Subversion Repositories Kolibri OS

Rev

Rev 6082 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
3391 Serge 1
/*
2
 * lib/bitmap.c
3
 * Helper functions for bitmap.h.
4
 *
5056 serge 5
 * This source code is licensed under the GNU General Public License,
3391 Serge 6
 * Version 2.  See the file COPYING for more details.
7
 */
8
#include 
9
#include 
7143 serge 10
#include 
3391 Serge 11
#include 
12
#include 
13
#include 
14
#include 
15
#include 
7143 serge 16
#include 
17
#include 
18
 
19
#include 
3391 Serge 20
//#include 
21
 
22
/*
23
 * bitmaps provide an array of bits, implemented using an an
24
 * array of unsigned longs.  The number of valid bits in a
25
 * given bitmap does _not_ need to be an exact multiple of
26
 * BITS_PER_LONG.
27
 *
28
 * The possible unused bits in the last, partially used word
29
 * of a bitmap are 'don't care'.  The implementation makes
30
 * no particular effort to keep them zero.  It ensures that
31
 * their value will not affect the results of any operation.
32
 * The bitmap operations that return Boolean (bitmap_empty,
33
 * for example) or scalar (bitmap_weight, for example) results
34
 * carefully filter out these unused bits from impacting their
35
 * results.
36
 *
37
 * These operations actually hold to a slightly stronger rule:
38
 * if you don't input any bitmaps to these ops that have some
39
 * unused bits set, then they won't output any set unused bits
40
 * in output bitmaps.
41
 *
42
 * The byte ordering of bitmaps is more natural on little
43
 * endian architectures.  See the big-endian headers
44
 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
45
 * for the best explanations of this ordering.
46
 */
47
 
48
int __bitmap_equal(const unsigned long *bitmap1,
5056 serge 49
		const unsigned long *bitmap2, unsigned int bits)
3391 Serge 50
{
5056 serge 51
	unsigned int k, lim = bits/BITS_PER_LONG;
3391 Serge 52
	for (k = 0; k < lim; ++k)
53
		if (bitmap1[k] != bitmap2[k])
54
			return 0;
55
 
56
	if (bits % BITS_PER_LONG)
57
		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
58
			return 0;
59
 
60
	return 1;
61
}
62
EXPORT_SYMBOL(__bitmap_equal);
63
 
5056 serge 64
void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
3391 Serge 65
{
5056 serge 66
	unsigned int k, lim = bits/BITS_PER_LONG;
3391 Serge 67
	for (k = 0; k < lim; ++k)
68
		dst[k] = ~src[k];
69
 
70
	if (bits % BITS_PER_LONG)
5056 serge 71
		dst[k] = ~src[k];
3391 Serge 72
}
73
EXPORT_SYMBOL(__bitmap_complement);
74
 
75
/**
76
 * __bitmap_shift_right - logical right shift of the bits in a bitmap
77
 *   @dst : destination bitmap
78
 *   @src : source bitmap
79
 *   @shift : shift by this many bits
6082 serge 80
 *   @nbits : bitmap size, in bits
3391 Serge 81
 *
82
 * Shifting right (dividing) means moving bits in the MS -> LS bit
83
 * direction.  Zeros are fed into the vacated MS positions and the
84
 * LS bits shifted off the bottom are lost.
85
 */
6082 serge 86
void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
87
			unsigned shift, unsigned nbits)
3391 Serge 88
{
6082 serge 89
	unsigned k, lim = BITS_TO_LONGS(nbits);
90
	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
91
	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
3391 Serge 92
	for (k = 0; off + k < lim; ++k) {
93
		unsigned long upper, lower;
94
 
95
		/*
96
		 * If shift is not word aligned, take lower rem bits of
97
		 * word above and make them the top rem bits of result.
98
		 */
99
		if (!rem || off + k + 1 >= lim)
100
			upper = 0;
101
		else {
102
			upper = src[off + k + 1];
6082 serge 103
			if (off + k + 1 == lim - 1)
3391 Serge 104
				upper &= mask;
6082 serge 105
			upper <<= (BITS_PER_LONG - rem);
3391 Serge 106
		}
107
		lower = src[off + k];
6082 serge 108
		if (off + k == lim - 1)
3391 Serge 109
			lower &= mask;
6082 serge 110
		lower >>= rem;
111
		dst[k] = lower | upper;
3391 Serge 112
	}
113
	if (off)
114
		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
115
}
116
EXPORT_SYMBOL(__bitmap_shift_right);
117
 
118
 
119
/**
120
 * __bitmap_shift_left - logical left shift of the bits in a bitmap
121
 *   @dst : destination bitmap
122
 *   @src : source bitmap
123
 *   @shift : shift by this many bits
6082 serge 124
 *   @nbits : bitmap size, in bits
3391 Serge 125
 *
126
 * Shifting left (multiplying) means moving bits in the LS -> MS
127
 * direction.  Zeros are fed into the vacated LS bit positions
128
 * and those MS bits shifted off the top are lost.
129
 */
130
 
6082 serge 131
void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
132
			unsigned int shift, unsigned int nbits)
3391 Serge 133
{
6082 serge 134
	int k;
135
	unsigned int lim = BITS_TO_LONGS(nbits);
136
	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
3391 Serge 137
	for (k = lim - off - 1; k >= 0; --k) {
138
		unsigned long upper, lower;
139
 
140
		/*
141
		 * If shift is not word aligned, take upper rem bits of
142
		 * word below and make them the bottom rem bits of result.
143
		 */
144
		if (rem && k > 0)
6082 serge 145
			lower = src[k - 1] >> (BITS_PER_LONG - rem);
3391 Serge 146
		else
147
			lower = 0;
6082 serge 148
		upper = src[k] << rem;
149
		dst[k + off] = lower | upper;
3391 Serge 150
	}
151
	if (off)
152
		memset(dst, 0, off*sizeof(unsigned long));
153
}
154
EXPORT_SYMBOL(__bitmap_shift_left);
155
 
156
int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
5056 serge 157
				const unsigned long *bitmap2, unsigned int bits)
3391 Serge 158
{
5056 serge 159
	unsigned int k;
160
	unsigned int lim = bits/BITS_PER_LONG;
3391 Serge 161
	unsigned long result = 0;
162
 
5056 serge 163
	for (k = 0; k < lim; k++)
3391 Serge 164
		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
5056 serge 165
	if (bits % BITS_PER_LONG)
166
		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
167
			   BITMAP_LAST_WORD_MASK(bits));
3391 Serge 168
	return result != 0;
169
}
170
EXPORT_SYMBOL(__bitmap_and);
171
 
172
void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
5056 serge 173
				const unsigned long *bitmap2, unsigned int bits)
3391 Serge 174
{
5056 serge 175
	unsigned int k;
176
	unsigned int nr = BITS_TO_LONGS(bits);
3391 Serge 177
 
178
	for (k = 0; k < nr; k++)
179
		dst[k] = bitmap1[k] | bitmap2[k];
180
}
181
EXPORT_SYMBOL(__bitmap_or);
182
 
183
void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
5056 serge 184
				const unsigned long *bitmap2, unsigned int bits)
3391 Serge 185
{
5056 serge 186
	unsigned int k;
187
	unsigned int nr = BITS_TO_LONGS(bits);
3391 Serge 188
 
189
	for (k = 0; k < nr; k++)
190
		dst[k] = bitmap1[k] ^ bitmap2[k];
191
}
192
EXPORT_SYMBOL(__bitmap_xor);
193
 
194
int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
5056 serge 195
				const unsigned long *bitmap2, unsigned int bits)
3391 Serge 196
{
5056 serge 197
	unsigned int k;
198
	unsigned int lim = bits/BITS_PER_LONG;
3391 Serge 199
	unsigned long result = 0;
200
 
5056 serge 201
	for (k = 0; k < lim; k++)
3391 Serge 202
		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
5056 serge 203
	if (bits % BITS_PER_LONG)
204
		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
205
			   BITMAP_LAST_WORD_MASK(bits));
3391 Serge 206
	return result != 0;
207
}
208
EXPORT_SYMBOL(__bitmap_andnot);
209
 
210
int __bitmap_intersects(const unsigned long *bitmap1,
5056 serge 211
			const unsigned long *bitmap2, unsigned int bits)
3391 Serge 212
{
5056 serge 213
	unsigned int k, lim = bits/BITS_PER_LONG;
3391 Serge 214
	for (k = 0; k < lim; ++k)
215
		if (bitmap1[k] & bitmap2[k])
216
			return 1;
217
 
218
	if (bits % BITS_PER_LONG)
219
		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
220
			return 1;
221
	return 0;
222
}
223
EXPORT_SYMBOL(__bitmap_intersects);
224
 
225
int __bitmap_subset(const unsigned long *bitmap1,
5056 serge 226
		    const unsigned long *bitmap2, unsigned int bits)
3391 Serge 227
{
5056 serge 228
	unsigned int k, lim = bits/BITS_PER_LONG;
3391 Serge 229
	for (k = 0; k < lim; ++k)
230
		if (bitmap1[k] & ~bitmap2[k])
231
			return 0;
232
 
233
	if (bits % BITS_PER_LONG)
234
		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
235
			return 0;
236
	return 1;
237
}
238
EXPORT_SYMBOL(__bitmap_subset);
239
 
5056 serge 240
int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
3391 Serge 241
{
5056 serge 242
	unsigned int k, lim = bits/BITS_PER_LONG;
243
	int w = 0;
3391 Serge 244
 
245
	for (k = 0; k < lim; k++)
246
		w += hweight_long(bitmap[k]);
247
 
248
	if (bits % BITS_PER_LONG)
249
		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
250
 
251
	return w;
252
}
253
EXPORT_SYMBOL(__bitmap_weight);
254
 
5056 serge 255
void bitmap_set(unsigned long *map, unsigned int start, int len)
3391 Serge 256
{
257
	unsigned long *p = map + BIT_WORD(start);
5056 serge 258
	const unsigned int size = start + len;
3391 Serge 259
	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
260
	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
261
 
5056 serge 262
	while (len - bits_to_set >= 0) {
3391 Serge 263
		*p |= mask_to_set;
5056 serge 264
		len -= bits_to_set;
3391 Serge 265
		bits_to_set = BITS_PER_LONG;
266
		mask_to_set = ~0UL;
267
		p++;
268
	}
5056 serge 269
	if (len) {
3391 Serge 270
		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
271
		*p |= mask_to_set;
272
	}
273
}
274
EXPORT_SYMBOL(bitmap_set);
275
 
5056 serge 276
void bitmap_clear(unsigned long *map, unsigned int start, int len)
3391 Serge 277
{
278
	unsigned long *p = map + BIT_WORD(start);
5056 serge 279
	const unsigned int size = start + len;
3391 Serge 280
	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
281
	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
282
 
5056 serge 283
	while (len - bits_to_clear >= 0) {
3391 Serge 284
		*p &= ~mask_to_clear;
5056 serge 285
		len -= bits_to_clear;
3391 Serge 286
		bits_to_clear = BITS_PER_LONG;
287
		mask_to_clear = ~0UL;
288
		p++;
289
	}
5056 serge 290
	if (len) {
3391 Serge 291
		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
292
		*p &= ~mask_to_clear;
293
	}
294
}
295
EXPORT_SYMBOL(bitmap_clear);
296
 
5270 serge 297
/**
298
 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
3391 Serge 299
 * @map: The address to base the search on
300
 * @size: The bitmap size in bits
301
 * @start: The bitnumber to start searching at
302
 * @nr: The number of zeroed bits we're looking for
303
 * @align_mask: Alignment mask for zero area
5270 serge 304
 * @align_offset: Alignment offset for zero area.
3391 Serge 305
 *
306
 * The @align_mask should be one less than a power of 2; the effect is that
5270 serge 307
 * the bit offset of all zero areas this function finds plus @align_offset
308
 * is multiple of that power of 2.
3391 Serge 309
 */
5270 serge 310
unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
7143 serge 311
					     unsigned long size,
312
					     unsigned long start,
313
					     unsigned int nr,
5270 serge 314
					     unsigned long align_mask,
315
					     unsigned long align_offset)
3391 Serge 316
{
317
	unsigned long index, end, i;
318
again:
319
	index = find_next_zero_bit(map, size, start);
320
 
321
	/* Align allocation */
5270 serge 322
	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
3391 Serge 323
 
324
	end = index + nr;
325
	if (end > size)
326
		return end;
327
	i = find_next_bit(map, end, index);
328
	if (i < end) {
329
		start = i + 1;
330
		goto again;
331
	}
332
	return index;
333
}
5270 serge 334
EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
3391 Serge 335
 
336
/*
337
 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
338
 * second version by Paul Jackson, third by Joe Korty.
339
 */
340
 
341
#define CHUNKSZ				32
342
#define nbits_to_hold_value(val)	fls(val)
343
#define BASEDEC 10		/* fancier cpuset lists input in decimal */
344
 
345
 
346
 
347
 
348
 
349
/**
350
 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
351
 *	@buf: pointer to a bitmap
6082 serge 352
 *	@pos: a bit position in @buf (0 <= @pos < @nbits)
353
 *	@nbits: number of valid bit positions in @buf
3391 Serge 354
 *
6082 serge 355
 * Map the bit at position @pos in @buf (of length @nbits) to the
3391 Serge 356
 * ordinal of which set bit it is.  If it is not set or if @pos
357
 * is not a valid bit position, map to -1.
358
 *
359
 * If for example, just bits 4 through 7 are set in @buf, then @pos
360
 * values 4 through 7 will get mapped to 0 through 3, respectively,
5056 serge 361
 * and other @pos values will get mapped to -1.  When @pos value 7
3391 Serge 362
 * gets mapped to (returns) @ord value 3 in this example, that means
363
 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
364
 *
365
 * The bit positions 0 through @bits are valid positions in @buf.
366
 */
6082 serge 367
static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
3391 Serge 368
{
6082 serge 369
	if (pos >= nbits || !test_bit(pos, buf))
3391 Serge 370
		return -1;
371
 
6082 serge 372
	return __bitmap_weight(buf, pos);
3391 Serge 373
}
374
 
375
/**
376
 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
377
 *	@buf: pointer to bitmap
378
 *	@ord: ordinal bit position (n-th set bit, n >= 0)
6082 serge 379
 *	@nbits: number of valid bit positions in @buf
3391 Serge 380
 *
381
 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
6082 serge 382
 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
383
 * >= weight(buf), returns @nbits.
3391 Serge 384
 *
385
 * If for example, just bits 4 through 7 are set in @buf, then @ord
386
 * values 0 through 3 will get mapped to 4 through 7, respectively,
6082 serge 387
 * and all other @ord values returns @nbits.  When @ord value 3
3391 Serge 388
 * gets mapped to (returns) @pos value 7 in this example, that means
389
 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
390
 *
6082 serge 391
 * The bit positions 0 through @nbits-1 are valid positions in @buf.
3391 Serge 392
 */
6082 serge 393
unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
3391 Serge 394
{
6082 serge 395
	unsigned int pos;
3391 Serge 396
 
6082 serge 397
	for (pos = find_first_bit(buf, nbits);
398
	     pos < nbits && ord;
399
	     pos = find_next_bit(buf, nbits, pos + 1))
7143 serge 400
		ord--;
3391 Serge 401
 
402
	return pos;
403
}
404
 
405
/**
406
 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
407
 *	@dst: remapped result
408
 *	@src: subset to be remapped
409
 *	@old: defines domain of map
410
 *	@new: defines range of map
6082 serge 411
 *	@nbits: number of bits in each of these bitmaps
3391 Serge 412
 *
413
 * Let @old and @new define a mapping of bit positions, such that
414
 * whatever position is held by the n-th set bit in @old is mapped
415
 * to the n-th set bit in @new.  In the more general case, allowing
416
 * for the possibility that the weight 'w' of @new is less than the
417
 * weight of @old, map the position of the n-th set bit in @old to
418
 * the position of the m-th set bit in @new, where m == n % w.
419
 *
420
 * If either of the @old and @new bitmaps are empty, or if @src and
421
 * @dst point to the same location, then this routine copies @src
422
 * to @dst.
423
 *
424
 * The positions of unset bits in @old are mapped to themselves
425
 * (the identify map).
426
 *
427
 * Apply the above specified mapping to @src, placing the result in
428
 * @dst, clearing any bits previously set in @dst.
429
 *
430
 * For example, lets say that @old has bits 4 through 7 set, and
431
 * @new has bits 12 through 15 set.  This defines the mapping of bit
432
 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
433
 * bit positions unchanged.  So if say @src comes into this routine
434
 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
435
 * 13 and 15 set.
436
 */
437
void bitmap_remap(unsigned long *dst, const unsigned long *src,
438
		const unsigned long *old, const unsigned long *new,
6082 serge 439
		unsigned int nbits)
3391 Serge 440
{
6082 serge 441
	unsigned int oldbit, w;
3391 Serge 442
 
443
	if (dst == src)		/* following doesn't handle inplace remaps */
444
		return;
6082 serge 445
	bitmap_zero(dst, nbits);
3391 Serge 446
 
6082 serge 447
	w = bitmap_weight(new, nbits);
448
	for_each_set_bit(oldbit, src, nbits) {
449
		int n = bitmap_pos_to_ord(old, oldbit, nbits);
3391 Serge 450
 
451
		if (n < 0 || w == 0)
452
			set_bit(oldbit, dst);	/* identity map */
453
		else
6082 serge 454
			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
3391 Serge 455
	}
456
}
457
EXPORT_SYMBOL(bitmap_remap);
458
 
459
/**
460
 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
461
 *	@oldbit: bit position to be mapped
462
 *	@old: defines domain of map
463
 *	@new: defines range of map
464
 *	@bits: number of bits in each of these bitmaps
465
 *
466
 * Let @old and @new define a mapping of bit positions, such that
467
 * whatever position is held by the n-th set bit in @old is mapped
468
 * to the n-th set bit in @new.  In the more general case, allowing
469
 * for the possibility that the weight 'w' of @new is less than the
470
 * weight of @old, map the position of the n-th set bit in @old to
471
 * the position of the m-th set bit in @new, where m == n % w.
472
 *
473
 * The positions of unset bits in @old are mapped to themselves
474
 * (the identify map).
475
 *
476
 * Apply the above specified mapping to bit position @oldbit, returning
477
 * the new bit position.
478
 *
479
 * For example, lets say that @old has bits 4 through 7 set, and
480
 * @new has bits 12 through 15 set.  This defines the mapping of bit
481
 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
482
 * bit positions unchanged.  So if say @oldbit is 5, then this routine
483
 * returns 13.
484
 */
485
int bitmap_bitremap(int oldbit, const unsigned long *old,
486
				const unsigned long *new, int bits)
487
{
488
	int w = bitmap_weight(new, bits);
489
	int n = bitmap_pos_to_ord(old, oldbit, bits);
490
	if (n < 0 || w == 0)
491
		return oldbit;
492
	else
493
		return bitmap_ord_to_pos(new, n % w, bits);
494
}
495
EXPORT_SYMBOL(bitmap_bitremap);
496
 
497
/**
498
 * bitmap_onto - translate one bitmap relative to another
499
 *	@dst: resulting translated bitmap
500
 * 	@orig: original untranslated bitmap
501
 * 	@relmap: bitmap relative to which translated
502
 *	@bits: number of bits in each of these bitmaps
503
 *
504
 * Set the n-th bit of @dst iff there exists some m such that the
505
 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
506
 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
507
 * (If you understood the previous sentence the first time your
508
 * read it, you're overqualified for your current job.)
509
 *
510
 * In other words, @orig is mapped onto (surjectively) @dst,
6082 serge 511
 * using the map {  | the n-th bit of @relmap is the
3391 Serge 512
 * m-th set bit of @relmap }.
513
 *
514
 * Any set bits in @orig above bit number W, where W is the
515
 * weight of (number of set bits in) @relmap are mapped nowhere.
516
 * In particular, if for all bits m set in @orig, m >= W, then
517
 * @dst will end up empty.  In situations where the possibility
518
 * of such an empty result is not desired, one way to avoid it is
519
 * to use the bitmap_fold() operator, below, to first fold the
520
 * @orig bitmap over itself so that all its set bits x are in the
521
 * range 0 <= x < W.  The bitmap_fold() operator does this by
522
 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
523
 *
524
 * Example [1] for bitmap_onto():
525
 *  Let's say @relmap has bits 30-39 set, and @orig has bits
526
 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
527
 *  @dst will have bits 31, 33, 35, 37 and 39 set.
528
 *
529
 *  When bit 0 is set in @orig, it means turn on the bit in
530
 *  @dst corresponding to whatever is the first bit (if any)
531
 *  that is turned on in @relmap.  Since bit 0 was off in the
532
 *  above example, we leave off that bit (bit 30) in @dst.
533
 *
534
 *  When bit 1 is set in @orig (as in the above example), it
535
 *  means turn on the bit in @dst corresponding to whatever
536
 *  is the second bit that is turned on in @relmap.  The second
537
 *  bit in @relmap that was turned on in the above example was
538
 *  bit 31, so we turned on bit 31 in @dst.
539
 *
540
 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
541
 *  because they were the 4th, 6th, 8th and 10th set bits
542
 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
543
 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
544
 *
545
 *  When bit 11 is set in @orig, it means turn on the bit in
546
 *  @dst corresponding to whatever is the twelfth bit that is
547
 *  turned on in @relmap.  In the above example, there were
548
 *  only ten bits turned on in @relmap (30..39), so that bit
549
 *  11 was set in @orig had no affect on @dst.
550
 *
551
 * Example [2] for bitmap_fold() + bitmap_onto():
552
 *  Let's say @relmap has these ten bits set:
553
 *		40 41 42 43 45 48 53 61 74 95
554
 *  (for the curious, that's 40 plus the first ten terms of the
555
 *  Fibonacci sequence.)
556
 *
557
 *  Further lets say we use the following code, invoking
558
 *  bitmap_fold() then bitmap_onto, as suggested above to
5270 serge 559
 *  avoid the possibility of an empty @dst result:
3391 Serge 560
 *
561
 *	unsigned long *tmp;	// a temporary bitmap's bits
562
 *
563
 *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
564
 *	bitmap_onto(dst, tmp, relmap, bits);
565
 *
566
 *  Then this table shows what various values of @dst would be, for
567
 *  various @orig's.  I list the zero-based positions of each set bit.
568
 *  The tmp column shows the intermediate result, as computed by
569
 *  using bitmap_fold() to fold the @orig bitmap modulo ten
570
 *  (the weight of @relmap).
571
 *
572
 *      @orig           tmp            @dst
573
 *      0                0             40
574
 *      1                1             41
575
 *      9                9             95
576
 *      10               0             40 (*)
577
 *      1 3 5 7          1 3 5 7       41 43 48 61
578
 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
579
 *      0 9 18 27        0 9 8 7       40 61 74 95
580
 *      0 10 20 30       0             40
581
 *      0 11 22 33       0 1 2 3       40 41 42 43
582
 *      0 12 24 36       0 2 4 6       40 42 45 53
583
 *      78 102 211       1 2 8         41 42 74 (*)
584
 *
585
 * (*) For these marked lines, if we hadn't first done bitmap_fold()
586
 *     into tmp, then the @dst result would have been empty.
587
 *
588
 * If either of @orig or @relmap is empty (no set bits), then @dst
589
 * will be returned empty.
590
 *
591
 * If (as explained above) the only set bits in @orig are in positions
592
 * m where m >= W, (where W is the weight of @relmap) then @dst will
593
 * once again be returned empty.
594
 *
595
 * All bits in @dst not set by the above rule are cleared.
596
 */
597
void bitmap_onto(unsigned long *dst, const unsigned long *orig,
6082 serge 598
			const unsigned long *relmap, unsigned int bits)
3391 Serge 599
{
6082 serge 600
	unsigned int n, m;	/* same meaning as in above comment */
3391 Serge 601
 
602
	if (dst == orig)	/* following doesn't handle inplace mappings */
603
		return;
604
	bitmap_zero(dst, bits);
605
 
606
	/*
607
	 * The following code is a more efficient, but less
608
	 * obvious, equivalent to the loop:
609
	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
610
	 *		n = bitmap_ord_to_pos(orig, m, bits);
611
	 *		if (test_bit(m, orig))
612
	 *			set_bit(n, dst);
613
	 *	}
614
	 */
615
 
616
	m = 0;
617
	for_each_set_bit(n, relmap, bits) {
618
		/* m == bitmap_pos_to_ord(relmap, n, bits) */
619
		if (test_bit(m, orig))
620
			set_bit(n, dst);
621
		m++;
622
	}
623
}
624
EXPORT_SYMBOL(bitmap_onto);
625
 
626
/**
627
 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
628
 *	@dst: resulting smaller bitmap
629
 *	@orig: original larger bitmap
630
 *	@sz: specified size
6082 serge 631
 *	@nbits: number of bits in each of these bitmaps
3391 Serge 632
 *
633
 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
634
 * Clear all other bits in @dst.  See further the comment and
635
 * Example [2] for bitmap_onto() for why and how to use this.
636
 */
637
void bitmap_fold(unsigned long *dst, const unsigned long *orig,
6082 serge 638
			unsigned int sz, unsigned int nbits)
3391 Serge 639
{
6082 serge 640
	unsigned int oldbit;
3391 Serge 641
 
642
	if (dst == orig)	/* following doesn't handle inplace mappings */
643
		return;
6082 serge 644
	bitmap_zero(dst, nbits);
3391 Serge 645
 
6082 serge 646
	for_each_set_bit(oldbit, orig, nbits)
3391 Serge 647
		set_bit(oldbit % sz, dst);
648
}
649
EXPORT_SYMBOL(bitmap_fold);
650
 
651
/*
652
 * Common code for bitmap_*_region() routines.
653
 *	bitmap: array of unsigned longs corresponding to the bitmap
654
 *	pos: the beginning of the region
655
 *	order: region size (log base 2 of number of bits)
656
 *	reg_op: operation(s) to perform on that region of bitmap
657
 *
658
 * Can set, verify and/or release a region of bits in a bitmap,
659
 * depending on which combination of REG_OP_* flag bits is set.
660
 *
661
 * A region of a bitmap is a sequence of bits in the bitmap, of
662
 * some size '1 << order' (a power of two), aligned to that same
663
 * '1 << order' power of two.
664
 *
665
 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
666
 * Returns 0 in all other cases and reg_ops.
667
 */
668
 
669
enum {
670
	REG_OP_ISFREE,		/* true if region is all zero bits */
671
	REG_OP_ALLOC,		/* set all bits in region */
672
	REG_OP_RELEASE,		/* clear all bits in region */
673
};
674
 
5056 serge 675
static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
3391 Serge 676
{
677
	int nbits_reg;		/* number of bits in region */
678
	int index;		/* index first long of region in bitmap */
679
	int offset;		/* bit offset region in bitmap[index] */
680
	int nlongs_reg;		/* num longs spanned by region in bitmap */
681
	int nbitsinlong;	/* num bits of region in each spanned long */
682
	unsigned long mask;	/* bitmask for one long of region */
683
	int i;			/* scans bitmap by longs */
684
	int ret = 0;		/* return value */
685
 
686
	/*
687
	 * Either nlongs_reg == 1 (for small orders that fit in one long)
688
	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
689
	 */
690
	nbits_reg = 1 << order;
691
	index = pos / BITS_PER_LONG;
692
	offset = pos - (index * BITS_PER_LONG);
693
	nlongs_reg = BITS_TO_LONGS(nbits_reg);
694
	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
695
 
696
	/*
697
	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
698
	 * overflows if nbitsinlong == BITS_PER_LONG.
699
	 */
700
	mask = (1UL << (nbitsinlong - 1));
701
	mask += mask - 1;
702
	mask <<= offset;
703
 
704
	switch (reg_op) {
705
	case REG_OP_ISFREE:
706
		for (i = 0; i < nlongs_reg; i++) {
707
			if (bitmap[index + i] & mask)
708
				goto done;
709
		}
710
		ret = 1;	/* all bits in region free (zero) */
711
		break;
712
 
713
	case REG_OP_ALLOC:
714
		for (i = 0; i < nlongs_reg; i++)
715
			bitmap[index + i] |= mask;
716
		break;
717
 
718
	case REG_OP_RELEASE:
719
		for (i = 0; i < nlongs_reg; i++)
720
			bitmap[index + i] &= ~mask;
721
		break;
722
	}
723
done:
724
	return ret;
725
}
726
 
727
/**
728
 * bitmap_find_free_region - find a contiguous aligned mem region
729
 *	@bitmap: array of unsigned longs corresponding to the bitmap
730
 *	@bits: number of bits in the bitmap
731
 *	@order: region size (log base 2 of number of bits) to find
732
 *
733
 * Find a region of free (zero) bits in a @bitmap of @bits bits and
734
 * allocate them (set them to one).  Only consider regions of length
735
 * a power (@order) of two, aligned to that power of two, which
736
 * makes the search algorithm much faster.
737
 *
738
 * Return the bit offset in bitmap of the allocated region,
739
 * or -errno on failure.
740
 */
5056 serge 741
int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
3391 Serge 742
{
5056 serge 743
	unsigned int pos, end;		/* scans bitmap by regions of size order */
3391 Serge 744
 
5056 serge 745
	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
3391 Serge 746
		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
747
			continue;
748
		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
749
		return pos;
750
	}
751
	return -ENOMEM;
752
}
753
EXPORT_SYMBOL(bitmap_find_free_region);
754
 
755
/**
756
 * bitmap_release_region - release allocated bitmap region
757
 *	@bitmap: array of unsigned longs corresponding to the bitmap
758
 *	@pos: beginning of bit region to release
759
 *	@order: region size (log base 2 of number of bits) to release
760
 *
761
 * This is the complement to __bitmap_find_free_region() and releases
762
 * the found region (by clearing it in the bitmap).
763
 *
764
 * No return value.
765
 */
5056 serge 766
void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
3391 Serge 767
{
768
	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
769
}
770
EXPORT_SYMBOL(bitmap_release_region);
771
 
772
/**
773
 * bitmap_allocate_region - allocate bitmap region
774
 *	@bitmap: array of unsigned longs corresponding to the bitmap
775
 *	@pos: beginning of bit region to allocate
776
 *	@order: region size (log base 2 of number of bits) to allocate
777
 *
778
 * Allocate (set bits in) a specified region of a bitmap.
779
 *
780
 * Return 0 on success, or %-EBUSY if specified region wasn't
781
 * free (not all bits were zero).
782
 */
5056 serge 783
int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
3391 Serge 784
{
785
	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
786
		return -EBUSY;
5056 serge 787
	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
3391 Serge 788
}
789
EXPORT_SYMBOL(bitmap_allocate_region);
790
 
791
/**
792
 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
793
 * @dst:   destination buffer
794
 * @src:   bitmap to copy
795
 * @nbits: number of bits in the bitmap
796
 *
797
 * Require nbits % BITS_PER_LONG == 0.
798
 */
6082 serge 799
#ifdef __BIG_ENDIAN
800
void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
3391 Serge 801
{
6082 serge 802
	unsigned int i;
3391 Serge 803
 
804
	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
805
		if (BITS_PER_LONG == 64)
6082 serge 806
			dst[i] = cpu_to_le64(src[i]);
3391 Serge 807
		else
6082 serge 808
			dst[i] = cpu_to_le32(src[i]);
3391 Serge 809
	}
810
}
811
EXPORT_SYMBOL(bitmap_copy_le);
6082 serge 812
#endif