
1412 serge 47
 
3391 Serge 48
/* Leave the possibility of an incomplete final layer */
49
#define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
1412 serge 50
 
3391 Serge 51
/* Number of id_layer structs to leave in free list */
52
#define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
1412 serge 53
 
3391 Serge 54
static struct idr_layer *idr_preload_head;
55
static int idr_preload_cnt;
1412 serge 56
 
4103 Serge 57
static DEFINE_SPINLOCK(simple_ida_lock);
1412 serge 58
 
3391 Serge 59
/* the maximum ID which can be allocated given idr->layers */
60
static int idr_max(int layers)
61
{
62
	int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);
1412 serge 63
 
3391 Serge 64
	return (1 << bits) - 1;
65
}
1412 serge 66
 
3391 Serge 67
/*
68
 * Prefix mask for an idr_layer at @layer.  For layer 0, the prefix mask is
69
 * all bits except for the lower IDR_BITS.  For layer 1, 2 * IDR_BITS, and
70
 * so on.
71
 */
72
static int idr_layer_prefix_mask(int layer)
73
{
74
	return ~idr_max(layer + 1);
75
}
1412 serge 76
 
77
static struct idr_layer *get_from_free_list(struct idr *idp)
78
{
79
	struct idr_layer *p;
80
	unsigned long flags;
81
 
3391 Serge 82
	spin_lock_irqsave(&idp->lock, flags);
1412 serge 83
	if ((p = idp->id_free)) {
84
		idp->id_free = p->ary[0];
85
		idp->id_free_cnt--;
86
		p->ary[0] = NULL;
87
	}
3391 Serge 88
	spin_unlock_irqrestore(&idp->lock, flags);
1412 serge 89
	return(p);
90
}
91
 
3391 Serge 92
/**
93
 * idr_layer_alloc - allocate a new idr_layer
94
 * @gfp_mask: allocation mask
95
 * @layer_idr: optional idr to allocate from
96
 *
97
 * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
98
 * one from the per-cpu preload buffer.  If @layer_idr is not %NULL, fetch
99
 * an idr_layer from @idr->id_free.
100
 *
101
 * @layer_idr is to maintain backward compatibility with the old alloc
102
 * interface - idr_pre_get() and idr_get_new*() - and will be removed
103
 * together with per-pool preload buffer.
104
 */
105
static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
106
{
107
	struct idr_layer *new;
108
 
109
	/* this is the old path, bypass to get_from_free_list() */
110
	if (layer_idr)
111
		return get_from_free_list(layer_idr);
112
 
113
	/* try to allocate directly from kmem_cache */
114
	new = kzalloc(sizeof(struct idr_layer), gfp_mask);
115
	if (new)
116
		return new;
117
 
118
 
119
	new = idr_preload_head;
120
	if (new) {
121
		idr_preload_head = new->ary[0];
122
		idr_preload_cnt--;
123
		new->ary[0] = NULL;
124
	}
125
	preempt_enable();
126
	return new;
127
}
128
 
1412 serge 129
static void idr_layer_rcu_free(struct rcu_head *head)
130
{
131
	struct idr_layer *layer;
132
 
133
    layer = container_of(head, struct idr_layer, rcu_head);
134
    kfree(layer);
135
}
136
 
3391 Serge 137
static inline void free_layer(struct idr *idr, struct idr_layer *p)
1412 serge 138
{
3391 Serge 139
	if (idr->hint && idr->hint == p)
140
		RCU_INIT_POINTER(idr->hint, NULL);
141
    idr_layer_rcu_free(&p->rcu_head);
1412 serge 142
}
143
 
144
/* only called when idp->lock is held */
145
static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
146
{
147
	p->ary[0] = idp->id_free;
148
	idp->id_free = p;
149
	idp->id_free_cnt++;
150
}
151
 
152
static void move_to_free_list(struct idr *idp, struct idr_layer *p)
153
{
154
	unsigned long flags;
155
 
156
	/*
157
	 * Depends on the return element being zeroed.
158
	 */
3391 Serge 159
	spin_lock_irqsave(&idp->lock, flags);
1412 serge 160
	__move_to_free_list(idp, p);
3391 Serge 161
	spin_unlock_irqrestore(&idp->lock, flags);
1412 serge 162
}
163
 
164
static void idr_mark_full(struct idr_layer **pa, int id)
165
{
166
	struct idr_layer *p = pa[0];
167
	int l = 0;
168
 
3391 Serge 169
	__set_bit(id & IDR_MASK, p->bitmap);
1412 serge 170
	/*
171
	 * If this layer is full mark the bit in the layer above to
172
	 * show that this part of the radix tree is full.  This may
173
	 * complete the layer above and require walking up the radix
174
	 * tree.
175
	 */
3391 Serge 176
	while (bitmap_full(p->bitmap, IDR_SIZE)) {
1412 serge 177
		if (!(p = pa[++l]))
178
			break;
179
		id = id >> IDR_BITS;
3391 Serge 180
		__set_bit((id & IDR_MASK), p->bitmap);
1412 serge 181
	}
182
}
183
 
4065 Serge 184
int __idr_pre_get(struct idr *idp, gfp_t gfp_mask)
1412 serge 185
{
3391 Serge 186
	while (idp->id_free_cnt < MAX_IDR_FREE) {
1412 serge 187
       struct idr_layer *new;
188
       new = kzalloc(sizeof(struct idr_layer), gfp_mask);
189
       if (new == NULL)
190
           return (0);
191
       move_to_free_list(idp, new);
192
   }
193
   return 1;
194
}
4065 Serge 195
EXPORT_SYMBOL(__idr_pre_get);
1412 serge 196
 
3391 Serge 197
/**
198
 * sub_alloc - try to allocate an id without growing the tree depth
199
 * @idp: idr handle
200
 * @starting_id: id to start search at
201
 * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
202
 * @gfp_mask: allocation mask for idr_layer_alloc()
203
 * @layer_idr: optional idr passed to idr_layer_alloc()
204
 *
205
 * Allocate an id in range [@starting_id, INT_MAX] from @idp without
206
 * growing its depth.  Returns
207
 *
208
 *  the allocated id >= 0 if successful,
209
 *  -EAGAIN if the tree needs to grow for allocation to succeed,
210
 *  -ENOSPC if the id space is exhausted,
211
 *  -ENOMEM if more idr_layers need to be allocated.
212
 */
213
static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
214
		     gfp_t gfp_mask, struct idr *layer_idr)
1412 serge 215
{
216
	int n, m, sh;
217
	struct idr_layer *p, *new;
218
	int l, id, oid;
219
 
220
	id = *starting_id;
221
 restart:
222
	p = idp->top;
223
	l = idp->layers;
224
	pa[l--] = NULL;
225
	while (1) {
226
		/*
227
		 * We run around this while until we reach the leaf node...
228
		 */
229
		n = (id >> (IDR_BITS*l)) & IDR_MASK;
3391 Serge 230
		m = find_next_zero_bit(p->bitmap, IDR_SIZE, n);
1412 serge 231
		if (m == IDR_SIZE) {
232
			/* no space available go back to previous layer. */
233
			l++;
234
			oid = id;
235
			id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
236
 
237
			/* if already at the top layer, we need to grow */
3391 Serge 238
			if (id >= 1 << (idp->layers * IDR_BITS)) {
1412 serge 239
				*starting_id = id;
3391 Serge 240
				return -EAGAIN;
1412 serge 241
			}
3391 Serge 242
			p = pa[l];
243
			BUG_ON(!p);
1412 serge 244
 
245
			/* If we need to go up one layer, continue the
246
			 * loop; otherwise, restart from the top.
247
			 */
248
			sh = IDR_BITS * (l + 1);
249
			if (oid >> sh == id >> sh)
250
				continue;
251
			else
252
				goto restart;
253
		}
254
		if (m != n) {
255
			sh = IDR_BITS*l;
256
			id = ((id >> sh) ^ n ^ m) << sh;
257
		}
3391 Serge 258
		if ((id >= MAX_IDR_BIT) || (id < 0))
259
			return -ENOSPC;
1412 serge 260
		if (l == 0)
261
			break;
262
		/*
263
		 * Create the layer below if it is missing.
264
		 */
265
		if (!p->ary[m]) {
3391 Serge 266
			new = idr_layer_alloc(gfp_mask, layer_idr);
1412 serge 267
			if (!new)
3391 Serge 268
				return -ENOMEM;
1412 serge 269
			new->layer = l-1;
3391 Serge 270
			new->prefix = id & idr_layer_prefix_mask(new->layer);
1412 serge 271
			rcu_assign_pointer(p->ary[m], new);
272
			p->count++;
273
		}
274
		pa[l--] = p;
275
		p = p->ary[m];
276
	}
277
 
278
	pa[l] = p;
279
	return id;
280
}
281
 
282
static int idr_get_empty_slot(struct idr *idp, int starting_id,
3391 Serge 283
			      struct idr_layer **pa, gfp_t gfp_mask,
284
			      struct idr *layer_idr)
1412 serge 285
{
286
	struct idr_layer *p, *new;
287
	int layers, v, id;
288
	unsigned long flags;
289
 
290
	id = starting_id;
291
build_up:
292
	p = idp->top;
293
	layers = idp->layers;
294
	if (unlikely(!p)) {
3391 Serge 295
		if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
296
			return -ENOMEM;
1412 serge 297
		p->layer = 0;
298
		layers = 1;
299
	}
300
	/*
301
	 * Add a new layer to the top of the tree if the requested
302
	 * id is larger than the currently allocated space.
303
	 */
3391 Serge 304
	while (id > idr_max(layers)) {
1412 serge 305
		layers++;
306
		if (!p->count) {
307
			/* special case: if the tree is currently empty,
308
			 * then we grow the tree by moving the top node
309
			 * upwards.
310
			 */
311
			p->layer++;
3391 Serge 312
			WARN_ON_ONCE(p->prefix);
1412 serge 313
			continue;
314
		}
3391 Serge 315
		if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
1412 serge 316
			/*
317
			 * The allocation failed.  If we built part of
318
			 * the structure tear it down.
319
			 */
3391 Serge 320
			spin_lock_irqsave(&idp->lock, flags);
1412 serge 321
			for (new = p; p && p != idp->top; new = p) {
322
				p = p->ary[0];
323
				new->ary[0] = NULL;
3391 Serge 324
				new->count = 0;
325
				bitmap_clear(new->bitmap, 0, IDR_SIZE);
1412 serge 326
				__move_to_free_list(idp, new);
327
			}
3391 Serge 328
			spin_unlock_irqrestore(&idp->lock, flags);
329
			return -ENOMEM;
1412 serge 330
		}
331
		new->ary[0] = p;
332
		new->count = 1;
333
		new->layer = layers-1;
3391 Serge 334
		new->prefix = id & idr_layer_prefix_mask(new->layer);
335
		if (bitmap_full(p->bitmap, IDR_SIZE))
336
			__set_bit(0, new->bitmap);
1412 serge 337
		p = new;
338
	}
339
	rcu_assign_pointer(idp->top, p);
340
	idp->layers = layers;
3391 Serge 341
	v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
342
	if (v == -EAGAIN)
1412 serge 343
		goto build_up;
344
	return(v);
345
}
346
 
3391 Serge 347
/*
348
 * @id and @pa are from a successful allocation from idr_get_empty_slot().
349
 * Install the user pointer @ptr and mark the slot full.
350
 */
351
static void idr_fill_slot(struct idr *idr, void *ptr, int id,
352
			  struct idr_layer **pa)
1412 serge 353
{
3391 Serge 354
	/* update hint used for lookup, cleared from free_layer() */
355
	rcu_assign_pointer(idr->hint, pa[0]);
1412 serge 356
 
3391 Serge 357
	rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
1412 serge 358
		pa[0]->count++;
359
		idr_mark_full(pa, id);
360
}
361
 
4065 Serge 362
int __idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
1412 serge 363
{
3391 Serge 364
	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
1412 serge 365
	int rv;
2966 Serge 366
 
3391 Serge 367
	rv = idr_get_empty_slot(idp, starting_id, pa, 0, idp);
1412 serge 368
	if (rv < 0)
3391 Serge 369
		return rv == -ENOMEM ? -EAGAIN : rv;
370
 
371
	idr_fill_slot(idp, ptr, rv, pa);
1412 serge 372
	*id = rv;
373
    return 0;
374
}
4065 Serge 375
EXPORT_SYMBOL(__idr_get_new_above);
1412 serge 376
 
377
/**
3391 Serge 378
 * idr_preload - preload for idr_alloc()
379
 * @gfp_mask: allocation mask to use for preloading
1412 serge 380
 *
3391 Serge 381
 * Preload per-cpu layer buffer for idr_alloc().  Can only be used from
382
 * process context and each idr_preload() invocation should be matched with
383
 * idr_preload_end().  Note that preemption is disabled while preloaded.
1412 serge 384
 *
3391 Serge 385
 * The first idr_alloc() in the preloaded section can be treated as if it
386
 * were invoked with @gfp_mask used for preloading.  This allows using more
387
 * permissive allocation masks for idrs protected by spinlocks.
1412 serge 388
 *
3391 Serge 389
 * For example, if idr_alloc() below fails, the failure can be treated as
390
 * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
391
 *
392
 *	idr_preload(GFP_KERNEL);
393
 *	spin_lock(lock);
394
 *
395
 *	id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
396
 *
397
 *	spin_unlock(lock);
398
 *	idr_preload_end();
399
 *	if (id < 0)
400
 *		error;
1412 serge 401
 */
3391 Serge 402
void idr_preload(gfp_t gfp_mask)
1412 serge 403
{
404
 
405
	/*
3391 Serge 406
	 * idr_alloc() is likely to succeed w/o full idr_layer buffer and
407
	 * return value from idr_alloc() needs to be checked for failure
408
	 * anyway.  Silently give up if allocation fails.  The caller can
409
	 * treat failures from idr_alloc() as if idr_alloc() were called
410
	 * with @gfp_mask which should be enough.
1412 serge 411
	 */
3391 Serge 412
	while (idr_preload_cnt < MAX_IDR_FREE) {
413
		struct idr_layer *new;
414
 
415
		new = kzalloc(sizeof(struct idr_layer), gfp_mask);
416
		if (!new)
417
			break;
418
 
419
		/* link the new one to per-cpu preload list */
420
		new->ary[0] = idr_preload_head;
421
		idr_preload_head = new;
422
		idr_preload_cnt++;
423
	}
1412 serge 424
}
3391 Serge 425
EXPORT_SYMBOL(idr_preload);
1412 serge 426
 
3391 Serge 427
/**
428
 * idr_alloc - allocate new idr entry
429
 * @idr: the (initialized) idr
430
 * @ptr: pointer to be associated with the new id
431
 * @start: the minimum id (inclusive)
432
 * @end: the maximum id (exclusive, <= 0 for max)
433
 * @gfp_mask: memory allocation flags
434
 *
435
 * Allocate an id in [start, end) and associate it with @ptr.  If no ID is
436
 * available in the specified range, returns -ENOSPC.  On memory allocation
437
 * failure, returns -ENOMEM.
438
 *
439
 * Note that @end is treated as max when <= 0.  This is to always allow
440
 * using @start + N as @end as long as N is inside integer range.
441
 *
442
 * The user is responsible for exclusively synchronizing all operations
443
 * which may modify @idr.  However, read-only accesses such as idr_find()
444
 * or iteration can be performed under RCU read lock provided the user
445
 * destroys @ptr in RCU-safe way after removal from idr.
446
 */
447
int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
448
{
449
	int max = end > 0 ? end - 1 : INT_MAX;	/* inclusive upper limit */
450
	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
451
	int id;
452
 
453
	/* sanity checks */
454
	if (WARN_ON_ONCE(start < 0))
455
		return -EINVAL;
456
	if (unlikely(max < start))
457
		return -ENOSPC;
458
 
459
	/* allocate id */
460
	id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
461
	if (unlikely(id < 0))
462
		return id;
463
	if (unlikely(id > max))
464
		return -ENOSPC;
465
 
466
	idr_fill_slot(idr, ptr, id, pa);
467
	return id;
468
}
469
EXPORT_SYMBOL_GPL(idr_alloc);
470
 
4103 Serge 471
/**
472
 * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion
473
 * @idr: the (initialized) idr
474
 * @ptr: pointer to be associated with the new id
475
 * @start: the minimum id (inclusive)
476
 * @end: the maximum id (exclusive, <= 0 for max)
477
 * @gfp_mask: memory allocation flags
478
 *
479
 * Essentially the same as idr_alloc, but prefers to allocate progressively
480
 * higher ids if it can. If the "cur" counter wraps, then it will start again
481
 * at the "start" end of the range and allocate one that has already been used.
482
 */
483
int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end,
484
			gfp_t gfp_mask)
485
{
486
	int id;
487
 
488
	id = idr_alloc(idr, ptr, max(start, idr->cur), end, gfp_mask);
489
	if (id == -ENOSPC)
490
		id = idr_alloc(idr, ptr, start, end, gfp_mask);
491
 
492
	if (likely(id >= 0))
493
		idr->cur = id + 1;
494
	return id;
495
}
496
EXPORT_SYMBOL(idr_alloc_cyclic);
497
 
1412 serge 498
static void idr_remove_warning(int id)
499
{
4065 Serge 500
	WARN(1, "idr_remove called for id=%d which is not allocated.\n", id);
1412 serge 501
}
502
 
503
static void sub_remove(struct idr *idp, int shift, int id)
504
{
505
	struct idr_layer *p = idp->top;
3391 Serge 506
	struct idr_layer **pa[MAX_IDR_LEVEL + 1];
1412 serge 507
	struct idr_layer ***paa = &pa[0];
508
	struct idr_layer *to_free;
509
	int n;
510
 
511
	*paa = NULL;
512
	*++paa = &idp->top;
513
 
514
	while ((shift > 0) && p) {
515
		n = (id >> shift) & IDR_MASK;
3391 Serge 516
		__clear_bit(n, p->bitmap);
1412 serge 517
		*++paa = &p->ary[n];
518
		p = p->ary[n];
519
		shift -= IDR_BITS;
520
	}
521
	n = id & IDR_MASK;
3391 Serge 522
	if (likely(p != NULL && test_bit(n, p->bitmap))) {
523
		__clear_bit(n, p->bitmap);
1412 serge 524
		rcu_assign_pointer(p->ary[n], NULL);
525
		to_free = NULL;
526
		while(*paa && ! --((**paa)->count)){
527
			if (to_free)
3391 Serge 528
				free_layer(idp, to_free);
1412 serge 529
			to_free = **paa;
530
			**paa-- = NULL;
531
		}
532
		if (!*paa)
533
			idp->layers = 0;
534
		if (to_free)
3391 Serge 535
			free_layer(idp, to_free);
1412 serge 536
	} else
537
		idr_remove_warning(id);
538
}
539
 
540
/**
2966 Serge 541
 * idr_remove - remove the given id and free its slot
1412 serge 542
 * @idp: idr handle
543
 * @id: unique key
544
 */
545
void idr_remove(struct idr *idp, int id)
546
{
547
	struct idr_layer *p;
548
	struct idr_layer *to_free;
549
 
4065 Serge 550
	if (id < 0)
3391 Serge 551
		return;
1412 serge 552
 
553
	sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
554
	if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
555
	    idp->top->ary[0]) {
556
		/*
557
		 * Single child at leftmost slot: we can shrink the tree.
558
		 * This level is not needed anymore since when layers are
559
		 * inserted, they are inserted at the top of the existing
560
		 * tree.
561
		 */
562
		to_free = idp->top;
563
		p = idp->top->ary[0];
564
		rcu_assign_pointer(idp->top, p);
565
		--idp->layers;
3391 Serge 566
		to_free->count = 0;
567
		bitmap_clear(to_free->bitmap, 0, IDR_SIZE);
568
		free_layer(idp, to_free);
1412 serge 569
	}
3391 Serge 570
	while (idp->id_free_cnt >= MAX_IDR_FREE) {
1412 serge 571
		p = get_from_free_list(idp);
572
		/*
573
		 * Note: we don't call the rcu callback here, since the only
574
		 * layers that fall into the freelist are those that have been
575
		 * preallocated.
576
		 */
577
        kfree(p);
578
	}
579
	return;
580
}
3391 Serge 581
EXPORT_SYMBOL(idr_remove);
1412 serge 582
 
3391 Serge 583
void __idr_remove_all(struct idr *idp)
1412 serge 584
{
585
	int n, id, max;
2966 Serge 586
	int bt_mask;
1412 serge 587
	struct idr_layer *p;
3391 Serge 588
	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
1412 serge 589
	struct idr_layer **paa = &pa[0];
590
 
591
	n = idp->layers * IDR_BITS;
592
	p = idp->top;
593
	rcu_assign_pointer(idp->top, NULL);
3391 Serge 594
	max = idr_max(idp->layers);
1412 serge 595
 
596
	id = 0;
3391 Serge 597
	while (id >= 0 && id <= max) {
1412 serge 598
		while (n > IDR_BITS && p) {
599
			n -= IDR_BITS;
600
			*paa++ = p;
601
			p = p->ary[(id >> n) & IDR_MASK];
602
		}
603
 
2966 Serge 604
		bt_mask = id;
1412 serge 605
		id += 1 << n;
2966 Serge 606
		/* Get the highest bit that the above add changed from 0->1. */
607
		while (n < fls(id ^ bt_mask)) {
1412 serge 608
			if (p)
3391 Serge 609
				free_layer(idp, p);
1412 serge 610
			n += IDR_BITS;
611
			p = *--paa;
612
		}
613
	}
614
	idp->layers = 0;
615
}
3391 Serge 616
EXPORT_SYMBOL(__idr_remove_all);
1412 serge 617
 
618
/**
619
 * idr_destroy - release all cached layers within an idr tree
2966 Serge 620
 * @idp: idr handle
3391 Serge 621
 *
622
 * Free all id mappings and all idp_layers.  After this function, @idp is
623
 * completely unused and can be freed / recycled.  The caller is
624
 * responsible for ensuring that no one else accesses @idp during or after
625
 * idr_destroy().
626
 *
627
 * A typical clean-up sequence for objects stored in an idr tree will use
628
 * idr_for_each() to free all objects, if necessay, then idr_destroy() to
629
 * free up the id mappings and cached idr_layers.
1412 serge 630
 */
631
void idr_destroy(struct idr *idp)
632
{
3391 Serge 633
	__idr_remove_all(idp);
634
 
1412 serge 635
	while (idp->id_free_cnt) {
636
		struct idr_layer *p = get_from_free_list(idp);
637
        kfree(p);
638
	}
639
}
3391 Serge 640
EXPORT_SYMBOL(idr_destroy);
1412 serge 641
 
3391 Serge 642
void *idr_find_slowpath(struct idr *idp, int id)
1412 serge 643
{
644
	int n;
645
	struct idr_layer *p;
646
 
4065 Serge 647
	if (id < 0)
3391 Serge 648
		return NULL;
649
 
650
	p = rcu_dereference_raw(idp->top);
1412 serge 651
	if (!p)
652
		return NULL;
653
	n = (p->layer+1) * IDR_BITS;
654
 
3391 Serge 655
	if (id > idr_max(p->layer + 1))
1412 serge 656
		return NULL;
657
	BUG_ON(n == 0);
658
 
659
	while (n > 0 && p) {
660
		n -= IDR_BITS;
661
		BUG_ON(n != p->layer*IDR_BITS);
3391 Serge 662
		p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
1412 serge 663
	}
664
	return((void *)p);
665
}
3391 Serge 666
EXPORT_SYMBOL(idr_find_slowpath);
1412 serge 667
 
668
/**
669
 * idr_for_each - iterate through all stored pointers
670
 * @idp: idr handle
671
 * @fn: function to be called for each pointer
672
 * @data: data passed back to callback function
673
 *
674
 * Iterate over the pointers registered with the given idr.  The
675
 * callback function will be called for each pointer currently
676
 * registered, passing the id, the pointer and the data pointer passed
677
 * to this function.  It is not safe to modify the idr tree while in
678
 * the callback, so functions such as idr_get_new and idr_remove are
679
 * not allowed.
680
 *
681
 * We check the return of @fn each time. If it returns anything other
2966 Serge 682
 * than %0, we break out and return that value.
1412 serge 683
 *
684
 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
685
 */
686
int idr_for_each(struct idr *idp,
687
		 int (*fn)(int id, void *p, void *data), void *data)
688
{
689
	int n, id, max, error = 0;
690
	struct idr_layer *p;
3391 Serge 691
	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
1412 serge 692
	struct idr_layer **paa = &pa[0];
693
 
694
	n = idp->layers * IDR_BITS;
3391 Serge 695
	p = rcu_dereference_raw(idp->top);
696
	max = idr_max(idp->layers);
1412 serge 697
 
698
	id = 0;
3391 Serge 699
	while (id >= 0 && id <= max) {
1412 serge 700
		while (n > 0 && p) {
701
			n -= IDR_BITS;
702
			*paa++ = p;
3391 Serge 703
			p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
1412 serge 704
		}
705
 
706
		if (p) {
707
			error = fn(id, (void *)p, data);
708
			if (error)
709
				break;
710
		}
711
 
712
		id += 1 << n;
713
		while (n < fls(id)) {
714
			n += IDR_BITS;
715
			p = *--paa;
716
		}
717
	}
718
 
719
	return error;
720
}
721
EXPORT_SYMBOL(idr_for_each);
722
 
723
/**
724
 * idr_get_next - lookup next object of id to given id.
725
 * @idp: idr handle
2966 Serge 726
 * @nextidp:  pointer to lookup key
1412 serge 727
 *
728
 * Returns pointer to registered object with id, which is next number to
2966 Serge 729
 * given id. After being looked up, *@nextidp will be updated for the next
730
 * iteration.
3391 Serge 731
 *
732
 * This function can be called under rcu_read_lock(), given that the leaf
733
 * pointers lifetimes are correctly managed.
1412 serge 734
 */
735
void *idr_get_next(struct idr *idp, int *nextidp)
736
{
3391 Serge 737
	struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
1412 serge 738
	struct idr_layer **paa = &pa[0];
739
	int id = *nextidp;
740
	int n, max;
741
 
742
	/* find first ent */
3391 Serge 743
	p = rcu_dereference_raw(idp->top);
1412 serge 744
	if (!p)
745
		return NULL;
3391 Serge 746
	n = (p->layer + 1) * IDR_BITS;
747
	max = idr_max(p->layer + 1);
1412 serge 748
 
3391 Serge 749
	while (id >= 0 && id <= max) {
1412 serge 750
		while (n > 0 && p) {
751
			n -= IDR_BITS;
752
			*paa++ = p;
3391 Serge 753
			p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
1412 serge 754
		}
755
 
756
		if (p) {
757
			*nextidp = id;
758
			return p;
759
		}
760
 
3391 Serge 761
		/*
762
		 * Proceed to the next layer at the current level.  Unlike
763
		 * idr_for_each(), @id isn't guaranteed to be aligned to
764
		 * layer boundary at this point and adding 1 << n may
765
		 * incorrectly skip IDs.  Make sure we jump to the
766
		 * beginning of the next layer using round_up().
767
		 */
768
		id = round_up(id + 1, 1 << n);
1412 serge 769
		while (n < fls(id)) {
770
			n += IDR_BITS;
771
			p = *--paa;
772
		}
773
	}
774
	return NULL;
775
}
3391 Serge 776
EXPORT_SYMBOL(idr_get_next);
1412 serge 777
 
778
 
779
/**
780
 * idr_replace - replace pointer for given id
781
 * @idp: idr handle
782
 * @ptr: pointer you want associated with the id
783
 * @id: lookup key
784
 *
785
 * Replace the pointer registered with an id and return the old value.
2966 Serge 786
 * A %-ENOENT return indicates that @id was not found.
787
 * A %-EINVAL return indicates that @id was not within valid constraints.
1412 serge 788
 *
789
 * The caller must serialize with writers.
790
 */
791
void *idr_replace(struct idr *idp, void *ptr, int id)
792
{
793
	int n;
794
	struct idr_layer *p, *old_p;
795
 
4065 Serge 796
	if (id < 0)
3391 Serge 797
		return ERR_PTR(-EINVAL);
798
 
1412 serge 799
	p = idp->top;
800
	if (!p)
801
		return ERR_PTR(-EINVAL);
802
 
803
	n = (p->layer+1) * IDR_BITS;
804
 
805
	if (id >= (1 << n))
806
		return ERR_PTR(-EINVAL);
807
 
808
	n -= IDR_BITS;
809
	while ((n > 0) && p) {
810
		p = p->ary[(id >> n) & IDR_MASK];
811
		n -= IDR_BITS;
812
	}
813
 
814
	n = id & IDR_MASK;
3391 Serge 815
	if (unlikely(p == NULL || !test_bit(n, p->bitmap)))
1412 serge 816
		return ERR_PTR(-ENOENT);
817
 
818
	old_p = p->ary[n];
819
	rcu_assign_pointer(p->ary[n], ptr);
820
 
821
	return old_p;
822
}
823
EXPORT_SYMBOL(idr_replace);
824
 
4065 Serge 825
void __init idr_init_cache(void)
1412 serge 826
{
827
    //idr_layer_cache = kmem_cache_create("idr_layer_cache",
828
    //           sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
829
}
830
 
831
/**
832
 * idr_init - initialize idr handle
833
 * @idp:	idr handle
834
 *
835
 * This function is use to set up the handle (@idp) that you will pass
836
 * to the rest of the functions.
837
 */
838
void idr_init(struct idr *idp)
839
{
840
	memset(idp, 0, sizeof(struct idr));
3391 Serge 841
	spin_lock_init(&idp->lock);
1412 serge 842
}
3391 Serge 843
EXPORT_SYMBOL(idr_init);
1412 serge 844
 
845
 
3391 Serge 846
/**
847
 * DOC: IDA description
1412 serge 848
 * IDA - IDR based ID allocator
849
 *
2966 Serge 850
 * This is id allocator without id -> pointer translation.  Memory
1412 serge 851
 * usage is much lower than full blown idr because each id only
852
 * occupies a bit.  ida uses a custom leaf node which contains
853
 * IDA_BITMAP_BITS slots.
854
 *
855
 * 2007-04-25  written by Tejun Heo 
856
 */
857
 
858
static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
859
{
860
	unsigned long flags;
861
 
862
	if (!ida->free_bitmap) {
863
		spin_lock_irqsave(&ida->idr.lock, flags);
864
		if (!ida->free_bitmap) {
865
			ida->free_bitmap = bitmap;
866
			bitmap = NULL;
867
		}
868
		spin_unlock_irqrestore(&ida->idr.lock, flags);
869
	}
870
 
871
	kfree(bitmap);
872
}
873
 
874
/**
875
 * ida_pre_get - reserve resources for ida allocation
876
 * @ida:	ida handle
877
 * @gfp_mask:	memory allocation flag
878
 *
879
 * This function should be called prior to locking and calling the
880
 * following function.  It preallocates enough memory to satisfy the
881
 * worst possible allocation.
882
 *
2966 Serge 883
 * If the system is REALLY out of memory this function returns %0,
884
 * otherwise %1.
1412 serge 885
 */
886
int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
887
{
888
	/* allocate idr_layers */
4103 Serge 889
	if (!__idr_pre_get(&ida->idr, gfp_mask))
1412 serge 890
		return 0;
891
 
892
	/* allocate free_bitmap */
893
	if (!ida->free_bitmap) {
894
		struct ida_bitmap *bitmap;
895
 
3391 Serge 896
		bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
1412 serge 897
		if (!bitmap)
898
			return 0;
899
 
900
		free_bitmap(ida, bitmap);
901
	}
902
 
903
	return 1;
904
}
905
EXPORT_SYMBOL(ida_pre_get);
906
 
907
/**
908
 * ida_get_new_above - allocate new ID above or equal to a start id
909
 * @ida:	ida handle
2966 Serge 910
 * @starting_id: id to start search at
1412 serge 911
 * @p_id:	pointer to the allocated handle
912
 *
2966 Serge 913
 * Allocate new ID above or equal to @starting_id.  It should be called
914
 * with any required locks.
1412 serge 915
 *
2966 Serge 916
 * If memory is required, it will return %-EAGAIN, you should unlock
1412 serge 917
 * and go back to the ida_pre_get() call.  If the ida is full, it will
2966 Serge 918
 * return %-ENOSPC.
1412 serge 919
 *
2966 Serge 920
 * @p_id returns a value in the range @starting_id ... %0x7fffffff.
1412 serge 921
 */
922
int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
923
{
3391 Serge 924
	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
1412 serge 925
	struct ida_bitmap *bitmap;
926
	unsigned long flags;
927
	int idr_id = starting_id / IDA_BITMAP_BITS;
928
	int offset = starting_id % IDA_BITMAP_BITS;
929
	int t, id;
930
 
931
 restart:
932
	/* get vacant slot */
3391 Serge 933
	t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
1412 serge 934
	if (t < 0)
3391 Serge 935
		return t == -ENOMEM ? -EAGAIN : t;
1412 serge 936
 
3391 Serge 937
	if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
1412 serge 938
		return -ENOSPC;
939
 
940
	if (t != idr_id)
941
		offset = 0;
942
	idr_id = t;
943
 
944
	/* if bitmap isn't there, create a new one */
945
	bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
946
	if (!bitmap) {
947
		spin_lock_irqsave(&ida->idr.lock, flags);
948
		bitmap = ida->free_bitmap;
949
		ida->free_bitmap = NULL;
950
		spin_unlock_irqrestore(&ida->idr.lock, flags);
951
 
952
		if (!bitmap)
953
			return -EAGAIN;
954
 
955
		memset(bitmap, 0, sizeof(struct ida_bitmap));
956
		rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
957
				(void *)bitmap);
958
		pa[0]->count++;
959
	}
960
 
961
	/* lookup for empty slot */
962
	t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
963
	if (t == IDA_BITMAP_BITS) {
964
		/* no empty slot after offset, continue to the next chunk */
965
		idr_id++;
966
		offset = 0;
967
		goto restart;
968
	}
969
 
970
	id = idr_id * IDA_BITMAP_BITS + t;
3391 Serge 971
	if (id >= MAX_IDR_BIT)
1412 serge 972
		return -ENOSPC;
973
 
974
	__set_bit(t, bitmap->bitmap);
975
	if (++bitmap->nr_busy == IDA_BITMAP_BITS)
976
		idr_mark_full(pa, idr_id);
977
 
978
	*p_id = id;
979
 
980
	/* Each leaf node can handle nearly a thousand slots and the
981
	 * whole idea of ida is to have small memory foot print.
982
	 * Throw away extra resources one by one after each successful
983
	 * allocation.
984
	 */
985
	if (ida->idr.id_free_cnt || ida->free_bitmap) {
986
		struct idr_layer *p = get_from_free_list(&ida->idr);
987
		if (p)
4065 Serge 988
			kfree(p);
1412 serge 989
	}
990
 
991
	return 0;
992
}
993
EXPORT_SYMBOL(ida_get_new_above);
994
 
995
/**
996
 * ida_remove - remove the given ID
997
 * @ida:	ida handle
998
 * @id:		ID to free
999
 */
1000
void ida_remove(struct ida *ida, int id)
1001
{
1002
	struct idr_layer *p = ida->idr.top;
1003
	int shift = (ida->idr.layers - 1) * IDR_BITS;
1004
	int idr_id = id / IDA_BITMAP_BITS;
1005
	int offset = id % IDA_BITMAP_BITS;
1006
	int n;
1007
	struct ida_bitmap *bitmap;
1008
 
1009
	/* clear full bits while looking up the leaf idr_layer */
1010
	while ((shift > 0) && p) {
1011
		n = (idr_id >> shift) & IDR_MASK;
3391 Serge 1012
		__clear_bit(n, p->bitmap);
1412 serge 1013
		p = p->ary[n];
1014
		shift -= IDR_BITS;
1015
	}
1016
 
1017
	if (p == NULL)
1018
		goto err;
1019
 
1020
	n = idr_id & IDR_MASK;
3391 Serge 1021
	__clear_bit(n, p->bitmap);
1412 serge 1022
 
1023
	bitmap = (void *)p->ary[n];
1024
	if (!test_bit(offset, bitmap->bitmap))
1025
		goto err;
1026
 
1027
	/* update bitmap and remove it if empty */
1028
	__clear_bit(offset, bitmap->bitmap);
1029
	if (--bitmap->nr_busy == 0) {
3391 Serge 1030
		__set_bit(n, p->bitmap);	/* to please idr_remove() */
1412 serge 1031
		idr_remove(&ida->idr, idr_id);
1032
		free_bitmap(ida, bitmap);
1033
	}
1034
 
1035
	return;
1036
 
1037
 err:
4065 Serge 1038
	WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
1412 serge 1039
}
1040
EXPORT_SYMBOL(ida_remove);
1041
 
1042
/**
1043
 * ida_destroy - release all cached layers within an ida tree
2966 Serge 1044
 * @ida:		ida handle
1412 serge 1045
 */
1046
void ida_destroy(struct ida *ida)
1047
{
1048
	idr_destroy(&ida->idr);
1049
	kfree(ida->free_bitmap);
1050
}
1051
EXPORT_SYMBOL(ida_destroy);
1052
 
1053
/**
4103 Serge 1054
 * ida_simple_get - get a new id.
1055
 * @ida: the (initialized) ida.
1056
 * @start: the minimum id (inclusive, < 0x8000000)
1057
 * @end: the maximum id (exclusive, < 0x8000000 or 0)
1058
 * @gfp_mask: memory allocation flags
1059
 *
1060
 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
1061
 * On memory allocation failure, returns -ENOMEM.
1062
 *
1063
 * Use ida_simple_remove() to get rid of an id.
1064
 */
1065
int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
1066
		   gfp_t gfp_mask)
1067
{
1068
	int ret, id;
1069
	unsigned int max;
1070
	unsigned long flags;
1071
 
1072
	BUG_ON((int)start < 0);
1073
	BUG_ON((int)end < 0);
1074
 
1075
	if (end == 0)
1076
		max = 0x80000000;
1077
	else {
1078
		BUG_ON(end < start);
1079
		max = end - 1;
1080
	}
1081
 
1082
again:
1083
	if (!ida_pre_get(ida, gfp_mask))
1084
		return -ENOMEM;
1085
 
1086
	spin_lock_irqsave(&simple_ida_lock, flags);
1087
	ret = ida_get_new_above(ida, start, &id);
1088
	if (!ret) {
1089
		if (id > max) {
1090
			ida_remove(ida, id);
1091
			ret = -ENOSPC;
1092
		} else {
1093
			ret = id;
1094
		}
1095
	}
1096
	spin_unlock_irqrestore(&simple_ida_lock, flags);
1097
 
1098
	if (unlikely(ret == -EAGAIN))
1099
		goto again;
1100
 
1101
	return ret;
1102
}
1103
EXPORT_SYMBOL(ida_simple_get);
1104
 
1105
/**
1106
 * ida_simple_remove - remove an allocated id.
1107
 * @ida: the (initialized) ida.
1108
 * @id: the id returned by ida_simple_get.
1109
 */
1110
void ida_simple_remove(struct ida *ida, unsigned int id)
1111
{
1112
	unsigned long flags;
1113
 
1114
	BUG_ON((int)id < 0);
1115
	spin_lock_irqsave(&simple_ida_lock, flags);
1116
	ida_remove(ida, id);
1117
	spin_unlock_irqrestore(&simple_ida_lock, flags);
1118
}
1119
EXPORT_SYMBOL(ida_simple_remove);
1120
 
1121
/**
1412 serge 1122
 * ida_init - initialize ida handle
1123
 * @ida:	ida handle
1124
 *
1125
 * This function is use to set up the handle (@ida) that you will pass
1126
 * to the rest of the functions.
1127
 */
1128
void ida_init(struct ida *ida)
1129
{
1130
	memset(ida, 0, sizeof(struct ida));
1131
	idr_init(&ida->idr);
1132
 
1133
}
1134
EXPORT_SYMBOL(ida_init);
1135
 
1136
 
3391 Serge 1137
 
1138
unsigned long find_first_bit(const unsigned long *addr, unsigned long size)
1139
{
1140
        const unsigned long *p = addr;
1141
        unsigned long result = 0;
1142
        unsigned long tmp;
1143
 
1144
        while (size & ~(BITS_PER_LONG-1)) {
1145
                if ((tmp = *(p++)))
1146
                        goto found;
1147
                result += BITS_PER_LONG;
1148
                size -= BITS_PER_LONG;
1149
        }
1150
        if (!size)
1151
                return result;
1152
 
1153
        tmp = (*p) & (~0UL >> (BITS_PER_LONG - size));
1154
        if (tmp == 0UL)         /* Are any bits set? */
1155
                return result + size;   /* Nope. */
1156
found:
1157
        return result + __ffs(tmp);
1158
}
1159
 
1160
unsigned long find_next_bit(const unsigned long *addr, unsigned long size,
1161
                            unsigned long offset)
1162
{
1163
        const unsigned long *p = addr + BITOP_WORD(offset);
1164
        unsigned long result = offset & ~(BITS_PER_LONG-1);
1165
        unsigned long tmp;
1166
 
1167
        if (offset >= size)
1168
                return size;
1169
        size -= result;
1170
        offset %= BITS_PER_LONG;
1171
        if (offset) {
1172
                tmp = *(p++);
1173
                tmp &= (~0UL << offset);
1174
                if (size < BITS_PER_LONG)
1175
                        goto found_first;
1176
                if (tmp)
1177
                        goto found_middle;
1178
                size -= BITS_PER_LONG;
1179
                result += BITS_PER_LONG;
1180
        }
1181
        while (size & ~(BITS_PER_LONG-1)) {
1182
                if ((tmp = *(p++)))
1183
                        goto found_middle;
1184
                result += BITS_PER_LONG;
1185
                size -= BITS_PER_LONG;
1186
        }
1187
        if (!size)
1188
                return result;
1189
        tmp = *p;
1190
 
1191
found_first:
1192
        tmp &= (~0UL >> (BITS_PER_LONG - size));
1193
        if (tmp == 0UL)         /* Are any bits set? */
1194
                return result + size;   /* Nope. */
1195
found_middle:
1196
        return result + __ffs(tmp);
1197
}
1198
 
1199
unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size,
1200
                                 unsigned long offset)
1201
{
1202
        const unsigned long *p = addr + BITOP_WORD(offset);
1203
        unsigned long result = offset & ~(BITS_PER_LONG-1);
1204
        unsigned long tmp;
1205
 
1206
        if (offset >= size)
1207
                return size;
1208
        size -= result;
1209
        offset %= BITS_PER_LONG;
1210
        if (offset) {
1211
                tmp = *(p++);
1212
                tmp |= ~0UL >> (BITS_PER_LONG - offset);
1213
                if (size < BITS_PER_LONG)
1214
                        goto found_first;
1215
                if (~tmp)
1216
                        goto found_middle;
1217
                size -= BITS_PER_LONG;
1218
                result += BITS_PER_LONG;
1219
        }
1220
        while (size & ~(BITS_PER_LONG-1)) {
1221
                if (~(tmp = *(p++)))
1222
                        goto found_middle;
1223
                result += BITS_PER_LONG;
1224
                size -= BITS_PER_LONG;
1225
        }
1226
        if (!size)
1227
                return result;
1228
        tmp = *p;
1229
 
1230
found_first:
1231
        tmp |= ~0UL << size;
1232
        if (tmp == ~0UL)        /* Are any bits zero? */
1233
                return result + size;   /* Nope. */
1234
found_middle:
1235
        return result + ffz(tmp);
1236
}
1237
 
1238
unsigned int hweight32(unsigned int w)
1239
{
1240
        unsigned int res = w - ((w >> 1) & 0x55555555);
1241
        res = (res & 0x33333333) + ((res >> 2) & 0x33333333);
1242
        res = (res + (res >> 4)) & 0x0F0F0F0F;
1243
        res = res + (res >> 8);
1244
        return (res + (res >> 16)) & 0x000000FF;
1245
}
1246