Subversion Repositories Kolibri OS

Rev

Rev 1412 | Rev 3391 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1412 serge 1
/*
2
 * 2002-10-18  written by Jim Houston jim.houston@ccur.com
3
 *	Copyright (C) 2002 by Concurrent Computer Corporation
4
 *	Distributed under the GNU GPL license version 2.
5
 *
6
 * Modified by George Anzinger to reuse immediately and to use
7
 * find bit instructions.  Also removed _irq on spinlocks.
8
 *
9
 * Modified by Nadia Derbey to make it RCU safe.
10
 *
11
 * Small id to pointer translation service.
12
 *
13
 * It uses a radix tree like structure as a sparse array indexed
14
 * by the id to obtain the pointer.  The bitmap makes allocating
15
 * a new id quick.
16
 *
17
 * You call it to allocate an id (an int) an associate with that id a
18
 * pointer or what ever, we treat it as a (void *).  You can pass this
19
 * id to a user for him to pass back at a later time.  You then pass
20
 * that id to this code and it returns your pointer.
21
 
22
 * You can release ids at any time. When all ids are released, most of
23
 * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we
24
 * don't need to go to the memory "store" during an id allocate, just
25
 * so you don't need to be too concerned about locking and conflicts
26
 * with the slab allocator.
27
 */
28
 
29
#include 
30
#include 
31
#include 
32
#include 
33
//#include 
34
 
35
unsigned long find_first_bit(const unsigned long *addr, unsigned long size)
36
{
37
    const unsigned long *p = addr;
38
    unsigned long result = 0;
39
    unsigned long tmp;
40
 
41
    while (size & ~(BITS_PER_LONG-1)) {
42
        if ((tmp = *(p++)))
43
            goto found;
44
        result += BITS_PER_LONG;
45
        size -= BITS_PER_LONG;
46
    }
47
    if (!size)
48
        return result;
49
 
50
    tmp = (*p) & (~0UL >> (BITS_PER_LONG - size));
51
    if (tmp == 0UL)     /* Are any bits set? */
52
        return result + size;   /* Nope. */
53
found:
54
    return result + __ffs(tmp);
55
}
56
 
57
int find_next_bit(const unsigned long *addr, int size, int offset)
58
{
59
    const unsigned long *p = addr + (offset >> 5);
60
    int set = 0, bit = offset & 31, res;
61
 
62
    if (bit)
63
    {
64
        /*
65
         * Look for nonzero in the first 32 bits:
66
         */
67
        __asm__("bsfl %1,%0\n\t"
68
                "jne 1f\n\t"
69
                "movl $32, %0\n"
70
                "1:"
71
                : "=r" (set)
72
                : "r" (*p >> bit));
73
        if (set < (32 - bit))
74
                return set + offset;
75
        set = 32 - bit;
76
        p++;
77
    }
78
    /*
79
     * No set bit yet, search remaining full words for a bit
80
     */
81
    res = find_first_bit (p, size - 32 * (p - addr));
82
    return (offset + set + res);
83
}
84
 
85
#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
86
 
87
#define rcu_dereference(p)     ({ \
88
                                typeof(p) _________p1 = ACCESS_ONCE(p); \
89
                                (_________p1); \
90
                                })
91
 
92
#define rcu_assign_pointer(p, v) \
93
        ({ \
94
                if (!__builtin_constant_p(v) || \
95
                    ((v) != NULL)) \
96
                (p) = (v); \
97
        })
98
 
99
//static struct kmem_cache *idr_layer_cache;
100
 
101
 
102
 
103
 
104
 
105
static struct idr_layer *get_from_free_list(struct idr *idp)
106
{
107
	struct idr_layer *p;
108
	unsigned long flags;
109
 
110
//   spin_lock_irqsave(&idp->lock, flags);
111
	if ((p = idp->id_free)) {
112
		idp->id_free = p->ary[0];
113
		idp->id_free_cnt--;
114
		p->ary[0] = NULL;
115
	}
116
//   spin_unlock_irqrestore(&idp->lock, flags);
117
	return(p);
118
}
119
 
120
static void idr_layer_rcu_free(struct rcu_head *head)
121
{
122
	struct idr_layer *layer;
123
 
124
    layer = container_of(head, struct idr_layer, rcu_head);
125
    kfree(layer);
126
}
127
 
128
static inline void free_layer(struct idr_layer *p)
129
{
130
    kfree(p);
131
}
132
 
133
/* only called when idp->lock is held */
134
static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
135
{
136
	p->ary[0] = idp->id_free;
137
	idp->id_free = p;
138
	idp->id_free_cnt++;
139
}
140
 
141
static void move_to_free_list(struct idr *idp, struct idr_layer *p)
142
{
143
	unsigned long flags;
144
 
145
	/*
146
	 * Depends on the return element being zeroed.
147
	 */
148
//   spin_lock_irqsave(&idp->lock, flags);
149
	__move_to_free_list(idp, p);
150
//   spin_unlock_irqrestore(&idp->lock, flags);
151
}
152
 
153
static void idr_mark_full(struct idr_layer **pa, int id)
154
{
155
	struct idr_layer *p = pa[0];
156
	int l = 0;
157
 
158
	__set_bit(id & IDR_MASK, &p->bitmap);
159
	/*
160
	 * If this layer is full mark the bit in the layer above to
161
	 * show that this part of the radix tree is full.  This may
162
	 * complete the layer above and require walking up the radix
163
	 * tree.
164
	 */
165
	while (p->bitmap == IDR_FULL) {
166
		if (!(p = pa[++l]))
167
			break;
168
		id = id >> IDR_BITS;
169
		__set_bit((id & IDR_MASK), &p->bitmap);
170
	}
171
}
172
 
173
/**
2966 Serge 174
 * idr_pre_get - reserve resources for idr allocation
1412 serge 175
 * @idp:	idr handle
176
 * @gfp_mask:	memory allocation flags
177
 *
2966 Serge 178
 * This function should be called prior to calling the idr_get_new* functions.
179
 * It preallocates enough memory to satisfy the worst possible allocation. The
180
 * caller should pass in GFP_KERNEL if possible.  This of course requires that
181
 * no spinning locks be held.
1412 serge 182
 *
2966 Serge 183
 * If the system is REALLY out of memory this function returns %0,
184
 * otherwise %1.
1412 serge 185
 */
2966 Serge 186
int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
1412 serge 187
{
188
   while (idp->id_free_cnt < IDR_FREE_MAX) {
189
       struct idr_layer *new;
190
       new = kzalloc(sizeof(struct idr_layer), gfp_mask);
191
       if (new == NULL)
192
           return (0);
193
       move_to_free_list(idp, new);
194
   }
195
   return 1;
196
}
197
 
198
static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa)
199
{
200
	int n, m, sh;
201
	struct idr_layer *p, *new;
202
	int l, id, oid;
203
	unsigned long bm;
204
 
205
	id = *starting_id;
206
 restart:
207
	p = idp->top;
208
	l = idp->layers;
209
	pa[l--] = NULL;
210
	while (1) {
211
		/*
212
		 * We run around this while until we reach the leaf node...
213
		 */
214
		n = (id >> (IDR_BITS*l)) & IDR_MASK;
215
		bm = ~p->bitmap;
216
		m = find_next_bit(&bm, IDR_SIZE, n);
217
		if (m == IDR_SIZE) {
218
			/* no space available go back to previous layer. */
219
			l++;
220
			oid = id;
221
			id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
222
 
223
			/* if already at the top layer, we need to grow */
224
			if (!(p = pa[l])) {
225
				*starting_id = id;
226
				return IDR_NEED_TO_GROW;
227
			}
228
 
229
			/* If we need to go up one layer, continue the
230
			 * loop; otherwise, restart from the top.
231
			 */
232
			sh = IDR_BITS * (l + 1);
233
			if (oid >> sh == id >> sh)
234
				continue;
235
			else
236
				goto restart;
237
		}
238
		if (m != n) {
239
			sh = IDR_BITS*l;
240
			id = ((id >> sh) ^ n ^ m) << sh;
241
		}
242
		if ((id >= MAX_ID_BIT) || (id < 0))
243
			return IDR_NOMORE_SPACE;
244
		if (l == 0)
245
			break;
246
		/*
247
		 * Create the layer below if it is missing.
248
		 */
249
		if (!p->ary[m]) {
250
			new = get_from_free_list(idp);
251
			if (!new)
252
				return -1;
253
			new->layer = l-1;
254
			rcu_assign_pointer(p->ary[m], new);
255
			p->count++;
256
		}
257
		pa[l--] = p;
258
		p = p->ary[m];
259
	}
260
 
261
	pa[l] = p;
262
	return id;
263
}
264
 
265
static int idr_get_empty_slot(struct idr *idp, int starting_id,
266
			      struct idr_layer **pa)
267
{
268
	struct idr_layer *p, *new;
269
	int layers, v, id;
270
	unsigned long flags;
271
 
272
	id = starting_id;
273
build_up:
274
	p = idp->top;
275
	layers = idp->layers;
276
	if (unlikely(!p)) {
277
		if (!(p = get_from_free_list(idp)))
278
			return -1;
279
		p->layer = 0;
280
		layers = 1;
281
	}
282
	/*
283
	 * Add a new layer to the top of the tree if the requested
284
	 * id is larger than the currently allocated space.
285
	 */
286
	while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) {
287
		layers++;
288
		if (!p->count) {
289
			/* special case: if the tree is currently empty,
290
			 * then we grow the tree by moving the top node
291
			 * upwards.
292
			 */
293
			p->layer++;
294
			continue;
295
		}
296
		if (!(new = get_from_free_list(idp))) {
297
			/*
298
			 * The allocation failed.  If we built part of
299
			 * the structure tear it down.
300
			 */
301
//           spin_lock_irqsave(&idp->lock, flags);
302
			for (new = p; p && p != idp->top; new = p) {
303
				p = p->ary[0];
304
				new->ary[0] = NULL;
305
				new->bitmap = new->count = 0;
306
				__move_to_free_list(idp, new);
307
			}
308
//           spin_unlock_irqrestore(&idp->lock, flags);
309
			return -1;
310
		}
311
		new->ary[0] = p;
312
		new->count = 1;
313
		new->layer = layers-1;
314
		if (p->bitmap == IDR_FULL)
315
			__set_bit(0, &new->bitmap);
316
		p = new;
317
	}
318
	rcu_assign_pointer(idp->top, p);
319
	idp->layers = layers;
320
	v = sub_alloc(idp, &id, pa);
321
	if (v == IDR_NEED_TO_GROW)
322
		goto build_up;
323
	return(v);
324
}
325
 
326
static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id)
327
{
328
	struct idr_layer *pa[MAX_LEVEL];
329
	int id;
330
 
331
	id = idr_get_empty_slot(idp, starting_id, pa);
332
	if (id >= 0) {
333
		/*
334
		 * Successfully found an empty slot.  Install the user
335
		 * pointer and mark the slot full.
336
		 */
337
		rcu_assign_pointer(pa[0]->ary[id & IDR_MASK],
338
				(struct idr_layer *)ptr);
339
		pa[0]->count++;
340
		idr_mark_full(pa, id);
341
	}
342
 
343
	return id;
344
}
345
 
346
/**
347
 * idr_get_new_above - allocate new idr entry above or equal to a start id
348
 * @idp: idr handle
2966 Serge 349
 * @ptr: pointer you want associated with the id
350
 * @starting_id: id to start search at
1412 serge 351
 * @id: pointer to the allocated handle
352
 *
353
 * This is the allocate id function.  It should be called with any
354
 * required locks.
355
 *
2966 Serge 356
 * If allocation from IDR's private freelist fails, idr_get_new_above() will
357
 * return %-EAGAIN.  The caller should retry the idr_pre_get() call to refill
358
 * IDR's preallocation and then retry the idr_get_new_above() call.
1412 serge 359
 *
2966 Serge 360
 * If the idr is full idr_get_new_above() will return %-ENOSPC.
361
 *
362
 * @id returns a value in the range @starting_id ... %0x7fffffff
1412 serge 363
 */
364
int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
365
{
366
	int rv;
2966 Serge 367
 
1412 serge 368
    rv = idr_get_new_above_int(idp, ptr, starting_id);
369
	/*
370
	 * This is a cheap hack until the IDR code can be fixed to
371
	 * return proper error values.
372
	 */
373
	if (rv < 0)
374
    {
375
        dbgprintf("fail\n");
376
        return _idr_rc_to_errno(rv);
377
    };
378
	*id = rv;
379
    return 0;
380
}
381
 
382
/**
383
 * idr_get_new - allocate new idr entry
384
 * @idp: idr handle
2966 Serge 385
 * @ptr: pointer you want associated with the id
1412 serge 386
 * @id: pointer to the allocated handle
387
 *
2966 Serge 388
 * If allocation from IDR's private freelist fails, idr_get_new_above() will
389
 * return %-EAGAIN.  The caller should retry the idr_pre_get() call to refill
390
 * IDR's preallocation and then retry the idr_get_new_above() call.
1412 serge 391
 *
2966 Serge 392
 * If the idr is full idr_get_new_above() will return %-ENOSPC.
1412 serge 393
 *
2966 Serge 394
 * @id returns a value in the range %0 ... %0x7fffffff
1412 serge 395
 */
396
int idr_get_new(struct idr *idp, void *ptr, int *id)
397
{
398
	int rv;
399
 
400
	rv = idr_get_new_above_int(idp, ptr, 0);
401
	/*
402
	 * This is a cheap hack until the IDR code can be fixed to
403
	 * return proper error values.
404
	 */
405
	if (rv < 0)
406
		return _idr_rc_to_errno(rv);
407
	*id = rv;
408
	return 0;
409
}
410
 
411
static void idr_remove_warning(int id)
412
{
413
	printk(KERN_WARNING
414
		"idr_remove called for id=%d which is not allocated.\n", id);
415
//   dump_stack();
416
}
417
 
418
static void sub_remove(struct idr *idp, int shift, int id)
419
{
420
	struct idr_layer *p = idp->top;
421
	struct idr_layer **pa[MAX_LEVEL];
422
	struct idr_layer ***paa = &pa[0];
423
	struct idr_layer *to_free;
424
	int n;
425
 
426
	*paa = NULL;
427
	*++paa = &idp->top;
428
 
429
	while ((shift > 0) && p) {
430
		n = (id >> shift) & IDR_MASK;
431
		__clear_bit(n, &p->bitmap);
432
		*++paa = &p->ary[n];
433
		p = p->ary[n];
434
		shift -= IDR_BITS;
435
	}
436
	n = id & IDR_MASK;
437
	if (likely(p != NULL && test_bit(n, &p->bitmap))){
438
		__clear_bit(n, &p->bitmap);
439
		rcu_assign_pointer(p->ary[n], NULL);
440
		to_free = NULL;
441
		while(*paa && ! --((**paa)->count)){
442
			if (to_free)
443
				free_layer(to_free);
444
			to_free = **paa;
445
			**paa-- = NULL;
446
		}
447
		if (!*paa)
448
			idp->layers = 0;
449
		if (to_free)
450
			free_layer(to_free);
451
	} else
452
		idr_remove_warning(id);
453
}
454
 
455
/**
2966 Serge 456
 * idr_remove - remove the given id and free its slot
1412 serge 457
 * @idp: idr handle
458
 * @id: unique key
459
 */
460
void idr_remove(struct idr *idp, int id)
461
{
462
	struct idr_layer *p;
463
	struct idr_layer *to_free;
464
 
465
	/* Mask off upper bits we don't use for the search. */
466
	id &= MAX_ID_MASK;
467
 
468
	sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
469
	if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
470
	    idp->top->ary[0]) {
471
		/*
472
		 * Single child at leftmost slot: we can shrink the tree.
473
		 * This level is not needed anymore since when layers are
474
		 * inserted, they are inserted at the top of the existing
475
		 * tree.
476
		 */
477
		to_free = idp->top;
478
		p = idp->top->ary[0];
479
		rcu_assign_pointer(idp->top, p);
480
		--idp->layers;
481
		to_free->bitmap = to_free->count = 0;
482
		free_layer(to_free);
483
	}
484
	while (idp->id_free_cnt >= IDR_FREE_MAX) {
485
		p = get_from_free_list(idp);
486
		/*
487
		 * Note: we don't call the rcu callback here, since the only
488
		 * layers that fall into the freelist are those that have been
489
		 * preallocated.
490
		 */
491
        kfree(p);
492
	}
493
	return;
494
}
495
 
496
 
497
/**
498
 * idr_remove_all - remove all ids from the given idr tree
499
 * @idp: idr handle
500
 *
501
 * idr_destroy() only frees up unused, cached idp_layers, but this
502
 * function will remove all id mappings and leave all idp_layers
503
 * unused.
504
 *
2966 Serge 505
 * A typical clean-up sequence for objects stored in an idr tree will
1412 serge 506
 * use idr_for_each() to free all objects, if necessay, then
507
 * idr_remove_all() to remove all ids, and idr_destroy() to free
508
 * up the cached idr_layers.
509
 */
510
void idr_remove_all(struct idr *idp)
511
{
512
	int n, id, max;
2966 Serge 513
	int bt_mask;
1412 serge 514
	struct idr_layer *p;
515
	struct idr_layer *pa[MAX_LEVEL];
516
	struct idr_layer **paa = &pa[0];
517
 
518
	n = idp->layers * IDR_BITS;
519
	p = idp->top;
520
	rcu_assign_pointer(idp->top, NULL);
521
	max = 1 << n;
522
 
523
	id = 0;
524
	while (id < max) {
525
		while (n > IDR_BITS && p) {
526
			n -= IDR_BITS;
527
			*paa++ = p;
528
			p = p->ary[(id >> n) & IDR_MASK];
529
		}
530
 
2966 Serge 531
		bt_mask = id;
1412 serge 532
		id += 1 << n;
2966 Serge 533
		/* Get the highest bit that the above add changed from 0->1. */
534
		while (n < fls(id ^ bt_mask)) {
1412 serge 535
			if (p)
536
				free_layer(p);
537
			n += IDR_BITS;
538
			p = *--paa;
539
		}
540
	}
541
	idp->layers = 0;
542
}
543
 
544
/**
545
 * idr_destroy - release all cached layers within an idr tree
2966 Serge 546
 * @idp: idr handle
1412 serge 547
 */
548
void idr_destroy(struct idr *idp)
549
{
550
	while (idp->id_free_cnt) {
551
		struct idr_layer *p = get_from_free_list(idp);
552
        kfree(p);
553
	}
554
}
555
 
556
 
557
/**
558
 * idr_find - return pointer for given id
559
 * @idp: idr handle
560
 * @id: lookup key
561
 *
562
 * Return the pointer given the id it has been registered with.  A %NULL
563
 * return indicates that @id is not valid or you passed %NULL in
564
 * idr_get_new().
565
 *
566
 * This function can be called under rcu_read_lock(), given that the leaf
567
 * pointers lifetimes are correctly managed.
568
 */
569
void *idr_find(struct idr *idp, int id)
570
{
571
	int n;
572
	struct idr_layer *p;
573
 
574
	p = rcu_dereference(idp->top);
575
	if (!p)
576
		return NULL;
577
	n = (p->layer+1) * IDR_BITS;
578
 
579
	/* Mask off upper bits we don't use for the search. */
580
	id &= MAX_ID_MASK;
581
 
582
	if (id >= (1 << n))
583
		return NULL;
584
	BUG_ON(n == 0);
585
 
586
	while (n > 0 && p) {
587
		n -= IDR_BITS;
588
		BUG_ON(n != p->layer*IDR_BITS);
589
		p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]);
590
	}
591
	return((void *)p);
592
}
593
 
594
#if 0
595
/**
596
 * idr_for_each - iterate through all stored pointers
597
 * @idp: idr handle
598
 * @fn: function to be called for each pointer
599
 * @data: data passed back to callback function
600
 *
601
 * Iterate over the pointers registered with the given idr.  The
602
 * callback function will be called for each pointer currently
603
 * registered, passing the id, the pointer and the data pointer passed
604
 * to this function.  It is not safe to modify the idr tree while in
605
 * the callback, so functions such as idr_get_new and idr_remove are
606
 * not allowed.
607
 *
608
 * We check the return of @fn each time. If it returns anything other
2966 Serge 609
 * than %0, we break out and return that value.
1412 serge 610
 *
611
 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
612
 */
613
int idr_for_each(struct idr *idp,
614
		 int (*fn)(int id, void *p, void *data), void *data)
615
{
616
	int n, id, max, error = 0;
617
	struct idr_layer *p;
618
	struct idr_layer *pa[MAX_LEVEL];
619
	struct idr_layer **paa = &pa[0];
620
 
621
	n = idp->layers * IDR_BITS;
622
	p = rcu_dereference(idp->top);
623
	max = 1 << n;
624
 
625
	id = 0;
626
	while (id < max) {
627
		while (n > 0 && p) {
628
			n -= IDR_BITS;
629
			*paa++ = p;
630
			p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]);
631
		}
632
 
633
		if (p) {
634
			error = fn(id, (void *)p, data);
635
			if (error)
636
				break;
637
		}
638
 
639
		id += 1 << n;
640
		while (n < fls(id)) {
641
			n += IDR_BITS;
642
			p = *--paa;
643
		}
644
	}
645
 
646
	return error;
647
}
648
EXPORT_SYMBOL(idr_for_each);
649
 
650
/**
651
 * idr_get_next - lookup next object of id to given id.
652
 * @idp: idr handle
2966 Serge 653
 * @nextidp:  pointer to lookup key
1412 serge 654
 *
655
 * Returns pointer to registered object with id, which is next number to
2966 Serge 656
 * given id. After being looked up, *@nextidp will be updated for the next
657
 * iteration.
1412 serge 658
 */
659
 
660
void *idr_get_next(struct idr *idp, int *nextidp)
661
{
662
	struct idr_layer *p, *pa[MAX_LEVEL];
663
	struct idr_layer **paa = &pa[0];
664
	int id = *nextidp;
665
	int n, max;
666
 
667
	/* find first ent */
668
	n = idp->layers * IDR_BITS;
669
	max = 1 << n;
670
	p = rcu_dereference(idp->top);
671
	if (!p)
672
		return NULL;
673
 
674
	while (id < max) {
675
		while (n > 0 && p) {
676
			n -= IDR_BITS;
677
			*paa++ = p;
678
			p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]);
679
		}
680
 
681
		if (p) {
682
			*nextidp = id;
683
			return p;
684
		}
685
 
686
		id += 1 << n;
687
		while (n < fls(id)) {
688
			n += IDR_BITS;
689
			p = *--paa;
690
		}
691
	}
692
	return NULL;
693
}
694
 
695
 
696
 
697
/**
698
 * idr_replace - replace pointer for given id
699
 * @idp: idr handle
700
 * @ptr: pointer you want associated with the id
701
 * @id: lookup key
702
 *
703
 * Replace the pointer registered with an id and return the old value.
2966 Serge 704
 * A %-ENOENT return indicates that @id was not found.
705
 * A %-EINVAL return indicates that @id was not within valid constraints.
1412 serge 706
 *
707
 * The caller must serialize with writers.
708
 */
709
void *idr_replace(struct idr *idp, void *ptr, int id)
710
{
711
	int n;
712
	struct idr_layer *p, *old_p;
713
 
714
	p = idp->top;
715
	if (!p)
716
		return ERR_PTR(-EINVAL);
717
 
718
	n = (p->layer+1) * IDR_BITS;
719
 
720
	id &= MAX_ID_MASK;
721
 
722
	if (id >= (1 << n))
723
		return ERR_PTR(-EINVAL);
724
 
725
	n -= IDR_BITS;
726
	while ((n > 0) && p) {
727
		p = p->ary[(id >> n) & IDR_MASK];
728
		n -= IDR_BITS;
729
	}
730
 
731
	n = id & IDR_MASK;
732
	if (unlikely(p == NULL || !test_bit(n, &p->bitmap)))
733
		return ERR_PTR(-ENOENT);
734
 
735
	old_p = p->ary[n];
736
	rcu_assign_pointer(p->ary[n], ptr);
737
 
738
	return old_p;
739
}
740
EXPORT_SYMBOL(idr_replace);
741
 
742
 
743
#endif
744
 
745
 
746
void idr_init_cache(void)
747
{
748
    //idr_layer_cache = kmem_cache_create("idr_layer_cache",
749
    //           sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
750
}
751
 
752
/**
753
 * idr_init - initialize idr handle
754
 * @idp:	idr handle
755
 *
756
 * This function is use to set up the handle (@idp) that you will pass
757
 * to the rest of the functions.
758
 */
759
void idr_init(struct idr *idp)
760
{
761
	memset(idp, 0, sizeof(struct idr));
762
 //  spin_lock_init(&idp->lock);
763
}
764
 
765
#if 0
766
 
767
/*
768
 * IDA - IDR based ID allocator
769
 *
2966 Serge 770
 * This is id allocator without id -> pointer translation.  Memory
1412 serge 771
 * usage is much lower than full blown idr because each id only
772
 * occupies a bit.  ida uses a custom leaf node which contains
773
 * IDA_BITMAP_BITS slots.
774
 *
775
 * 2007-04-25  written by Tejun Heo 
776
 */
777
 
778
static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
779
{
780
	unsigned long flags;
781
 
782
	if (!ida->free_bitmap) {
783
		spin_lock_irqsave(&ida->idr.lock, flags);
784
		if (!ida->free_bitmap) {
785
			ida->free_bitmap = bitmap;
786
			bitmap = NULL;
787
		}
788
		spin_unlock_irqrestore(&ida->idr.lock, flags);
789
	}
790
 
791
	kfree(bitmap);
792
}
793
 
794
/**
795
 * ida_pre_get - reserve resources for ida allocation
796
 * @ida:	ida handle
797
 * @gfp_mask:	memory allocation flag
798
 *
799
 * This function should be called prior to locking and calling the
800
 * following function.  It preallocates enough memory to satisfy the
801
 * worst possible allocation.
802
 *
2966 Serge 803
 * If the system is REALLY out of memory this function returns %0,
804
 * otherwise %1.
1412 serge 805
 */
806
int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
807
{
808
	/* allocate idr_layers */
809
	if (!idr_pre_get(&ida->idr, gfp_mask))
810
		return 0;
811
 
812
	/* allocate free_bitmap */
813
	if (!ida->free_bitmap) {
814
		struct ida_bitmap *bitmap;
815
 
816
		bitmap = kzalloc(sizeof(struct ida_bitmap), gfp_mask);
817
		if (!bitmap)
818
			return 0;
819
 
820
		free_bitmap(ida, bitmap);
821
	}
822
 
823
	return 1;
824
}
825
EXPORT_SYMBOL(ida_pre_get);
826
 
827
/**
828
 * ida_get_new_above - allocate new ID above or equal to a start id
829
 * @ida:	ida handle
2966 Serge 830
 * @starting_id: id to start search at
1412 serge 831
 * @p_id:	pointer to the allocated handle
832
 *
2966 Serge 833
 * Allocate new ID above or equal to @starting_id.  It should be called
834
 * with any required locks.
1412 serge 835
 *
2966 Serge 836
 * If memory is required, it will return %-EAGAIN, you should unlock
1412 serge 837
 * and go back to the ida_pre_get() call.  If the ida is full, it will
2966 Serge 838
 * return %-ENOSPC.
1412 serge 839
 *
2966 Serge 840
 * @p_id returns a value in the range @starting_id ... %0x7fffffff.
1412 serge 841
 */
842
int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
843
{
844
	struct idr_layer *pa[MAX_LEVEL];
845
	struct ida_bitmap *bitmap;
846
	unsigned long flags;
847
	int idr_id = starting_id / IDA_BITMAP_BITS;
848
	int offset = starting_id % IDA_BITMAP_BITS;
849
	int t, id;
850
 
851
 restart:
852
	/* get vacant slot */
853
	t = idr_get_empty_slot(&ida->idr, idr_id, pa);
854
	if (t < 0)
855
		return _idr_rc_to_errno(t);
856
 
857
	if (t * IDA_BITMAP_BITS >= MAX_ID_BIT)
858
		return -ENOSPC;
859
 
860
	if (t != idr_id)
861
		offset = 0;
862
	idr_id = t;
863
 
864
	/* if bitmap isn't there, create a new one */
865
	bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
866
	if (!bitmap) {
867
		spin_lock_irqsave(&ida->idr.lock, flags);
868
		bitmap = ida->free_bitmap;
869
		ida->free_bitmap = NULL;
870
		spin_unlock_irqrestore(&ida->idr.lock, flags);
871
 
872
		if (!bitmap)
873
			return -EAGAIN;
874
 
875
		memset(bitmap, 0, sizeof(struct ida_bitmap));
876
		rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
877
				(void *)bitmap);
878
		pa[0]->count++;
879
	}
880
 
881
	/* lookup for empty slot */
882
	t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
883
	if (t == IDA_BITMAP_BITS) {
884
		/* no empty slot after offset, continue to the next chunk */
885
		idr_id++;
886
		offset = 0;
887
		goto restart;
888
	}
889
 
890
	id = idr_id * IDA_BITMAP_BITS + t;
891
	if (id >= MAX_ID_BIT)
892
		return -ENOSPC;
893
 
894
	__set_bit(t, bitmap->bitmap);
895
	if (++bitmap->nr_busy == IDA_BITMAP_BITS)
896
		idr_mark_full(pa, idr_id);
897
 
898
	*p_id = id;
899
 
900
	/* Each leaf node can handle nearly a thousand slots and the
901
	 * whole idea of ida is to have small memory foot print.
902
	 * Throw away extra resources one by one after each successful
903
	 * allocation.
904
	 */
905
	if (ida->idr.id_free_cnt || ida->free_bitmap) {
906
		struct idr_layer *p = get_from_free_list(&ida->idr);
907
		if (p)
908
			kmem_cache_free(idr_layer_cache, p);
909
	}
910
 
911
	return 0;
912
}
913
EXPORT_SYMBOL(ida_get_new_above);
914
 
915
/**
916
 * ida_get_new - allocate new ID
917
 * @ida:	idr handle
918
 * @p_id:	pointer to the allocated handle
919
 *
920
 * Allocate new ID.  It should be called with any required locks.
921
 *
2966 Serge 922
 * If memory is required, it will return %-EAGAIN, you should unlock
1412 serge 923
 * and go back to the idr_pre_get() call.  If the idr is full, it will
2966 Serge 924
 * return %-ENOSPC.
1412 serge 925
 *
2966 Serge 926
 * @p_id returns a value in the range %0 ... %0x7fffffff.
1412 serge 927
 */
928
int ida_get_new(struct ida *ida, int *p_id)
929
{
930
	return ida_get_new_above(ida, 0, p_id);
931
}
932
EXPORT_SYMBOL(ida_get_new);
933
 
934
/**
935
 * ida_remove - remove the given ID
936
 * @ida:	ida handle
937
 * @id:		ID to free
938
 */
939
void ida_remove(struct ida *ida, int id)
940
{
941
	struct idr_layer *p = ida->idr.top;
942
	int shift = (ida->idr.layers - 1) * IDR_BITS;
943
	int idr_id = id / IDA_BITMAP_BITS;
944
	int offset = id % IDA_BITMAP_BITS;
945
	int n;
946
	struct ida_bitmap *bitmap;
947
 
948
	/* clear full bits while looking up the leaf idr_layer */
949
	while ((shift > 0) && p) {
950
		n = (idr_id >> shift) & IDR_MASK;
951
		__clear_bit(n, &p->bitmap);
952
		p = p->ary[n];
953
		shift -= IDR_BITS;
954
	}
955
 
956
	if (p == NULL)
957
		goto err;
958
 
959
	n = idr_id & IDR_MASK;
960
	__clear_bit(n, &p->bitmap);
961
 
962
	bitmap = (void *)p->ary[n];
963
	if (!test_bit(offset, bitmap->bitmap))
964
		goto err;
965
 
966
	/* update bitmap and remove it if empty */
967
	__clear_bit(offset, bitmap->bitmap);
968
	if (--bitmap->nr_busy == 0) {
969
		__set_bit(n, &p->bitmap);	/* to please idr_remove() */
970
		idr_remove(&ida->idr, idr_id);
971
		free_bitmap(ida, bitmap);
972
	}
973
 
974
	return;
975
 
976
 err:
977
	printk(KERN_WARNING
978
	       "ida_remove called for id=%d which is not allocated.\n", id);
979
}
980
EXPORT_SYMBOL(ida_remove);
981
 
982
/**
983
 * ida_destroy - release all cached layers within an ida tree
2966 Serge 984
 * @ida:		ida handle
1412 serge 985
 */
986
void ida_destroy(struct ida *ida)
987
{
988
	idr_destroy(&ida->idr);
989
	kfree(ida->free_bitmap);
990
}
991
EXPORT_SYMBOL(ida_destroy);
992
 
993
/**
994
 * ida_init - initialize ida handle
995
 * @ida:	ida handle
996
 *
997
 * This function is use to set up the handle (@ida) that you will pass
998
 * to the rest of the functions.
999
 */
1000
void ida_init(struct ida *ida)
1001
{
1002
	memset(ida, 0, sizeof(struct ida));
1003
	idr_init(&ida->idr);
1004
 
1005
}
1006
EXPORT_SYMBOL(ida_init);
1007
 
1008
 
1009
#endif