Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
6554 serge 1
// Special functions -*- C++ -*-
2
 
3
// Copyright (C) 2006-2015 Free Software Foundation, Inc.
4
//
5
// This file is part of the GNU ISO C++ Library.  This library is free
6
// software; you can redistribute it and/or modify it under the
7
// terms of the GNU General Public License as published by the
8
// Free Software Foundation; either version 3, or (at your option)
9
// any later version.
10
//
11
// This library is distributed in the hope that it will be useful,
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
// GNU General Public License for more details.
15
//
16
// Under Section 7 of GPL version 3, you are granted additional
17
// permissions described in the GCC Runtime Library Exception, version
18
// 3.1, as published by the Free Software Foundation.
19
 
20
// You should have received a copy of the GNU General Public License and
21
// a copy of the GCC Runtime Library Exception along with this program;
22
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23
// .
24
 
25
/** @file tr1/gamma.tcc
26
 *  This is an internal header file, included by other library headers.
27
 *  Do not attempt to use it directly. @headername{tr1/cmath}
28
 */
29
 
30
//
31
// ISO C++ 14882 TR1: 5.2  Special functions
32
//
33
 
34
// Written by Edward Smith-Rowland based on:
35
//   (1) Handbook of Mathematical Functions,
36
//       ed. Milton Abramowitz and Irene A. Stegun,
37
//       Dover Publications,
38
//       Section 6, pp. 253-266
39
//   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
40
//   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
41
//       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
42
//       2nd ed, pp. 213-216
43
//   (4) Gamma, Exploring Euler's Constant, Julian Havil,
44
//       Princeton, 2003.
45
 
46
#ifndef _GLIBCXX_TR1_GAMMA_TCC
47
#define _GLIBCXX_TR1_GAMMA_TCC 1
48
 
49
#include "special_function_util.h"
50
 
51
namespace std _GLIBCXX_VISIBILITY(default)
52
{
53
namespace tr1
54
{
55
  // Implementation-space details.
56
  namespace __detail
57
  {
58
  _GLIBCXX_BEGIN_NAMESPACE_VERSION
59
 
60
    /**
61
     *   @brief This returns Bernoulli numbers from a table or by summation
62
     *          for larger values.
63
     *
64
     *   Recursion is unstable.
65
     *
66
     *   @param __n the order n of the Bernoulli number.
67
     *   @return  The Bernoulli number of order n.
68
     */
69
    template 
70
    _Tp
71
    __bernoulli_series(unsigned int __n)
72
    {
73
 
74
      static const _Tp __num[28] = {
75
        _Tp(1UL),                        -_Tp(1UL) / _Tp(2UL),
76
        _Tp(1UL) / _Tp(6UL),             _Tp(0UL),
77
        -_Tp(1UL) / _Tp(30UL),           _Tp(0UL),
78
        _Tp(1UL) / _Tp(42UL),            _Tp(0UL),
79
        -_Tp(1UL) / _Tp(30UL),           _Tp(0UL),
80
        _Tp(5UL) / _Tp(66UL),            _Tp(0UL),
81
        -_Tp(691UL) / _Tp(2730UL),       _Tp(0UL),
82
        _Tp(7UL) / _Tp(6UL),             _Tp(0UL),
83
        -_Tp(3617UL) / _Tp(510UL),       _Tp(0UL),
84
        _Tp(43867UL) / _Tp(798UL),       _Tp(0UL),
85
        -_Tp(174611) / _Tp(330UL),       _Tp(0UL),
86
        _Tp(854513UL) / _Tp(138UL),      _Tp(0UL),
87
        -_Tp(236364091UL) / _Tp(2730UL), _Tp(0UL),
88
        _Tp(8553103UL) / _Tp(6UL),       _Tp(0UL)
89
      };
90
 
91
      if (__n == 0)
92
        return _Tp(1);
93
 
94
      if (__n == 1)
95
        return -_Tp(1) / _Tp(2);
96
 
97
      //  Take care of the rest of the odd ones.
98
      if (__n % 2 == 1)
99
        return _Tp(0);
100
 
101
      //  Take care of some small evens that are painful for the series.
102
      if (__n < 28)
103
        return __num[__n];
104
 
105
 
106
      _Tp __fact = _Tp(1);
107
      if ((__n / 2) % 2 == 0)
108
        __fact *= _Tp(-1);
109
      for (unsigned int __k = 1; __k <= __n; ++__k)
110
        __fact *= __k / (_Tp(2) * __numeric_constants<_Tp>::__pi());
111
      __fact *= _Tp(2);
112
 
113
      _Tp __sum = _Tp(0);
114
      for (unsigned int __i = 1; __i < 1000; ++__i)
115
        {
116
          _Tp __term = std::pow(_Tp(__i), -_Tp(__n));
117
          if (__term < std::numeric_limits<_Tp>::epsilon())
118
            break;
119
          __sum += __term;
120
        }
121
 
122
      return __fact * __sum;
123
    }
124
 
125
 
126
    /**
127
     *   @brief This returns Bernoulli number \f$B_n\f$.
128
     *
129
     *   @param __n the order n of the Bernoulli number.
130
     *   @return  The Bernoulli number of order n.
131
     */
132
    template
133
    inline _Tp
134
    __bernoulli(int __n)
135
    { return __bernoulli_series<_Tp>(__n); }
136
 
137
 
138
    /**
139
     *   @brief Return \f$log(\Gamma(x))\f$ by asymptotic expansion
140
     *          with Bernoulli number coefficients.  This is like
141
     *          Sterling's approximation.
142
     *
143
     *   @param __x The argument of the log of the gamma function.
144
     *   @return  The logarithm of the gamma function.
145
     */
146
    template
147
    _Tp
148
    __log_gamma_bernoulli(_Tp __x)
149
    {
150
      _Tp __lg = (__x - _Tp(0.5L)) * std::log(__x) - __x
151
               + _Tp(0.5L) * std::log(_Tp(2)
152
               * __numeric_constants<_Tp>::__pi());
153
 
154
      const _Tp __xx = __x * __x;
155
      _Tp __help = _Tp(1) / __x;
156
      for ( unsigned int __i = 1; __i < 20; ++__i )
157
        {
158
          const _Tp __2i = _Tp(2 * __i);
159
          __help /= __2i * (__2i - _Tp(1)) * __xx;
160
          __lg += __bernoulli<_Tp>(2 * __i) * __help;
161
        }
162
 
163
      return __lg;
164
    }
165
 
166
 
167
    /**
168
     *   @brief Return \f$log(\Gamma(x))\f$ by the Lanczos method.
169
     *          This method dominates all others on the positive axis I think.
170
     *
171
     *   @param __x The argument of the log of the gamma function.
172
     *   @return  The logarithm of the gamma function.
173
     */
174
    template
175
    _Tp
176
    __log_gamma_lanczos(_Tp __x)
177
    {
178
      const _Tp __xm1 = __x - _Tp(1);
179
 
180
      static const _Tp __lanczos_cheb_7[9] = {
181
       _Tp( 0.99999999999980993227684700473478L),
182
       _Tp( 676.520368121885098567009190444019L),
183
       _Tp(-1259.13921672240287047156078755283L),
184
       _Tp( 771.3234287776530788486528258894L),
185
       _Tp(-176.61502916214059906584551354L),
186
       _Tp( 12.507343278686904814458936853L),
187
       _Tp(-0.13857109526572011689554707L),
188
       _Tp( 9.984369578019570859563e-6L),
189
       _Tp( 1.50563273514931155834e-7L)
190
      };
191
 
192
      static const _Tp __LOGROOT2PI
193
          = _Tp(0.9189385332046727417803297364056176L);
194
 
195
      _Tp __sum = __lanczos_cheb_7[0];
196
      for(unsigned int __k = 1; __k < 9; ++__k)
197
        __sum += __lanczos_cheb_7[__k] / (__xm1 + __k);
198
 
199
      const _Tp __term1 = (__xm1 + _Tp(0.5L))
200
                        * std::log((__xm1 + _Tp(7.5L))
201
                       / __numeric_constants<_Tp>::__euler());
202
      const _Tp __term2 = __LOGROOT2PI + std::log(__sum);
203
      const _Tp __result = __term1 + (__term2 - _Tp(7));
204
 
205
      return __result;
206
    }
207
 
208
 
209
    /**
210
     *   @brief Return \f$ log(|\Gamma(x)|) \f$.
211
     *          This will return values even for \f$ x < 0 \f$.
212
     *          To recover the sign of \f$ \Gamma(x) \f$ for
213
     *          any argument use @a __log_gamma_sign.
214
     *
215
     *   @param __x The argument of the log of the gamma function.
216
     *   @return  The logarithm of the gamma function.
217
     */
218
    template
219
    _Tp
220
    __log_gamma(_Tp __x)
221
    {
222
      if (__x > _Tp(0.5L))
223
        return __log_gamma_lanczos(__x);
224
      else
225
        {
226
          const _Tp __sin_fact
227
                 = std::abs(std::sin(__numeric_constants<_Tp>::__pi() * __x));
228
          if (__sin_fact == _Tp(0))
229
            std::__throw_domain_error(__N("Argument is nonpositive integer "
230
                                          "in __log_gamma"));
231
          return __numeric_constants<_Tp>::__lnpi()
232
                     - std::log(__sin_fact)
233
                     - __log_gamma_lanczos(_Tp(1) - __x);
234
        }
235
    }
236
 
237
 
238
    /**
239
     *   @brief Return the sign of \f$ \Gamma(x) \f$.
240
     *          At nonpositive integers zero is returned.
241
     *
242
     *   @param __x The argument of the gamma function.
243
     *   @return  The sign of the gamma function.
244
     */
245
    template
246
    _Tp
247
    __log_gamma_sign(_Tp __x)
248
    {
249
      if (__x > _Tp(0))
250
        return _Tp(1);
251
      else
252
        {
253
          const _Tp __sin_fact
254
                  = std::sin(__numeric_constants<_Tp>::__pi() * __x);
255
          if (__sin_fact > _Tp(0))
256
            return (1);
257
          else if (__sin_fact < _Tp(0))
258
            return -_Tp(1);
259
          else
260
            return _Tp(0);
261
        }
262
    }
263
 
264
 
265
    /**
266
     *   @brief Return the logarithm of the binomial coefficient.
267
     *   The binomial coefficient is given by:
268
     *   @f[
269
     *   \left(  \right) = \frac{n!}{(n-k)! k!}
270
     *   @f]
271
     *
272
     *   @param __n The first argument of the binomial coefficient.
273
     *   @param __k The second argument of the binomial coefficient.
274
     *   @return  The binomial coefficient.
275
     */
276
    template
277
    _Tp
278
    __log_bincoef(unsigned int __n, unsigned int __k)
279
    {
280
      //  Max e exponent before overflow.
281
      static const _Tp __max_bincoeff
282
                      = std::numeric_limits<_Tp>::max_exponent10
283
                      * std::log(_Tp(10)) - _Tp(1);
284
#if _GLIBCXX_USE_C99_MATH_TR1
285
      _Tp __coeff =  std::tr1::lgamma(_Tp(1 + __n))
286
                  - std::tr1::lgamma(_Tp(1 + __k))
287
                  - std::tr1::lgamma(_Tp(1 + __n - __k));
288
#else
289
      _Tp __coeff =  __log_gamma(_Tp(1 + __n))
290
                  - __log_gamma(_Tp(1 + __k))
291
                  - __log_gamma(_Tp(1 + __n - __k));
292
#endif
293
    }
294
 
295
 
296
    /**
297
     *   @brief Return the binomial coefficient.
298
     *   The binomial coefficient is given by:
299
     *   @f[
300
     *   \left(  \right) = \frac{n!}{(n-k)! k!}
301
     *   @f]
302
     *
303
     *   @param __n The first argument of the binomial coefficient.
304
     *   @param __k The second argument of the binomial coefficient.
305
     *   @return  The binomial coefficient.
306
     */
307
    template
308
    _Tp
309
    __bincoef(unsigned int __n, unsigned int __k)
310
    {
311
      //  Max e exponent before overflow.
312
      static const _Tp __max_bincoeff
313
                      = std::numeric_limits<_Tp>::max_exponent10
314
                      * std::log(_Tp(10)) - _Tp(1);
315
 
316
      const _Tp __log_coeff = __log_bincoef<_Tp>(__n, __k);
317
      if (__log_coeff > __max_bincoeff)
318
        return std::numeric_limits<_Tp>::quiet_NaN();
319
      else
320
        return std::exp(__log_coeff);
321
    }
322
 
323
 
324
    /**
325
     *   @brief Return \f$ \Gamma(x) \f$.
326
     *
327
     *   @param __x The argument of the gamma function.
328
     *   @return  The gamma function.
329
     */
330
    template
331
    inline _Tp
332
    __gamma(_Tp __x)
333
    { return std::exp(__log_gamma(__x)); }
334
 
335
 
336
    /**
337
     *   @brief  Return the digamma function by series expansion.
338
     *   The digamma or @f$ \psi(x) @f$ function is defined by
339
     *   @f[
340
     *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
341
     *   @f]
342
     *
343
     *   The series is given by:
344
     *   @f[
345
     *     \psi(x) = -\gamma_E - \frac{1}{x}
346
     *              \sum_{k=1}^{\infty} \frac{x}{k(x + k)}
347
     *   @f]
348
     */
349
    template
350
    _Tp
351
    __psi_series(_Tp __x)
352
    {
353
      _Tp __sum = -__numeric_constants<_Tp>::__gamma_e() - _Tp(1) / __x;
354
      const unsigned int __max_iter = 100000;
355
      for (unsigned int __k = 1; __k < __max_iter; ++__k)
356
        {
357
          const _Tp __term = __x / (__k * (__k + __x));
358
          __sum += __term;
359
          if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon())
360
            break;
361
        }
362
      return __sum;
363
    }
364
 
365
 
366
    /**
367
     *   @brief  Return the digamma function for large argument.
368
     *   The digamma or @f$ \psi(x) @f$ function is defined by
369
     *   @f[
370
     *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
371
     *   @f]
372
     *
373
     *   The asymptotic series is given by:
374
     *   @f[
375
     *     \psi(x) = \ln(x) - \frac{1}{2x}
376
     *             - \sum_{n=1}^{\infty} \frac{B_{2n}}{2 n x^{2n}}
377
     *   @f]
378
     */
379
    template
380
    _Tp
381
    __psi_asymp(_Tp __x)
382
    {
383
      _Tp __sum = std::log(__x) - _Tp(0.5L) / __x;
384
      const _Tp __xx = __x * __x;
385
      _Tp __xp = __xx;
386
      const unsigned int __max_iter = 100;
387
      for (unsigned int __k = 1; __k < __max_iter; ++__k)
388
        {
389
          const _Tp __term = __bernoulli<_Tp>(2 * __k) / (2 * __k * __xp);
390
          __sum -= __term;
391
          if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon())
392
            break;
393
          __xp *= __xx;
394
        }
395
      return __sum;
396
    }
397
 
398
 
399
    /**
400
     *   @brief  Return the digamma function.
401
     *   The digamma or @f$ \psi(x) @f$ function is defined by
402
     *   @f[
403
     *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
404
     *   @f]
405
     *   For negative argument the reflection formula is used:
406
     *   @f[
407
     *     \psi(x) = \psi(1-x) - \pi \cot(\pi x)
408
     *   @f]
409
     */
410
    template
411
    _Tp
412
    __psi(_Tp __x)
413
    {
414
      const int __n = static_cast(__x + 0.5L);
415
      const _Tp __eps = _Tp(4) * std::numeric_limits<_Tp>::epsilon();
416
      if (__n <= 0 && std::abs(__x - _Tp(__n)) < __eps)
417
        return std::numeric_limits<_Tp>::quiet_NaN();
418
      else if (__x < _Tp(0))
419
        {
420
          const _Tp __pi = __numeric_constants<_Tp>::__pi();
421
          return __psi(_Tp(1) - __x)
422
               - __pi * std::cos(__pi * __x) / std::sin(__pi * __x);
423
        }
424
      else if (__x > _Tp(100))
425
        return __psi_asymp(__x);
426
      else
427
        return __psi_series(__x);
428
    }
429
 
430
 
431
    /**
432
     *   @brief  Return the polygamma function @f$ \psi^{(n)}(x) @f$.
433
     *
434
     *   The polygamma function is related to the Hurwitz zeta function:
435
     *   @f[
436
     *     \psi^{(n)}(x) = (-1)^{n+1} m! \zeta(m+1,x)
437
     *   @f]
438
     */
439
    template
440
    _Tp
441
    __psi(unsigned int __n, _Tp __x)
442
    {
443
      if (__x <= _Tp(0))
444
        std::__throw_domain_error(__N("Argument out of range "
445
                                      "in __psi"));
446
      else if (__n == 0)
447
        return __psi(__x);
448
      else
449
        {
450
          const _Tp __hzeta = __hurwitz_zeta(_Tp(__n + 1), __x);
451
#if _GLIBCXX_USE_C99_MATH_TR1
452
          const _Tp __ln_nfact = std::tr1::lgamma(_Tp(__n + 1));
453
#else
454
          const _Tp __ln_nfact = __log_gamma(_Tp(__n + 1));
455
#endif
456
          _Tp __result = std::exp(__ln_nfact) * __hzeta;
457
          if (__n % 2 == 1)
458
            __result = -__result;
459
          return __result;
460
        }
461
    }
462
 
463
  _GLIBCXX_END_NAMESPACE_VERSION
464
  } // namespace std::tr1::__detail
465
}
466
}
467
 
468
#endif // _GLIBCXX_TR1_GAMMA_TCC
469