Subversion Repositories Kolibri OS

Rev

Rev 5191 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
5191 serge 1
/* Extended regular expression matching and search library,
2
   version 0.12.
3
   (Implements POSIX draft P1003.2/D11.2, except for some of the
4
   internationalization features.)
5
 
6
   Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
7
   2002, 2005, 2010, 2013 Free Software Foundation, Inc.
8
   This file is part of the GNU C Library.
9
 
10
   The GNU C Library is free software; you can redistribute it and/or
11
   modify it under the terms of the GNU Lesser General Public
12
   License as published by the Free Software Foundation; either
13
   version 2.1 of the License, or (at your option) any later version.
14
 
15
   The GNU C Library is distributed in the hope that it will be useful,
16
   but WITHOUT ANY WARRANTY; without even the implied warranty of
17
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18
   Lesser General Public License for more details.
19
 
20
   You should have received a copy of the GNU Lesser General Public
21
   License along with the GNU C Library; if not, write to the Free
22
   Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
23
   02110-1301 USA.  */
24
 
25
/* This file has been modified for usage in libiberty.  It includes "xregex.h"
26
   instead of .  The "xregex.h" header file renames all external
27
   routines with an "x" prefix so they do not collide with the native regex
28
   routines or with other components regex routines. */
29
/* AIX requires this to be the first thing in the file. */
30
#if defined _AIX && !defined __GNUC__ && !defined REGEX_MALLOC
31
  #pragma alloca
32
#endif
33
 
34
#undef	_GNU_SOURCE
35
#define _GNU_SOURCE
36
 
37
#ifndef INSIDE_RECURSION
38
# ifdef HAVE_CONFIG_H
39
#  include 
40
# endif
41
#endif
42
 
43
#include 
44
 
45
#ifndef INSIDE_RECURSION
46
 
47
# if defined STDC_HEADERS && !defined emacs
48
#  include 
49
#  define PTR_INT_TYPE ptrdiff_t
50
# else
51
/* We need this for `regex.h', and perhaps for the Emacs include files.  */
52
#  include 
53
#  define PTR_INT_TYPE long
54
# endif
55
 
56
# define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
57
 
58
/* For platform which support the ISO C amendement 1 functionality we
59
   support user defined character classes.  */
60
# if defined _LIBC || WIDE_CHAR_SUPPORT
61
/* Solaris 2.5 has a bug:  must be included before .  */
62
#  include 
63
#  include 
64
# endif
65
 
66
# ifdef _LIBC
67
/* We have to keep the namespace clean.  */
68
#  define regfree(preg) __regfree (preg)
69
#  define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70
#  define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
71
#  define regerror(errcode, preg, errbuf, errbuf_size) \
72
	__regerror(errcode, preg, errbuf, errbuf_size)
73
#  define re_set_registers(bu, re, nu, st, en) \
74
	__re_set_registers (bu, re, nu, st, en)
75
#  define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76
	__re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77
#  define re_match(bufp, string, size, pos, regs) \
78
	__re_match (bufp, string, size, pos, regs)
79
#  define re_search(bufp, string, size, startpos, range, regs) \
80
	__re_search (bufp, string, size, startpos, range, regs)
81
#  define re_compile_pattern(pattern, length, bufp) \
82
	__re_compile_pattern (pattern, length, bufp)
83
#  define re_set_syntax(syntax) __re_set_syntax (syntax)
84
#  define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85
	__re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86
#  define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
87
 
88
#  define btowc __btowc
89
 
90
/* We are also using some library internals.  */
91
#  include 
92
#  include 
93
#  include 
94
#  include 
95
# endif
96
 
97
/* This is for other GNU distributions with internationalized messages.  */
98
# if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
99
#  include 
100
#  ifdef _LIBC
101
#   undef gettext
102
#   define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
103
#  endif
104
# else
105
#  define gettext(msgid) (msgid)
106
# endif
107
 
108
# ifndef gettext_noop
109
/* This define is so xgettext can find the internationalizable
110
   strings.  */
111
#  define gettext_noop(String) String
112
# endif
113
 
114
/* The `emacs' switch turns on certain matching commands
115
   that make sense only in Emacs. */
116
# ifdef emacs
117
 
118
#  include "lisp.h"
119
#  include "buffer.h"
120
#  include "syntax.h"
121
 
122
# else  /* not emacs */
123
 
124
/* If we are not linking with Emacs proper,
125
   we can't use the relocating allocator
126
   even if config.h says that we can.  */
127
#  undef REL_ALLOC
128
 
129
#  if defined STDC_HEADERS || defined _LIBC
130
#   include 
131
#  else
132
char *malloc ();
133
char *realloc ();
134
#  endif
135
 
136
/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
137
   If nothing else has been done, use the method below.  */
138
#  ifdef INHIBIT_STRING_HEADER
139
#   if !(defined HAVE_BZERO && defined HAVE_BCOPY)
140
#    if !defined bzero && !defined bcopy
141
#     undef INHIBIT_STRING_HEADER
142
#    endif
143
#   endif
144
#  endif
145
 
146
/* This is the normal way of making sure we have a bcopy and a bzero.
147
   This is used in most programs--a few other programs avoid this
148
   by defining INHIBIT_STRING_HEADER.  */
149
#  ifndef INHIBIT_STRING_HEADER
150
#   if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
151
#    include 
152
#    ifndef bzero
153
#     ifndef _LIBC
6324 serge 154
#      define bzero(s, n)	((void) memset (s, '\0', n))
5191 serge 155
#     else
156
#      define bzero(s, n)	__bzero (s, n)
157
#     endif
158
#    endif
159
#   else
160
#    include 
161
#    ifndef memcmp
162
#     define memcmp(s1, s2, n)	bcmp (s1, s2, n)
163
#    endif
164
#    ifndef memcpy
165
#     define memcpy(d, s, n)	(bcopy (s, d, n), (d))
166
#    endif
167
#   endif
168
#  endif
169
 
170
/* Define the syntax stuff for \<, \>, etc.  */
171
 
172
/* This must be nonzero for the wordchar and notwordchar pattern
173
   commands in re_match_2.  */
174
#  ifndef Sword
175
#   define Sword 1
176
#  endif
177
 
178
#  ifdef SWITCH_ENUM_BUG
179
#   define SWITCH_ENUM_CAST(x) ((int)(x))
180
#  else
181
#   define SWITCH_ENUM_CAST(x) (x)
182
#  endif
183
 
184
# endif /* not emacs */
185
 
186
# if defined _LIBC || HAVE_LIMITS_H
187
#  include 
188
# endif
189
 
190
# ifndef MB_LEN_MAX
191
#  define MB_LEN_MAX 1
192
# endif
193
 
194
/* Get the interface, including the syntax bits.  */
195
# include "xregex.h"  /* change for libiberty */
196
 
197
/* isalpha etc. are used for the character classes.  */
198
# include 
199
 
200
/* Jim Meyering writes:
201
 
202
   "... Some ctype macros are valid only for character codes that
203
   isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
204
   using /bin/cc or gcc but without giving an ansi option).  So, all
205
   ctype uses should be through macros like ISPRINT...  If
206
   STDC_HEADERS is defined, then autoconf has verified that the ctype
207
   macros don't need to be guarded with references to isascii. ...
208
   Defining isascii to 1 should let any compiler worth its salt
209
   eliminate the && through constant folding."
210
   Solaris defines some of these symbols so we must undefine them first.  */
211
 
212
# undef ISASCII
213
# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
214
#  define ISASCII(c) 1
215
# else
216
#  define ISASCII(c) isascii(c)
217
# endif
218
 
219
# ifdef isblank
220
#  define ISBLANK(c) (ISASCII (c) && isblank (c))
221
# else
222
#  define ISBLANK(c) ((c) == ' ' || (c) == '\t')
223
# endif
224
# ifdef isgraph
225
#  define ISGRAPH(c) (ISASCII (c) && isgraph (c))
226
# else
227
#  define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
228
# endif
229
 
230
# undef ISPRINT
231
# define ISPRINT(c) (ISASCII (c) && isprint (c))
232
# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
233
# define ISALNUM(c) (ISASCII (c) && isalnum (c))
234
# define ISALPHA(c) (ISASCII (c) && isalpha (c))
235
# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
236
# define ISLOWER(c) (ISASCII (c) && islower (c))
237
# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
238
# define ISSPACE(c) (ISASCII (c) && isspace (c))
239
# define ISUPPER(c) (ISASCII (c) && isupper (c))
240
# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
241
 
242
# ifdef _tolower
243
#  define TOLOWER(c) _tolower(c)
244
# else
245
#  define TOLOWER(c) tolower(c)
246
# endif
247
 
248
# ifndef NULL
249
#  define NULL (void *)0
250
# endif
251
 
252
/* We remove any previous definition of `SIGN_EXTEND_CHAR',
253
   since ours (we hope) works properly with all combinations of
254
   machines, compilers, `char' and `unsigned char' argument types.
255
   (Per Bothner suggested the basic approach.)  */
256
# undef SIGN_EXTEND_CHAR
257
# if __STDC__
258
#  define SIGN_EXTEND_CHAR(c) ((signed char) (c))
259
# else  /* not __STDC__ */
260
/* As in Harbison and Steele.  */
261
#  define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
262
# endif
263
 
264
# ifndef emacs
265
/* How many characters in the character set.  */
266
#  define CHAR_SET_SIZE 256
267
 
268
#  ifdef SYNTAX_TABLE
269
 
270
extern char *re_syntax_table;
271
 
272
#  else /* not SYNTAX_TABLE */
273
 
274
static char re_syntax_table[CHAR_SET_SIZE];
275
 
276
static void init_syntax_once (void);
277
 
278
static void
279
init_syntax_once (void)
280
{
281
   register int c;
282
   static int done = 0;
283
 
284
   if (done)
285
     return;
286
   bzero (re_syntax_table, sizeof re_syntax_table);
287
 
288
   for (c = 0; c < CHAR_SET_SIZE; ++c)
289
     if (ISALNUM (c))
290
	re_syntax_table[c] = Sword;
291
 
292
   re_syntax_table['_'] = Sword;
293
 
294
   done = 1;
295
}
296
 
297
#  endif /* not SYNTAX_TABLE */
298
 
299
#  define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
300
 
301
# endif /* emacs */
302
 
303
/* Integer type for pointers.  */
304
# if !defined _LIBC && !defined HAVE_UINTPTR_T
305
typedef unsigned long int uintptr_t;
306
# endif
307
 
308
/* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
309
   use `alloca' instead of `malloc'.  This is because using malloc in
310
   re_search* or re_match* could cause memory leaks when C-g is used in
311
   Emacs; also, malloc is slower and causes storage fragmentation.  On
312
   the other hand, malloc is more portable, and easier to debug.
313
 
314
   Because we sometimes use alloca, some routines have to be macros,
315
   not functions -- `alloca'-allocated space disappears at the end of the
316
   function it is called in.  */
317
 
318
# ifdef REGEX_MALLOC
319
 
320
#  define REGEX_ALLOCATE malloc
321
#  define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
322
#  define REGEX_FREE free
323
 
324
# else /* not REGEX_MALLOC  */
325
 
326
/* Emacs already defines alloca, sometimes.  */
327
#  ifndef alloca
328
 
329
/* Make alloca work the best possible way.  */
330
#   ifdef __GNUC__
331
#    define alloca __builtin_alloca
332
#   else /* not __GNUC__ */
333
#    if HAVE_ALLOCA_H
334
#     include 
335
#    endif /* HAVE_ALLOCA_H */
336
#   endif /* not __GNUC__ */
337
 
338
#  endif /* not alloca */
339
 
340
#  define REGEX_ALLOCATE alloca
341
 
342
/* Assumes a `char *destination' variable.  */
343
#  define REGEX_REALLOCATE(source, osize, nsize)			\
344
  (destination = (char *) alloca (nsize),				\
345
   memcpy (destination, source, osize))
346
 
347
/* No need to do anything to free, after alloca.  */
348
#  define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
349
 
350
# endif /* not REGEX_MALLOC */
351
 
352
/* Define how to allocate the failure stack.  */
353
 
354
# if defined REL_ALLOC && defined REGEX_MALLOC
355
 
356
#  define REGEX_ALLOCATE_STACK(size)				\
357
  r_alloc (&failure_stack_ptr, (size))
358
#  define REGEX_REALLOCATE_STACK(source, osize, nsize)		\
359
  r_re_alloc (&failure_stack_ptr, (nsize))
360
#  define REGEX_FREE_STACK(ptr)					\
361
  r_alloc_free (&failure_stack_ptr)
362
 
363
# else /* not using relocating allocator */
364
 
365
#  ifdef REGEX_MALLOC
366
 
367
#   define REGEX_ALLOCATE_STACK malloc
368
#   define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
369
#   define REGEX_FREE_STACK free
370
 
371
#  else /* not REGEX_MALLOC */
372
 
373
#   define REGEX_ALLOCATE_STACK alloca
374
 
375
#   define REGEX_REALLOCATE_STACK(source, osize, nsize)			\
376
   REGEX_REALLOCATE (source, osize, nsize)
377
/* No need to explicitly free anything.  */
378
#   define REGEX_FREE_STACK(arg)
379
 
380
#  endif /* not REGEX_MALLOC */
381
# endif /* not using relocating allocator */
382
 
383
 
384
/* True if `size1' is non-NULL and PTR is pointing anywhere inside
385
   `string1' or just past its end.  This works if PTR is NULL, which is
386
   a good thing.  */
387
# define FIRST_STRING_P(ptr) 					\
388
  (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
389
 
390
/* (Re)Allocate N items of type T using malloc, or fail.  */
391
# define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
392
# define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
393
# define RETALLOC_IF(addr, n, t) \
394
  if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
395
# define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
396
 
397
# define BYTEWIDTH 8 /* In bits.  */
398
 
399
# define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
400
 
401
# undef MAX
402
# undef MIN
403
# define MAX(a, b) ((a) > (b) ? (a) : (b))
404
# define MIN(a, b) ((a) < (b) ? (a) : (b))
405
 
406
typedef char boolean;
407
# define false 0
408
# define true 1
409
 
410
static reg_errcode_t byte_regex_compile (const char *pattern, size_t size,
411
                                         reg_syntax_t syntax,
412
                                         struct re_pattern_buffer *bufp);
413
 
414
static int byte_re_match_2_internal (struct re_pattern_buffer *bufp,
415
                                     const char *string1, int size1,
416
                                     const char *string2, int size2,
417
                                     int pos,
418
                                     struct re_registers *regs,
419
                                     int stop);
420
static int byte_re_search_2 (struct re_pattern_buffer *bufp,
421
                             const char *string1, int size1,
422
                             const char *string2, int size2,
423
                             int startpos, int range,
424
                             struct re_registers *regs, int stop);
425
static int byte_re_compile_fastmap (struct re_pattern_buffer *bufp);
426
 
427
#ifdef MBS_SUPPORT
428
static reg_errcode_t wcs_regex_compile (const char *pattern, size_t size,
429
                                        reg_syntax_t syntax,
430
                                        struct re_pattern_buffer *bufp);
431
 
432
 
433
static int wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
434
                                    const char *cstring1, int csize1,
435
                                    const char *cstring2, int csize2,
436
                                    int pos,
437
                                    struct re_registers *regs,
438
                                    int stop,
439
                                    wchar_t *string1, int size1,
440
                                    wchar_t *string2, int size2,
441
                                    int *mbs_offset1, int *mbs_offset2);
442
static int wcs_re_search_2 (struct re_pattern_buffer *bufp,
443
                            const char *string1, int size1,
444
                            const char *string2, int size2,
445
                            int startpos, int range,
446
                            struct re_registers *regs, int stop);
447
static int wcs_re_compile_fastmap (struct re_pattern_buffer *bufp);
448
#endif
449
 
450
/* These are the command codes that appear in compiled regular
451
   expressions.  Some opcodes are followed by argument bytes.  A
452
   command code can specify any interpretation whatsoever for its
453
   arguments.  Zero bytes may appear in the compiled regular expression.  */
454
 
455
typedef enum
456
{
457
  no_op = 0,
458
 
459
  /* Succeed right away--no more backtracking.  */
460
  succeed,
461
 
462
        /* Followed by one byte giving n, then by n literal bytes.  */
463
  exactn,
464
 
465
# ifdef MBS_SUPPORT
466
	/* Same as exactn, but contains binary data.  */
467
  exactn_bin,
468
# endif
469
 
470
        /* Matches any (more or less) character.  */
471
  anychar,
472
 
473
        /* Matches any one char belonging to specified set.  First
474
           following byte is number of bitmap bytes.  Then come bytes
475
           for a bitmap saying which chars are in.  Bits in each byte
476
           are ordered low-bit-first.  A character is in the set if its
477
           bit is 1.  A character too large to have a bit in the map is
478
           automatically not in the set.  */
479
        /* ifdef MBS_SUPPORT, following element is length of character
480
	   classes, length of collating symbols, length of equivalence
481
	   classes, length of character ranges, and length of characters.
482
	   Next, character class element, collating symbols elements,
483
	   equivalence class elements, range elements, and character
484
	   elements follow.
485
	   See regex_compile function.  */
486
  charset,
487
 
488
        /* Same parameters as charset, but match any character that is
489
           not one of those specified.  */
490
  charset_not,
491
 
492
        /* Start remembering the text that is matched, for storing in a
493
           register.  Followed by one byte with the register number, in
494
           the range 0 to one less than the pattern buffer's re_nsub
495
           field.  Then followed by one byte with the number of groups
496
           inner to this one.  (This last has to be part of the
497
           start_memory only because we need it in the on_failure_jump
498
           of re_match_2.)  */
499
  start_memory,
500
 
501
        /* Stop remembering the text that is matched and store it in a
502
           memory register.  Followed by one byte with the register
503
           number, in the range 0 to one less than `re_nsub' in the
504
           pattern buffer, and one byte with the number of inner groups,
505
           just like `start_memory'.  (We need the number of inner
506
           groups here because we don't have any easy way of finding the
507
           corresponding start_memory when we're at a stop_memory.)  */
508
  stop_memory,
509
 
510
        /* Match a duplicate of something remembered. Followed by one
511
           byte containing the register number.  */
512
  duplicate,
513
 
514
        /* Fail unless at beginning of line.  */
515
  begline,
516
 
517
        /* Fail unless at end of line.  */
518
  endline,
519
 
520
        /* Succeeds if at beginning of buffer (if emacs) or at beginning
521
           of string to be matched (if not).  */
522
  begbuf,
523
 
524
        /* Analogously, for end of buffer/string.  */
525
  endbuf,
526
 
527
        /* Followed by two byte relative address to which to jump.  */
528
  jump,
529
 
530
	/* Same as jump, but marks the end of an alternative.  */
531
  jump_past_alt,
532
 
533
        /* Followed by two-byte relative address of place to resume at
534
           in case of failure.  */
535
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
536
  on_failure_jump,
537
 
538
        /* Like on_failure_jump, but pushes a placeholder instead of the
539
           current string position when executed.  */
540
  on_failure_keep_string_jump,
541
 
542
        /* Throw away latest failure point and then jump to following
543
           two-byte relative address.  */
544
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
545
  pop_failure_jump,
546
 
547
        /* Change to pop_failure_jump if know won't have to backtrack to
548
           match; otherwise change to jump.  This is used to jump
549
           back to the beginning of a repeat.  If what follows this jump
550
           clearly won't match what the repeat does, such that we can be
551
           sure that there is no use backtracking out of repetitions
552
           already matched, then we change it to a pop_failure_jump.
553
           Followed by two-byte address.  */
554
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
555
  maybe_pop_jump,
556
 
557
        /* Jump to following two-byte address, and push a dummy failure
558
           point. This failure point will be thrown away if an attempt
559
           is made to use it for a failure.  A `+' construct makes this
560
           before the first repeat.  Also used as an intermediary kind
561
           of jump when compiling an alternative.  */
562
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
563
  dummy_failure_jump,
564
 
565
	/* Push a dummy failure point and continue.  Used at the end of
566
	   alternatives.  */
567
  push_dummy_failure,
568
 
569
        /* Followed by two-byte relative address and two-byte number n.
570
           After matching N times, jump to the address upon failure.  */
571
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
572
  succeed_n,
573
 
574
        /* Followed by two-byte relative address, and two-byte number n.
575
           Jump to the address N times, then fail.  */
576
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
577
  jump_n,
578
 
579
        /* Set the following two-byte relative address to the
580
           subsequent two-byte number.  The address *includes* the two
581
           bytes of number.  */
582
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
583
  set_number_at,
584
 
585
  wordchar,	/* Matches any word-constituent character.  */
586
  notwordchar,	/* Matches any char that is not a word-constituent.  */
587
 
588
  wordbeg,	/* Succeeds if at word beginning.  */
589
  wordend,	/* Succeeds if at word end.  */
590
 
591
  wordbound,	/* Succeeds if at a word boundary.  */
592
  notwordbound	/* Succeeds if not at a word boundary.  */
593
 
594
# ifdef emacs
595
  ,before_dot,	/* Succeeds if before point.  */
596
  at_dot,	/* Succeeds if at point.  */
597
  after_dot,	/* Succeeds if after point.  */
598
 
599
	/* Matches any character whose syntax is specified.  Followed by
600
           a byte which contains a syntax code, e.g., Sword.  */
601
  syntaxspec,
602
 
603
	/* Matches any character whose syntax is not that specified.  */
604
  notsyntaxspec
605
# endif /* emacs */
606
} re_opcode_t;
607
#endif /* not INSIDE_RECURSION */
608
 
609
 
610
#ifdef BYTE
611
# define CHAR_T char
612
# define UCHAR_T unsigned char
613
# define COMPILED_BUFFER_VAR bufp->buffer
614
# define OFFSET_ADDRESS_SIZE 2
615
# define PREFIX(name) byte_##name
616
# define ARG_PREFIX(name) name
617
# define PUT_CHAR(c) putchar (c)
618
#else
619
# ifdef WCHAR
620
#  define CHAR_T wchar_t
621
#  define UCHAR_T wchar_t
622
#  define COMPILED_BUFFER_VAR wc_buffer
623
#  define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
624
#  define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
625
#  define PREFIX(name) wcs_##name
626
#  define ARG_PREFIX(name) c##name
627
/* Should we use wide stream??  */
628
#  define PUT_CHAR(c) printf ("%C", c);
629
#  define TRUE 1
630
#  define FALSE 0
631
# else
632
#  ifdef MBS_SUPPORT
633
#   define WCHAR
634
#   define INSIDE_RECURSION
635
#   include "regex.c"
636
#   undef INSIDE_RECURSION
637
#  endif
638
#  define BYTE
639
#  define INSIDE_RECURSION
640
#  include "regex.c"
641
#  undef INSIDE_RECURSION
642
# endif
643
#endif
644
 
645
#ifdef INSIDE_RECURSION
646
/* Common operations on the compiled pattern.  */
647
 
648
/* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
649
/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
650
 
651
# ifdef WCHAR
652
#  define STORE_NUMBER(destination, number)				\
653
  do {									\
654
    *(destination) = (UCHAR_T)(number);				\
655
  } while (0)
656
# else /* BYTE */
657
#  define STORE_NUMBER(destination, number)				\
658
  do {									\
659
    (destination)[0] = (number) & 0377;					\
660
    (destination)[1] = (number) >> 8;					\
661
  } while (0)
662
# endif /* WCHAR */
663
 
664
/* Same as STORE_NUMBER, except increment DESTINATION to
665
   the byte after where the number is stored.  Therefore, DESTINATION
666
   must be an lvalue.  */
667
/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
668
 
669
# define STORE_NUMBER_AND_INCR(destination, number)			\
670
  do {									\
671
    STORE_NUMBER (destination, number);					\
672
    (destination) += OFFSET_ADDRESS_SIZE;				\
673
  } while (0)
674
 
675
/* Put into DESTINATION a number stored in two contiguous bytes starting
676
   at SOURCE.  */
677
/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
678
 
679
# ifdef WCHAR
680
#  define EXTRACT_NUMBER(destination, source)				\
681
  do {									\
682
    (destination) = *(source);						\
683
  } while (0)
684
# else /* BYTE */
685
#  define EXTRACT_NUMBER(destination, source)				\
686
  do {									\
687
    (destination) = *(source) & 0377;					\
688
    (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;		\
689
  } while (0)
690
# endif
691
 
692
# ifdef DEBUG
693
static void PREFIX(extract_number) (int *dest, UCHAR_T *source);
694
static void
695
PREFIX(extract_number) (int *dest, UCHAR_T *source)
696
{
697
#  ifdef WCHAR
698
  *dest = *source;
699
#  else /* BYTE */
700
  int temp = SIGN_EXTEND_CHAR (*(source + 1));
701
  *dest = *source & 0377;
702
  *dest += temp << 8;
703
#  endif
704
}
705
 
706
#  ifndef EXTRACT_MACROS /* To debug the macros.  */
707
#   undef EXTRACT_NUMBER
708
#   define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
709
#  endif /* not EXTRACT_MACROS */
710
 
711
# endif /* DEBUG */
712
 
713
/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
714
   SOURCE must be an lvalue.  */
715
 
716
# define EXTRACT_NUMBER_AND_INCR(destination, source)			\
717
  do {									\
718
    EXTRACT_NUMBER (destination, source);				\
719
    (source) += OFFSET_ADDRESS_SIZE; 					\
720
  } while (0)
721
 
722
# ifdef DEBUG
723
static void PREFIX(extract_number_and_incr) (int *destination,
724
                                             UCHAR_T **source);
725
static void
726
PREFIX(extract_number_and_incr) (int *destination, UCHAR_T **source)
727
{
728
  PREFIX(extract_number) (destination, *source);
729
  *source += OFFSET_ADDRESS_SIZE;
730
}
731
 
732
#  ifndef EXTRACT_MACROS
733
#   undef EXTRACT_NUMBER_AND_INCR
734
#   define EXTRACT_NUMBER_AND_INCR(dest, src) \
735
  PREFIX(extract_number_and_incr) (&dest, &src)
736
#  endif /* not EXTRACT_MACROS */
737
 
738
# endif /* DEBUG */
739
 
740
 
741
 
742
/* If DEBUG is defined, Regex prints many voluminous messages about what
743
   it is doing (if the variable `debug' is nonzero).  If linked with the
744
   main program in `iregex.c', you can enter patterns and strings
745
   interactively.  And if linked with the main program in `main.c' and
746
   the other test files, you can run the already-written tests.  */
747
 
748
# ifdef DEBUG
749
 
750
#  ifndef DEFINED_ONCE
751
 
752
/* We use standard I/O for debugging.  */
753
#   include 
754
 
755
/* It is useful to test things that ``must'' be true when debugging.  */
756
#   include 
757
 
758
static int debug;
759
 
760
#   define DEBUG_STATEMENT(e) e
761
#   define DEBUG_PRINT1(x) if (debug) printf (x)
762
#   define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
763
#   define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
764
#   define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
765
#  endif /* not DEFINED_ONCE */
766
 
767
#  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 			\
768
  if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
769
#  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)		\
770
  if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
771
 
772
 
773
/* Print the fastmap in human-readable form.  */
774
 
775
#  ifndef DEFINED_ONCE
776
void
777
print_fastmap (char *fastmap)
778
{
779
  unsigned was_a_range = 0;
780
  unsigned i = 0;
781
 
782
  while (i < (1 << BYTEWIDTH))
783
    {
784
      if (fastmap[i++])
785
	{
786
	  was_a_range = 0;
787
          putchar (i - 1);
788
          while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
789
            {
790
              was_a_range = 1;
791
              i++;
792
            }
793
	  if (was_a_range)
794
            {
795
              printf ("-");
796
              putchar (i - 1);
797
            }
798
        }
799
    }
800
  putchar ('\n');
801
}
802
#  endif /* not DEFINED_ONCE */
803
 
804
 
805
/* Print a compiled pattern string in human-readable form, starting at
806
   the START pointer into it and ending just before the pointer END.  */
807
 
808
void
809
PREFIX(print_partial_compiled_pattern) (UCHAR_T *start, UCHAR_T *end)
810
{
811
  int mcnt, mcnt2;
812
  UCHAR_T *p1;
813
  UCHAR_T *p = start;
814
  UCHAR_T *pend = end;
815
 
816
  if (start == NULL)
817
    {
818
      printf ("(null)\n");
819
      return;
820
    }
821
 
822
  /* Loop over pattern commands.  */
823
  while (p < pend)
824
    {
825
#  ifdef _LIBC
826
      printf ("%td:\t", p - start);
827
#  else
828
      printf ("%ld:\t", (long int) (p - start));
829
#  endif
830
 
831
      switch ((re_opcode_t) *p++)
832
	{
833
        case no_op:
834
          printf ("/no_op");
835
          break;
836
 
837
	case exactn:
838
	  mcnt = *p++;
839
          printf ("/exactn/%d", mcnt);
840
          do
841
	    {
842
              putchar ('/');
843
	      PUT_CHAR (*p++);
844
            }
845
          while (--mcnt);
846
          break;
847
 
848
#  ifdef MBS_SUPPORT
849
	case exactn_bin:
850
	  mcnt = *p++;
851
	  printf ("/exactn_bin/%d", mcnt);
852
          do
853
	    {
854
	      printf("/%lx", (long int) *p++);
855
            }
856
          while (--mcnt);
857
          break;
858
#  endif /* MBS_SUPPORT */
859
 
860
	case start_memory:
861
          mcnt = *p++;
862
          printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
863
          break;
864
 
865
	case stop_memory:
866
          mcnt = *p++;
867
	  printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
868
          break;
869
 
870
	case duplicate:
871
	  printf ("/duplicate/%ld", (long int) *p++);
872
	  break;
873
 
874
	case anychar:
875
	  printf ("/anychar");
876
	  break;
877
 
878
	case charset:
879
        case charset_not:
880
          {
881
#  ifdef WCHAR
882
	    int i, length;
883
	    wchar_t *workp = p;
884
	    printf ("/charset [%s",
885
	            (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
886
	    p += 5;
887
	    length = *workp++; /* the length of char_classes */
888
	    for (i=0 ; i
889
	      printf("[:%lx:]", (long int) *p++);
890
	    length = *workp++; /* the length of collating_symbol */
891
	    for (i=0 ; i
892
	      {
893
		printf("[.");
894
		while(*p != 0)
895
		  PUT_CHAR((i++,*p++));
896
		i++,p++;
897
		printf(".]");
898
	      }
899
	    length = *workp++; /* the length of equivalence_class */
900
	    for (i=0 ; i
901
	      {
902
		printf("[=");
903
		while(*p != 0)
904
		  PUT_CHAR((i++,*p++));
905
		i++,p++;
906
		printf("=]");
907
	      }
908
	    length = *workp++; /* the length of char_range */
909
	    for (i=0 ; i
910
	      {
911
		wchar_t range_start = *p++;
912
		wchar_t range_end = *p++;
913
		printf("%C-%C", range_start, range_end);
914
	      }
915
	    length = *workp++; /* the length of char */
916
	    for (i=0 ; i
917
	      printf("%C", *p++);
918
	    putchar (']');
919
#  else
920
            register int c, last = -100;
921
	    register int in_range = 0;
922
 
923
	    printf ("/charset [%s",
924
	            (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
925
 
926
            assert (p + *p < pend);
927
 
928
            for (c = 0; c < 256; c++)
929
	      if (c / 8 < *p
930
		  && (p[1 + (c/8)] & (1 << (c % 8))))
931
		{
932
		  /* Are we starting a range?  */
933
		  if (last + 1 == c && ! in_range)
934
		    {
935
		      putchar ('-');
936
		      in_range = 1;
937
		    }
938
		  /* Have we broken a range?  */
939
		  else if (last + 1 != c && in_range)
940
              {
941
		      putchar (last);
942
		      in_range = 0;
943
		    }
944
 
945
		  if (! in_range)
946
		    putchar (c);
947
 
948
		  last = c;
949
              }
950
 
951
	    if (in_range)
952
	      putchar (last);
953
 
954
	    putchar (']');
955
 
956
	    p += 1 + *p;
957
#  endif /* WCHAR */
958
	  }
959
	  break;
960
 
961
	case begline:
962
	  printf ("/begline");
963
          break;
964
 
965
	case endline:
966
          printf ("/endline");
967
          break;
968
 
969
	case on_failure_jump:
970
          PREFIX(extract_number_and_incr) (&mcnt, &p);
971
#  ifdef _LIBC
972
  	  printf ("/on_failure_jump to %td", p + mcnt - start);
973
#  else
974
  	  printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
975
#  endif
976
          break;
977
 
978
	case on_failure_keep_string_jump:
979
          PREFIX(extract_number_and_incr) (&mcnt, &p);
980
#  ifdef _LIBC
981
  	  printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
982
#  else
983
  	  printf ("/on_failure_keep_string_jump to %ld",
984
		  (long int) (p + mcnt - start));
985
#  endif
986
          break;
987
 
988
	case dummy_failure_jump:
989
          PREFIX(extract_number_and_incr) (&mcnt, &p);
990
#  ifdef _LIBC
991
  	  printf ("/dummy_failure_jump to %td", p + mcnt - start);
992
#  else
993
  	  printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
994
#  endif
995
          break;
996
 
997
	case push_dummy_failure:
998
          printf ("/push_dummy_failure");
999
          break;
1000
 
1001
        case maybe_pop_jump:
1002
          PREFIX(extract_number_and_incr) (&mcnt, &p);
1003
#  ifdef _LIBC
1004
  	  printf ("/maybe_pop_jump to %td", p + mcnt - start);
1005
#  else
1006
  	  printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
1007
#  endif
1008
	  break;
1009
 
1010
        case pop_failure_jump:
1011
	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1012
#  ifdef _LIBC
1013
  	  printf ("/pop_failure_jump to %td", p + mcnt - start);
1014
#  else
1015
  	  printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
1016
#  endif
1017
	  break;
1018
 
1019
        case jump_past_alt:
1020
	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1021
#  ifdef _LIBC
1022
  	  printf ("/jump_past_alt to %td", p + mcnt - start);
1023
#  else
1024
  	  printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
1025
#  endif
1026
	  break;
1027
 
1028
        case jump:
1029
	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1030
#  ifdef _LIBC
1031
  	  printf ("/jump to %td", p + mcnt - start);
1032
#  else
1033
  	  printf ("/jump to %ld", (long int) (p + mcnt - start));
1034
#  endif
1035
	  break;
1036
 
1037
        case succeed_n:
1038
          PREFIX(extract_number_and_incr) (&mcnt, &p);
1039
	  p1 = p + mcnt;
1040
          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1041
#  ifdef _LIBC
1042
	  printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
1043
#  else
1044
	  printf ("/succeed_n to %ld, %d times",
1045
		  (long int) (p1 - start), mcnt2);
1046
#  endif
1047
          break;
1048
 
1049
        case jump_n:
1050
          PREFIX(extract_number_and_incr) (&mcnt, &p);
1051
	  p1 = p + mcnt;
1052
          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1053
	  printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1054
          break;
1055
 
1056
        case set_number_at:
1057
          PREFIX(extract_number_and_incr) (&mcnt, &p);
1058
	  p1 = p + mcnt;
1059
          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1060
#  ifdef _LIBC
1061
	  printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1062
#  else
1063
	  printf ("/set_number_at location %ld to %d",
1064
		  (long int) (p1 - start), mcnt2);
1065
#  endif
1066
          break;
1067
 
1068
        case wordbound:
1069
	  printf ("/wordbound");
1070
	  break;
1071
 
1072
	case notwordbound:
1073
	  printf ("/notwordbound");
1074
          break;
1075
 
1076
	case wordbeg:
1077
	  printf ("/wordbeg");
1078
	  break;
1079
 
1080
	case wordend:
1081
	  printf ("/wordend");
1082
	  break;
1083
 
1084
#  ifdef emacs
1085
	case before_dot:
1086
	  printf ("/before_dot");
1087
          break;
1088
 
1089
	case at_dot:
1090
	  printf ("/at_dot");
1091
          break;
1092
 
1093
	case after_dot:
1094
	  printf ("/after_dot");
1095
          break;
1096
 
1097
	case syntaxspec:
1098
          printf ("/syntaxspec");
1099
	  mcnt = *p++;
1100
	  printf ("/%d", mcnt);
1101
          break;
1102
 
1103
	case notsyntaxspec:
1104
          printf ("/notsyntaxspec");
1105
	  mcnt = *p++;
1106
	  printf ("/%d", mcnt);
1107
	  break;
1108
#  endif /* emacs */
1109
 
1110
	case wordchar:
1111
	  printf ("/wordchar");
1112
          break;
1113
 
1114
	case notwordchar:
1115
	  printf ("/notwordchar");
1116
          break;
1117
 
1118
	case begbuf:
1119
	  printf ("/begbuf");
1120
          break;
1121
 
1122
	case endbuf:
1123
	  printf ("/endbuf");
1124
          break;
1125
 
1126
        default:
1127
          printf ("?%ld", (long int) *(p-1));
1128
	}
1129
 
1130
      putchar ('\n');
1131
    }
1132
 
1133
#  ifdef _LIBC
1134
  printf ("%td:\tend of pattern.\n", p - start);
1135
#  else
1136
  printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1137
#  endif
1138
}
1139
 
1140
 
1141
void
1142
PREFIX(print_compiled_pattern) (struct re_pattern_buffer *bufp)
1143
{
1144
  UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1145
 
1146
  PREFIX(print_partial_compiled_pattern) (buffer, buffer
1147
				  + bufp->used / sizeof(UCHAR_T));
1148
  printf ("%ld bytes used/%ld bytes allocated.\n",
1149
	  bufp->used, bufp->allocated);
1150
 
1151
  if (bufp->fastmap_accurate && bufp->fastmap)
1152
    {
1153
      printf ("fastmap: ");
1154
      print_fastmap (bufp->fastmap);
1155
    }
1156
 
1157
#  ifdef _LIBC
1158
  printf ("re_nsub: %Zd\t", bufp->re_nsub);
1159
#  else
1160
  printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1161
#  endif
1162
  printf ("regs_alloc: %d\t", bufp->regs_allocated);
1163
  printf ("can_be_null: %d\t", bufp->can_be_null);
1164
  printf ("newline_anchor: %d\n", bufp->newline_anchor);
1165
  printf ("no_sub: %d\t", bufp->no_sub);
1166
  printf ("not_bol: %d\t", bufp->not_bol);
1167
  printf ("not_eol: %d\t", bufp->not_eol);
1168
  printf ("syntax: %lx\n", bufp->syntax);
1169
  /* Perhaps we should print the translate table?  */
1170
}
1171
 
1172
 
1173
void
1174
PREFIX(print_double_string) (const CHAR_T *where, const CHAR_T *string1,
1175
                             int size1, const CHAR_T *string2, int size2)
1176
{
1177
  int this_char;
1178
 
1179
  if (where == NULL)
1180
    printf ("(null)");
1181
  else
1182
    {
1183
      int cnt;
1184
 
1185
      if (FIRST_STRING_P (where))
1186
        {
1187
          for (this_char = where - string1; this_char < size1; this_char++)
1188
	    PUT_CHAR (string1[this_char]);
1189
 
1190
          where = string2;
1191
        }
1192
 
1193
      cnt = 0;
1194
      for (this_char = where - string2; this_char < size2; this_char++)
1195
	{
1196
	  PUT_CHAR (string2[this_char]);
1197
	  if (++cnt > 100)
1198
	    {
1199
	      fputs ("...", stdout);
1200
	      break;
1201
	    }
1202
	}
1203
    }
1204
}
1205
 
1206
#  ifndef DEFINED_ONCE
1207
void
1208
printchar (int c)
1209
{
1210
  putc (c, stderr);
1211
}
1212
#  endif
1213
 
1214
# else /* not DEBUG */
1215
 
1216
#  ifndef DEFINED_ONCE
1217
#   undef assert
1218
#   define assert(e)
1219
 
1220
#   define DEBUG_STATEMENT(e)
1221
#   define DEBUG_PRINT1(x)
1222
#   define DEBUG_PRINT2(x1, x2)
1223
#   define DEBUG_PRINT3(x1, x2, x3)
1224
#   define DEBUG_PRINT4(x1, x2, x3, x4)
1225
#  endif /* not DEFINED_ONCE */
1226
#  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1227
#  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1228
 
1229
# endif /* not DEBUG */
1230
 
1231
 
1232
 
1233
# ifdef WCHAR
1234
/* This  convert a multibyte string to a wide character string.
1235
   And write their correspondances to offset_buffer(see below)
1236
   and write whether each wchar_t is binary data to is_binary.
1237
   This assume invalid multibyte sequences as binary data.
1238
   We assume offset_buffer and is_binary is already allocated
1239
   enough space.  */
1240
 
1241
static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
1242
				  size_t len, int *offset_buffer,
1243
				  char *is_binary);
1244
static size_t
1245
convert_mbs_to_wcs (CHAR_T *dest, const unsigned char*src, size_t len,
1246
                    int *offset_buffer, char *is_binary)
1247
     /* It hold correspondances between src(char string) and
1248
	dest(wchar_t string) for optimization.
1249
	e.g. src  = "xxxyzz"
1250
             dest = {'X', 'Y', 'Z'}
1251
	      (each "xxx", "y" and "zz" represent one multibyte character
1252
	       corresponding to 'X', 'Y' and 'Z'.)
1253
	  offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1254
	  	        = {0, 3, 4, 6}
1255
     */
1256
{
1257
  wchar_t *pdest = dest;
1258
  const unsigned char *psrc = src;
1259
  size_t wc_count = 0;
1260
 
1261
  mbstate_t mbs;
1262
  int i, consumed;
1263
  size_t mb_remain = len;
1264
  size_t mb_count = 0;
1265
 
1266
  /* Initialize the conversion state.  */
1267
  memset (&mbs, 0, sizeof (mbstate_t));
1268
 
1269
  offset_buffer[0] = 0;
1270
  for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1271
	 psrc += consumed)
1272
    {
1273
#ifdef _LIBC
1274
      consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs);
1275
#else
1276
      consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1277
#endif
1278
 
1279
      if (consumed <= 0)
1280
	/* failed to convert. maybe src contains binary data.
1281
	   So we consume 1 byte manualy.  */
1282
	{
1283
	  *pdest = *psrc;
1284
	  consumed = 1;
1285
	  is_binary[wc_count] = TRUE;
1286
	}
1287
      else
1288
	is_binary[wc_count] = FALSE;
1289
      /* In sjis encoding, we use yen sign as escape character in
1290
	 place of reverse solidus. So we convert 0x5c(yen sign in
1291
	 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1292
	 solidus in UCS2).  */
1293
      if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1294
	*pdest = (wchar_t) *psrc;
1295
 
1296
      offset_buffer[wc_count + 1] = mb_count += consumed;
1297
    }
1298
 
1299
  /* Fill remain of the buffer with sentinel.  */
1300
  for (i = wc_count + 1 ; i <= len ; i++)
1301
    offset_buffer[i] = mb_count + 1;
1302
 
1303
  return wc_count;
1304
}
1305
 
1306
# endif /* WCHAR */
1307
 
1308
#else /* not INSIDE_RECURSION */
1309
 
1310
/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
1311
   also be assigned to arbitrarily: each pattern buffer stores its own
1312
   syntax, so it can be changed between regex compilations.  */
1313
/* This has no initializer because initialized variables in Emacs
1314
   become read-only after dumping.  */
1315
reg_syntax_t re_syntax_options;
1316
 
1317
 
1318
/* Specify the precise syntax of regexps for compilation.  This provides
1319
   for compatibility for various utilities which historically have
1320
   different, incompatible syntaxes.
1321
 
1322
   The argument SYNTAX is a bit mask comprised of the various bits
1323
   defined in regex.h.  We return the old syntax.  */
1324
 
1325
reg_syntax_t
1326
re_set_syntax (reg_syntax_t syntax)
1327
{
1328
  reg_syntax_t ret = re_syntax_options;
1329
 
1330
  re_syntax_options = syntax;
1331
# ifdef DEBUG
1332
  if (syntax & RE_DEBUG)
1333
    debug = 1;
1334
  else if (debug) /* was on but now is not */
1335
    debug = 0;
1336
# endif /* DEBUG */
1337
  return ret;
1338
}
1339
# ifdef _LIBC
1340
weak_alias (__re_set_syntax, re_set_syntax)
1341
# endif
1342
 
1343
/* This table gives an error message for each of the error codes listed
1344
   in regex.h.  Obviously the order here has to be same as there.
1345
   POSIX doesn't require that we do anything for REG_NOERROR,
1346
   but why not be nice?  */
1347
 
1348
static const char *re_error_msgid[] =
1349
  {
1350
    gettext_noop ("Success"),	/* REG_NOERROR */
1351
    gettext_noop ("No match"),	/* REG_NOMATCH */
1352
    gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1353
    gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1354
    gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1355
    gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1356
    gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1357
    gettext_noop ("Unmatched [ or [^"),	/* REG_EBRACK */
1358
    gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1359
    gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1360
    gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1361
    gettext_noop ("Invalid range end"),	/* REG_ERANGE */
1362
    gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1363
    gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1364
    gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1365
    gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1366
    gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1367
  };
1368
 
1369
#endif /* INSIDE_RECURSION */
1370
 
1371
#ifndef DEFINED_ONCE
1372
/* Avoiding alloca during matching, to placate r_alloc.  */
1373
 
1374
/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1375
   searching and matching functions should not call alloca.  On some
1376
   systems, alloca is implemented in terms of malloc, and if we're
1377
   using the relocating allocator routines, then malloc could cause a
1378
   relocation, which might (if the strings being searched are in the
1379
   ralloc heap) shift the data out from underneath the regexp
1380
   routines.
1381
 
1382
   Here's another reason to avoid allocation: Emacs
1383
   processes input from X in a signal handler; processing X input may
1384
   call malloc; if input arrives while a matching routine is calling
1385
   malloc, then we're scrod.  But Emacs can't just block input while
1386
   calling matching routines; then we don't notice interrupts when
1387
   they come in.  So, Emacs blocks input around all regexp calls
1388
   except the matching calls, which it leaves unprotected, in the
1389
   faith that they will not malloc.  */
1390
 
1391
/* Normally, this is fine.  */
1392
# define MATCH_MAY_ALLOCATE
1393
 
1394
/* When using GNU C, we are not REALLY using the C alloca, no matter
1395
   what config.h may say.  So don't take precautions for it.  */
1396
# ifdef __GNUC__
1397
#  undef C_ALLOCA
1398
# endif
1399
 
1400
/* The match routines may not allocate if (1) they would do it with malloc
1401
   and (2) it's not safe for them to use malloc.
1402
   Note that if REL_ALLOC is defined, matching would not use malloc for the
1403
   failure stack, but we would still use it for the register vectors;
1404
   so REL_ALLOC should not affect this.  */
1405
# if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1406
#  undef MATCH_MAY_ALLOCATE
1407
# endif
1408
#endif /* not DEFINED_ONCE */
1409
 
1410
#ifdef INSIDE_RECURSION
1411
/* Failure stack declarations and macros; both re_compile_fastmap and
1412
   re_match_2 use a failure stack.  These have to be macros because of
1413
   REGEX_ALLOCATE_STACK.  */
1414
 
1415
 
1416
/* Number of failure points for which to initially allocate space
1417
   when matching.  If this number is exceeded, we allocate more
1418
   space, so it is not a hard limit.  */
1419
# ifndef INIT_FAILURE_ALLOC
1420
#  define INIT_FAILURE_ALLOC 5
1421
# endif
1422
 
1423
/* Roughly the maximum number of failure points on the stack.  Would be
1424
   exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1425
   This is a variable only so users of regex can assign to it; we never
1426
   change it ourselves.  */
1427
 
1428
# ifdef INT_IS_16BIT
1429
 
1430
#  ifndef DEFINED_ONCE
1431
#   if defined MATCH_MAY_ALLOCATE
1432
/* 4400 was enough to cause a crash on Alpha OSF/1,
1433
   whose default stack limit is 2mb.  */
1434
long int re_max_failures = 4000;
1435
#   else
1436
long int re_max_failures = 2000;
1437
#   endif
1438
#  endif
1439
 
1440
union PREFIX(fail_stack_elt)
1441
{
1442
  UCHAR_T *pointer;
1443
  long int integer;
1444
};
1445
 
1446
typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1447
 
1448
typedef struct
1449
{
1450
  PREFIX(fail_stack_elt_t) *stack;
1451
  unsigned long int size;
1452
  unsigned long int avail;		/* Offset of next open position.  */
1453
} PREFIX(fail_stack_type);
1454
 
1455
# else /* not INT_IS_16BIT */
1456
 
1457
#  ifndef DEFINED_ONCE
1458
#   if defined MATCH_MAY_ALLOCATE
1459
/* 4400 was enough to cause a crash on Alpha OSF/1,
1460
   whose default stack limit is 2mb.  */
1461
int re_max_failures = 4000;
1462
#   else
1463
int re_max_failures = 2000;
1464
#   endif
1465
#  endif
1466
 
1467
union PREFIX(fail_stack_elt)
1468
{
1469
  UCHAR_T *pointer;
1470
  int integer;
1471
};
1472
 
1473
typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1474
 
1475
typedef struct
1476
{
1477
  PREFIX(fail_stack_elt_t) *stack;
1478
  unsigned size;
1479
  unsigned avail;			/* Offset of next open position.  */
1480
} PREFIX(fail_stack_type);
1481
 
1482
# endif /* INT_IS_16BIT */
1483
 
1484
# ifndef DEFINED_ONCE
1485
#  define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1486
#  define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1487
#  define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1488
# endif
1489
 
1490
 
1491
/* Define macros to initialize and free the failure stack.
1492
   Do `return -2' if the alloc fails.  */
1493
 
1494
# ifdef MATCH_MAY_ALLOCATE
1495
#  define INIT_FAIL_STACK()						\
1496
  do {									\
1497
    fail_stack.stack = (PREFIX(fail_stack_elt_t) *)		\
1498
      REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1499
									\
1500
    if (fail_stack.stack == NULL)				\
1501
      return -2;							\
1502
									\
1503
    fail_stack.size = INIT_FAILURE_ALLOC;			\
1504
    fail_stack.avail = 0;					\
1505
  } while (0)
1506
 
1507
#  define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1508
# else
1509
#  define INIT_FAIL_STACK()						\
1510
  do {									\
1511
    fail_stack.avail = 0;					\
1512
  } while (0)
1513
 
1514
#  define RESET_FAIL_STACK()
1515
# endif
1516
 
1517
 
1518
/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1519
 
1520
   Return 1 if succeeds, and 0 if either ran out of memory
1521
   allocating space for it or it was already too large.
1522
 
1523
   REGEX_REALLOCATE_STACK requires `destination' be declared.   */
1524
 
1525
# define DOUBLE_FAIL_STACK(fail_stack)					\
1526
  ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS)	\
1527
   ? 0									\
1528
   : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *)			\
1529
        REGEX_REALLOCATE_STACK ((fail_stack).stack, 			\
1530
          (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)),	\
1531
          ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1532
									\
1533
      (fail_stack).stack == NULL					\
1534
      ? 0								\
1535
      : ((fail_stack).size <<= 1, 					\
1536
         1)))
1537
 
1538
 
1539
/* Push pointer POINTER on FAIL_STACK.
1540
   Return 1 if was able to do so and 0 if ran out of memory allocating
1541
   space to do so.  */
1542
# define PUSH_PATTERN_OP(POINTER, FAIL_STACK)				\
1543
  ((FAIL_STACK_FULL ()							\
1544
    && !DOUBLE_FAIL_STACK (FAIL_STACK))					\
1545
   ? 0									\
1546
   : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,	\
1547
      1))
1548
 
1549
/* Push a pointer value onto the failure stack.
1550
   Assumes the variable `fail_stack'.  Probably should only
1551
   be called from within `PUSH_FAILURE_POINT'.  */
1552
# define PUSH_FAILURE_POINTER(item)					\
1553
  fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1554
 
1555
/* This pushes an integer-valued item onto the failure stack.
1556
   Assumes the variable `fail_stack'.  Probably should only
1557
   be called from within `PUSH_FAILURE_POINT'.  */
1558
# define PUSH_FAILURE_INT(item)					\
1559
  fail_stack.stack[fail_stack.avail++].integer = (item)
1560
 
1561
/* Push a fail_stack_elt_t value onto the failure stack.
1562
   Assumes the variable `fail_stack'.  Probably should only
1563
   be called from within `PUSH_FAILURE_POINT'.  */
1564
# define PUSH_FAILURE_ELT(item)					\
1565
  fail_stack.stack[fail_stack.avail++] =  (item)
1566
 
1567
/* These three POP... operations complement the three PUSH... operations.
1568
   All assume that `fail_stack' is nonempty.  */
1569
# define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1570
# define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1571
# define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1572
 
1573
/* Used to omit pushing failure point id's when we're not debugging.  */
1574
# ifdef DEBUG
1575
#  define DEBUG_PUSH PUSH_FAILURE_INT
1576
#  define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1577
# else
1578
#  define DEBUG_PUSH(item)
1579
#  define DEBUG_POP(item_addr)
1580
# endif
1581
 
1582
 
1583
/* Push the information about the state we will need
1584
   if we ever fail back to it.
1585
 
1586
   Requires variables fail_stack, regstart, regend, reg_info, and
1587
   num_regs_pushed be declared.  DOUBLE_FAIL_STACK requires `destination'
1588
   be declared.
1589
 
1590
   Does `return FAILURE_CODE' if runs out of memory.  */
1591
 
1592
# define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
1593
  do {									\
1594
    char *destination;							\
1595
    /* Must be int, so when we don't save any registers, the arithmetic	\
1596
       of 0 + -1 isn't done as unsigned.  */				\
1597
    /* Can't be int, since there is not a shred of a guarantee that int	\
1598
       is wide enough to hold a value of something to which pointer can	\
1599
       be assigned */							\
1600
    active_reg_t this_reg;						\
1601
    									\
1602
    DEBUG_STATEMENT (failure_id++);					\
1603
    DEBUG_STATEMENT (nfailure_points_pushed++);				\
1604
    DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
1605
    DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1606
    DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
1607
									\
1608
    DEBUG_PRINT2 ("  slots needed: %ld\n", NUM_FAILURE_ITEMS);		\
1609
    DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);	\
1610
									\
1611
    /* Ensure we have enough space allocated for what we will push.  */	\
1612
    while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
1613
      {									\
1614
        if (!DOUBLE_FAIL_STACK (fail_stack))				\
1615
          return failure_code;						\
1616
									\
1617
        DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
1618
		       (fail_stack).size);				\
1619
        DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1620
      }									\
1621
									\
1622
    /* Push the info, starting with the registers.  */			\
1623
    DEBUG_PRINT1 ("\n");						\
1624
									\
1625
    if (1)								\
1626
      for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1627
	   this_reg++)							\
1628
	{								\
1629
	  DEBUG_PRINT2 ("  Pushing reg: %lu\n", this_reg);		\
1630
	  DEBUG_STATEMENT (num_regs_pushed++);				\
1631
									\
1632
	  DEBUG_PRINT2 ("    start: %p\n", regstart[this_reg]);		\
1633
	  PUSH_FAILURE_POINTER (regstart[this_reg]);			\
1634
									\
1635
	  DEBUG_PRINT2 ("    end: %p\n", regend[this_reg]);		\
1636
	  PUSH_FAILURE_POINTER (regend[this_reg]);			\
1637
									\
1638
	  DEBUG_PRINT2 ("    info: %p\n      ",				\
1639
			reg_info[this_reg].word.pointer);		\
1640
	  DEBUG_PRINT2 (" match_null=%d",				\
1641
			REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
1642
	  DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
1643
	  DEBUG_PRINT2 (" matched_something=%d",			\
1644
			MATCHED_SOMETHING (reg_info[this_reg]));	\
1645
	  DEBUG_PRINT2 (" ever_matched=%d",				\
1646
			EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
1647
	  DEBUG_PRINT1 ("\n");						\
1648
	  PUSH_FAILURE_ELT (reg_info[this_reg].word);			\
1649
	}								\
1650
									\
1651
    DEBUG_PRINT2 ("  Pushing  low active reg: %ld\n", lowest_active_reg);\
1652
    PUSH_FAILURE_INT (lowest_active_reg);				\
1653
									\
1654
    DEBUG_PRINT2 ("  Pushing high active reg: %ld\n", highest_active_reg);\
1655
    PUSH_FAILURE_INT (highest_active_reg);				\
1656
									\
1657
    DEBUG_PRINT2 ("  Pushing pattern %p:\n", pattern_place);		\
1658
    DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
1659
    PUSH_FAILURE_POINTER (pattern_place);				\
1660
									\
1661
    DEBUG_PRINT2 ("  Pushing string %p: `", string_place);		\
1662
    DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
1663
				 size2);				\
1664
    DEBUG_PRINT1 ("'\n");						\
1665
    PUSH_FAILURE_POINTER (string_place);				\
1666
									\
1667
    DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
1668
    DEBUG_PUSH (failure_id);						\
1669
  } while (0)
1670
 
1671
# ifndef DEFINED_ONCE
1672
/* This is the number of items that are pushed and popped on the stack
1673
   for each register.  */
1674
#  define NUM_REG_ITEMS  3
1675
 
1676
/* Individual items aside from the registers.  */
1677
#  ifdef DEBUG
1678
#   define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1679
#  else
1680
#   define NUM_NONREG_ITEMS 4
1681
#  endif
1682
 
1683
/* We push at most this many items on the stack.  */
1684
/* We used to use (num_regs - 1), which is the number of registers
1685
   this regexp will save; but that was changed to 5
1686
   to avoid stack overflow for a regexp with lots of parens.  */
1687
#  define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1688
 
1689
/* We actually push this many items.  */
1690
#  define NUM_FAILURE_ITEMS				\
1691
  (((0							\
1692
     ? 0 : highest_active_reg - lowest_active_reg + 1)	\
1693
    * NUM_REG_ITEMS)					\
1694
   + NUM_NONREG_ITEMS)
1695
 
1696
/* How many items can still be added to the stack without overflowing it.  */
1697
#  define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1698
# endif /* not DEFINED_ONCE */
1699
 
1700
 
1701
/* Pops what PUSH_FAIL_STACK pushes.
1702
 
1703
   We restore into the parameters, all of which should be lvalues:
1704
     STR -- the saved data position.
1705
     PAT -- the saved pattern position.
1706
     LOW_REG, HIGH_REG -- the highest and lowest active registers.
1707
     REGSTART, REGEND -- arrays of string positions.
1708
     REG_INFO -- array of information about each subexpression.
1709
 
1710
   Also assumes the variables `fail_stack' and (if debugging), `bufp',
1711
   `pend', `string1', `size1', `string2', and `size2'.  */
1712
# define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1713
{									\
1714
  DEBUG_STATEMENT (unsigned failure_id;)				\
1715
  active_reg_t this_reg;						\
1716
  const UCHAR_T *string_temp;						\
1717
									\
1718
  assert (!FAIL_STACK_EMPTY ());					\
1719
									\
1720
  /* Remove failure points and point to how many regs pushed.  */	\
1721
  DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
1722
  DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
1723
  DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);	\
1724
									\
1725
  assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
1726
									\
1727
  DEBUG_POP (&failure_id);						\
1728
  DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
1729
									\
1730
  /* If the saved string location is NULL, it came from an		\
1731
     on_failure_keep_string_jump opcode, and we want to throw away the	\
1732
     saved NULL, thus retaining our current position in the string.  */	\
1733
  string_temp = POP_FAILURE_POINTER ();					\
1734
  if (string_temp != NULL)						\
1735
    str = (const CHAR_T *) string_temp;					\
1736
									\
1737
  DEBUG_PRINT2 ("  Popping string %p: `", str);				\
1738
  DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
1739
  DEBUG_PRINT1 ("'\n");							\
1740
									\
1741
  pat = (UCHAR_T *) POP_FAILURE_POINTER ();				\
1742
  DEBUG_PRINT2 ("  Popping pattern %p:\n", pat);			\
1743
  DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
1744
									\
1745
  /* Restore register info.  */						\
1746
  high_reg = (active_reg_t) POP_FAILURE_INT ();				\
1747
  DEBUG_PRINT2 ("  Popping high active reg: %ld\n", high_reg);		\
1748
									\
1749
  low_reg = (active_reg_t) POP_FAILURE_INT ();				\
1750
  DEBUG_PRINT2 ("  Popping  low active reg: %ld\n", low_reg);		\
1751
									\
1752
  if (1)								\
1753
    for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
1754
      {									\
1755
	DEBUG_PRINT2 ("    Popping reg: %ld\n", this_reg);		\
1756
									\
1757
	reg_info[this_reg].word = POP_FAILURE_ELT ();			\
1758
	DEBUG_PRINT2 ("      info: %p\n",				\
1759
		      reg_info[this_reg].word.pointer);			\
1760
									\
1761
	regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();	\
1762
	DEBUG_PRINT2 ("      end: %p\n", regend[this_reg]);		\
1763
									\
1764
	regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();	\
1765
	DEBUG_PRINT2 ("      start: %p\n", regstart[this_reg]);		\
1766
      }									\
1767
  else									\
1768
    {									\
1769
      for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1770
	{								\
1771
	  reg_info[this_reg].word.integer = 0;				\
1772
	  regend[this_reg] = 0;						\
1773
	  regstart[this_reg] = 0;					\
1774
	}								\
1775
      highest_active_reg = high_reg;					\
1776
    }									\
1777
									\
1778
  set_regs_matched_done = 0;						\
1779
  DEBUG_STATEMENT (nfailure_points_popped++);				\
1780
} /* POP_FAILURE_POINT */
1781
 
1782
/* Structure for per-register (a.k.a. per-group) information.
1783
   Other register information, such as the
1784
   starting and ending positions (which are addresses), and the list of
1785
   inner groups (which is a bits list) are maintained in separate
1786
   variables.
1787
 
1788
   We are making a (strictly speaking) nonportable assumption here: that
1789
   the compiler will pack our bit fields into something that fits into
1790
   the type of `word', i.e., is something that fits into one item on the
1791
   failure stack.  */
1792
 
1793
 
1794
/* Declarations and macros for re_match_2.  */
1795
 
1796
typedef union
1797
{
1798
  PREFIX(fail_stack_elt_t) word;
1799
  struct
1800
  {
1801
      /* This field is one if this group can match the empty string,
1802
         zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1803
# define MATCH_NULL_UNSET_VALUE 3
1804
    unsigned match_null_string_p : 2;
1805
    unsigned is_active : 1;
1806
    unsigned matched_something : 1;
1807
    unsigned ever_matched_something : 1;
1808
  } bits;
1809
} PREFIX(register_info_type);
1810
 
1811
# ifndef DEFINED_ONCE
1812
#  define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1813
#  define IS_ACTIVE(R)  ((R).bits.is_active)
1814
#  define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1815
#  define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1816
 
1817
 
1818
/* Call this when have matched a real character; it sets `matched' flags
1819
   for the subexpressions which we are currently inside.  Also records
1820
   that those subexprs have matched.  */
1821
#  define SET_REGS_MATCHED()						\
1822
  do									\
1823
    {									\
1824
      if (!set_regs_matched_done)					\
1825
	{								\
1826
	  active_reg_t r;						\
1827
	  set_regs_matched_done = 1;					\
1828
	  for (r = lowest_active_reg; r <= highest_active_reg; r++)	\
1829
	    {								\
1830
	      MATCHED_SOMETHING (reg_info[r])				\
1831
		= EVER_MATCHED_SOMETHING (reg_info[r])			\
1832
		= 1;							\
1833
	    }								\
1834
	}								\
1835
    }									\
1836
  while (0)
1837
# endif /* not DEFINED_ONCE */
1838
 
1839
/* Registers are set to a sentinel when they haven't yet matched.  */
1840
static CHAR_T PREFIX(reg_unset_dummy);
1841
# define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1842
# define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1843
 
1844
/* Subroutine declarations and macros for regex_compile.  */
1845
static void PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg);
1846
static void PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc,
1847
                               int arg1, int arg2);
1848
static void PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc,
1849
                                int arg, UCHAR_T *end);
1850
static void PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc,
1851
                                int arg1, int arg2, UCHAR_T *end);
1852
static boolean PREFIX(at_begline_loc_p) (const CHAR_T *pattern,
1853
                                         const CHAR_T *p,
1854
                                         reg_syntax_t syntax);
1855
static boolean PREFIX(at_endline_loc_p) (const CHAR_T *p,
1856
                                         const CHAR_T *pend,
1857
                                         reg_syntax_t syntax);
1858
# ifdef WCHAR
1859
static reg_errcode_t wcs_compile_range (CHAR_T range_start,
1860
                                        const CHAR_T **p_ptr,
1861
                                        const CHAR_T *pend,
1862
                                        char *translate,
1863
                                        reg_syntax_t syntax,
1864
                                        UCHAR_T *b,
1865
                                        CHAR_T *char_set);
1866
static void insert_space (int num, CHAR_T *loc, CHAR_T *end);
1867
# else /* BYTE */
1868
static reg_errcode_t byte_compile_range (unsigned int range_start,
1869
                                         const char **p_ptr,
1870
                                         const char *pend,
1871
                                         char *translate,
1872
                                         reg_syntax_t syntax,
1873
                                         unsigned char *b);
1874
# endif /* WCHAR */
1875
 
1876
/* Fetch the next character in the uncompiled pattern---translating it
1877
   if necessary.  Also cast from a signed character in the constant
1878
   string passed to us by the user to an unsigned char that we can use
1879
   as an array index (in, e.g., `translate').  */
1880
/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1881
   because it is impossible to allocate 4GB array for some encodings
1882
   which have 4 byte character_set like UCS4.  */
1883
# ifndef PATFETCH
1884
#  ifdef WCHAR
1885
#   define PATFETCH(c)							\
1886
  do {if (p == pend) return REG_EEND;					\
1887
    c = (UCHAR_T) *p++;							\
1888
    if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c];		\
1889
  } while (0)
1890
#  else /* BYTE */
1891
#   define PATFETCH(c)							\
1892
  do {if (p == pend) return REG_EEND;					\
1893
    c = (unsigned char) *p++;						\
1894
    if (translate) c = (unsigned char) translate[c];			\
1895
  } while (0)
1896
#  endif /* WCHAR */
1897
# endif
1898
 
1899
/* Fetch the next character in the uncompiled pattern, with no
1900
   translation.  */
1901
# define PATFETCH_RAW(c)						\
1902
  do {if (p == pend) return REG_EEND;					\
1903
    c = (UCHAR_T) *p++; 	       					\
1904
  } while (0)
1905
 
1906
/* Go backwards one character in the pattern.  */
1907
# define PATUNFETCH p--
1908
 
1909
 
1910
/* If `translate' is non-null, return translate[D], else just D.  We
1911
   cast the subscript to translate because some data is declared as
1912
   `char *', to avoid warnings when a string constant is passed.  But
1913
   when we use a character as a subscript we must make it unsigned.  */
1914
/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1915
   because it is impossible to allocate 4GB array for some encodings
1916
   which have 4 byte character_set like UCS4.  */
1917
 
1918
# ifndef TRANSLATE
1919
#  ifdef WCHAR
1920
#   define TRANSLATE(d) \
1921
  ((translate && ((UCHAR_T) (d)) <= 0xff) \
1922
   ? (char) translate[(unsigned char) (d)] : (d))
1923
# else /* BYTE */
1924
#   define TRANSLATE(d) \
1925
  (translate ? (char) translate[(unsigned char) (d)] : (char) (d))
1926
#  endif /* WCHAR */
1927
# endif
1928
 
1929
 
1930
/* Macros for outputting the compiled pattern into `buffer'.  */
1931
 
1932
/* If the buffer isn't allocated when it comes in, use this.  */
1933
# define INIT_BUF_SIZE  (32 * sizeof(UCHAR_T))
1934
 
1935
/* Make sure we have at least N more bytes of space in buffer.  */
1936
# ifdef WCHAR
1937
#  define GET_BUFFER_SPACE(n)						\
1938
    while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR	\
1939
            + (n)*sizeof(CHAR_T)) > bufp->allocated)			\
1940
      EXTEND_BUFFER ()
1941
# else /* BYTE */
1942
#  define GET_BUFFER_SPACE(n)						\
1943
    while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)	\
1944
      EXTEND_BUFFER ()
1945
# endif /* WCHAR */
1946
 
1947
/* Make sure we have one more byte of buffer space and then add C to it.  */
1948
# define BUF_PUSH(c)							\
1949
  do {									\
1950
    GET_BUFFER_SPACE (1);						\
1951
    *b++ = (UCHAR_T) (c);						\
1952
  } while (0)
1953
 
1954
 
1955
/* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
1956
# define BUF_PUSH_2(c1, c2)						\
1957
  do {									\
1958
    GET_BUFFER_SPACE (2);						\
1959
    *b++ = (UCHAR_T) (c1);						\
1960
    *b++ = (UCHAR_T) (c2);						\
1961
  } while (0)
1962
 
1963
 
1964
/* As with BUF_PUSH_2, except for three bytes.  */
1965
# define BUF_PUSH_3(c1, c2, c3)						\
1966
  do {									\
1967
    GET_BUFFER_SPACE (3);						\
1968
    *b++ = (UCHAR_T) (c1);						\
1969
    *b++ = (UCHAR_T) (c2);						\
1970
    *b++ = (UCHAR_T) (c3);						\
1971
  } while (0)
1972
 
1973
/* Store a jump with opcode OP at LOC to location TO.  We store a
1974
   relative address offset by the three bytes the jump itself occupies.  */
1975
# define STORE_JUMP(op, loc, to) \
1976
 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
1977
 
1978
/* Likewise, for a two-argument jump.  */
1979
# define STORE_JUMP2(op, loc, to, arg) \
1980
  PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
1981
 
1982
/* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
1983
# define INSERT_JUMP(op, loc, to) \
1984
  PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
1985
 
1986
/* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
1987
# define INSERT_JUMP2(op, loc, to, arg) \
1988
  PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
1989
	      arg, b)
1990
 
1991
/* This is not an arbitrary limit: the arguments which represent offsets
1992
   into the pattern are two bytes long.  So if 2^16 bytes turns out to
1993
   be too small, many things would have to change.  */
1994
/* Any other compiler which, like MSC, has allocation limit below 2^16
1995
   bytes will have to use approach similar to what was done below for
1996
   MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
1997
   reallocating to 0 bytes.  Such thing is not going to work too well.
1998
   You have been warned!!  */
1999
# ifndef DEFINED_ONCE
2000
#  if defined _MSC_VER  && !defined WIN32
2001
/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2002
   The REALLOC define eliminates a flurry of conversion warnings,
2003
   but is not required. */
2004
#   define MAX_BUF_SIZE  65500L
2005
#   define REALLOC(p,s) realloc ((p), (size_t) (s))
2006
#  else
2007
#   define MAX_BUF_SIZE (1L << 16)
2008
#   define REALLOC(p,s) realloc ((p), (s))
2009
#  endif
2010
 
2011
/* Extend the buffer by twice its current size via realloc and
2012
   reset the pointers that pointed into the old block to point to the
2013
   correct places in the new one.  If extending the buffer results in it
2014
   being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
2015
#  if __BOUNDED_POINTERS__
2016
#   define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2017
#   define MOVE_BUFFER_POINTER(P) \
2018
  (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2019
#   define ELSE_EXTEND_BUFFER_HIGH_BOUND	\
2020
  else						\
2021
    {						\
2022
      SET_HIGH_BOUND (b);			\
2023
      SET_HIGH_BOUND (begalt);			\
2024
      if (fixup_alt_jump)			\
2025
	SET_HIGH_BOUND (fixup_alt_jump);	\
2026
      if (laststart)				\
2027
	SET_HIGH_BOUND (laststart);		\
2028
      if (pending_exact)			\
2029
	SET_HIGH_BOUND (pending_exact);		\
2030
    }
2031
#  else
2032
#   define MOVE_BUFFER_POINTER(P) (P) += incr
2033
#   define ELSE_EXTEND_BUFFER_HIGH_BOUND
2034
#  endif
2035
# endif /* not DEFINED_ONCE */
2036
 
2037
# ifdef WCHAR
2038
#  define EXTEND_BUFFER()						\
2039
  do {									\
2040
    UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;				\
2041
    int wchar_count;							\
2042
    if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE)		\
2043
      return REG_ESIZE;							\
2044
    bufp->allocated <<= 1;						\
2045
    if (bufp->allocated > MAX_BUF_SIZE)					\
2046
      bufp->allocated = MAX_BUF_SIZE;					\
2047
    /* How many characters the new buffer can have?  */			\
2048
    wchar_count = bufp->allocated / sizeof(UCHAR_T);			\
2049
    if (wchar_count == 0) wchar_count = 1;				\
2050
    /* Truncate the buffer to CHAR_T align.  */				\
2051
    bufp->allocated = wchar_count * sizeof(UCHAR_T);			\
2052
    RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T);		\
2053
    bufp->buffer = (char*)COMPILED_BUFFER_VAR;				\
2054
    if (COMPILED_BUFFER_VAR == NULL)					\
2055
      return REG_ESPACE;						\
2056
    /* If the buffer moved, move all the pointers into it.  */		\
2057
    if (old_buffer != COMPILED_BUFFER_VAR)				\
2058
      {									\
2059
	PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer;		\
2060
	MOVE_BUFFER_POINTER (b);					\
2061
	MOVE_BUFFER_POINTER (begalt);					\
2062
	if (fixup_alt_jump)						\
2063
	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2064
	if (laststart)							\
2065
	  MOVE_BUFFER_POINTER (laststart);				\
2066
	if (pending_exact)						\
2067
	  MOVE_BUFFER_POINTER (pending_exact);				\
2068
      }									\
2069
    ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2070
  } while (0)
2071
# else /* BYTE */
2072
#  define EXTEND_BUFFER()						\
2073
  do {									\
2074
    UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;				\
2075
    if (bufp->allocated == MAX_BUF_SIZE)				\
2076
      return REG_ESIZE;							\
2077
    bufp->allocated <<= 1;						\
2078
    if (bufp->allocated > MAX_BUF_SIZE)					\
2079
      bufp->allocated = MAX_BUF_SIZE;					\
2080
    bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR,		\
2081
						bufp->allocated);	\
2082
    if (COMPILED_BUFFER_VAR == NULL)					\
2083
      return REG_ESPACE;						\
2084
    /* If the buffer moved, move all the pointers into it.  */		\
2085
    if (old_buffer != COMPILED_BUFFER_VAR)				\
2086
      {									\
2087
	PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer;		\
2088
	MOVE_BUFFER_POINTER (b);					\
2089
	MOVE_BUFFER_POINTER (begalt);					\
2090
	if (fixup_alt_jump)						\
2091
	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2092
	if (laststart)							\
2093
	  MOVE_BUFFER_POINTER (laststart);				\
2094
	if (pending_exact)						\
2095
	  MOVE_BUFFER_POINTER (pending_exact);				\
2096
      }									\
2097
    ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2098
  } while (0)
2099
# endif /* WCHAR */
2100
 
2101
# ifndef DEFINED_ONCE
2102
/* Since we have one byte reserved for the register number argument to
2103
   {start,stop}_memory, the maximum number of groups we can report
2104
   things about is what fits in that byte.  */
2105
#  define MAX_REGNUM 255
2106
 
2107
/* But patterns can have more than `MAX_REGNUM' registers.  We just
2108
   ignore the excess.  */
2109
typedef unsigned regnum_t;
2110
 
2111
 
2112
/* Macros for the compile stack.  */
2113
 
2114
/* Since offsets can go either forwards or backwards, this type needs to
2115
   be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
2116
/* int may be not enough when sizeof(int) == 2.  */
2117
typedef long pattern_offset_t;
2118
 
2119
typedef struct
2120
{
2121
  pattern_offset_t begalt_offset;
2122
  pattern_offset_t fixup_alt_jump;
2123
  pattern_offset_t inner_group_offset;
2124
  pattern_offset_t laststart_offset;
2125
  regnum_t regnum;
2126
} compile_stack_elt_t;
2127
 
2128
 
2129
typedef struct
2130
{
2131
  compile_stack_elt_t *stack;
2132
  unsigned size;
2133
  unsigned avail;			/* Offset of next open position.  */
2134
} compile_stack_type;
2135
 
2136
 
2137
#  define INIT_COMPILE_STACK_SIZE 32
2138
 
2139
#  define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
2140
#  define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
2141
 
2142
/* The next available element.  */
2143
#  define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2144
 
2145
# endif /* not DEFINED_ONCE */
2146
 
2147
/* Set the bit for character C in a list.  */
2148
# ifndef DEFINED_ONCE
2149
#  define SET_LIST_BIT(c)                               \
2150
  (b[((unsigned char) (c)) / BYTEWIDTH]               \
2151
   |= 1 << (((unsigned char) c) % BYTEWIDTH))
2152
# endif /* DEFINED_ONCE */
2153
 
2154
/* Get the next unsigned number in the uncompiled pattern.  */
2155
# define GET_UNSIGNED_NUMBER(num) \
2156
  {									\
2157
    while (p != pend)							\
2158
      {									\
2159
	PATFETCH (c);							\
2160
	if (c < '0' || c > '9')						\
2161
	  break;							\
2162
	if (num <= RE_DUP_MAX)						\
2163
	  {								\
2164
	    if (num < 0)						\
2165
	      num = 0;							\
2166
	    num = num * 10 + c - '0';					\
2167
	  }								\
2168
      }									\
2169
  }
2170
 
2171
# ifndef DEFINED_ONCE
2172
#  if defined _LIBC || WIDE_CHAR_SUPPORT
2173
/* The GNU C library provides support for user-defined character classes
2174
   and the functions from ISO C amendement 1.  */
2175
#   ifdef CHARCLASS_NAME_MAX
2176
#    define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2177
#   else
2178
/* This shouldn't happen but some implementation might still have this
2179
   problem.  Use a reasonable default value.  */
2180
#    define CHAR_CLASS_MAX_LENGTH 256
2181
#   endif
2182
 
2183
#   ifdef _LIBC
2184
#    define IS_CHAR_CLASS(string) __wctype (string)
2185
#   else
2186
#    define IS_CHAR_CLASS(string) wctype (string)
2187
#   endif
2188
#  else
2189
#   define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
2190
 
2191
#   define IS_CHAR_CLASS(string)					\
2192
   (STREQ (string, "alpha") || STREQ (string, "upper")			\
2193
    || STREQ (string, "lower") || STREQ (string, "digit")		\
2194
    || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
2195
    || STREQ (string, "space") || STREQ (string, "print")		\
2196
    || STREQ (string, "punct") || STREQ (string, "graph")		\
2197
    || STREQ (string, "cntrl") || STREQ (string, "blank"))
2198
#  endif
2199
# endif /* DEFINED_ONCE */
2200
 
2201
# ifndef MATCH_MAY_ALLOCATE
2202
 
2203
/* If we cannot allocate large objects within re_match_2_internal,
2204
   we make the fail stack and register vectors global.
2205
   The fail stack, we grow to the maximum size when a regexp
2206
   is compiled.
2207
   The register vectors, we adjust in size each time we
2208
   compile a regexp, according to the number of registers it needs.  */
2209
 
2210
static PREFIX(fail_stack_type) fail_stack;
2211
 
2212
/* Size with which the following vectors are currently allocated.
2213
   That is so we can make them bigger as needed,
2214
   but never make them smaller.  */
2215
#  ifdef DEFINED_ONCE
2216
static int regs_allocated_size;
2217
 
2218
static const char **     regstart, **     regend;
2219
static const char ** old_regstart, ** old_regend;
2220
static const char **best_regstart, **best_regend;
2221
static const char **reg_dummy;
2222
#  endif /* DEFINED_ONCE */
2223
 
2224
static PREFIX(register_info_type) *PREFIX(reg_info);
2225
static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2226
 
2227
/* Make the register vectors big enough for NUM_REGS registers,
2228
   but don't make them smaller.  */
2229
 
2230
static void
2231
PREFIX(regex_grow_registers) (int num_regs)
2232
{
2233
  if (num_regs > regs_allocated_size)
2234
    {
2235
      RETALLOC_IF (regstart,	 num_regs, const char *);
2236
      RETALLOC_IF (regend,	 num_regs, const char *);
2237
      RETALLOC_IF (old_regstart, num_regs, const char *);
2238
      RETALLOC_IF (old_regend,	 num_regs, const char *);
2239
      RETALLOC_IF (best_regstart, num_regs, const char *);
2240
      RETALLOC_IF (best_regend,	 num_regs, const char *);
2241
      RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
2242
      RETALLOC_IF (reg_dummy,	 num_regs, const char *);
2243
      RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
2244
 
2245
      regs_allocated_size = num_regs;
2246
    }
2247
}
2248
 
2249
# endif /* not MATCH_MAY_ALLOCATE */
2250
 
2251
# ifndef DEFINED_ONCE
2252
static boolean group_in_compile_stack (compile_stack_type compile_stack,
2253
                                       regnum_t regnum);
2254
# endif /* not DEFINED_ONCE */
2255
 
2256
/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2257
   Returns one of error codes defined in `regex.h', or zero for success.
2258
 
2259
   Assumes the `allocated' (and perhaps `buffer') and `translate'
2260
   fields are set in BUFP on entry.
2261
 
2262
   If it succeeds, results are put in BUFP (if it returns an error, the
2263
   contents of BUFP are undefined):
2264
     `buffer' is the compiled pattern;
2265
     `syntax' is set to SYNTAX;
2266
     `used' is set to the length of the compiled pattern;
2267
     `fastmap_accurate' is zero;
2268
     `re_nsub' is the number of subexpressions in PATTERN;
2269
     `not_bol' and `not_eol' are zero;
2270
 
2271
   The `fastmap' and `newline_anchor' fields are neither
2272
   examined nor set.  */
2273
 
2274
/* Return, freeing storage we allocated.  */
2275
# ifdef WCHAR
2276
#  define FREE_STACK_RETURN(value)		\
2277
  return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2278
# else
2279
#  define FREE_STACK_RETURN(value)		\
2280
  return (free (compile_stack.stack), value)
2281
# endif /* WCHAR */
2282
 
2283
static reg_errcode_t
2284
PREFIX(regex_compile) (const char *ARG_PREFIX(pattern),
2285
                       size_t ARG_PREFIX(size), reg_syntax_t syntax,
2286
                       struct re_pattern_buffer *bufp)
2287
{
2288
  /* We fetch characters from PATTERN here.  Even though PATTERN is
2289
     `char *' (i.e., signed), we declare these variables as unsigned, so
2290
     they can be reliably used as array indices.  */
2291
  register UCHAR_T c, c1;
2292
 
2293
#ifdef WCHAR
2294
  /* A temporary space to keep wchar_t pattern and compiled pattern.  */
2295
  CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2296
  size_t size;
2297
  /* offset buffer for optimization. See convert_mbs_to_wc.  */
2298
  int *mbs_offset = NULL;
2299
  /* It hold whether each wchar_t is binary data or not.  */
2300
  char *is_binary = NULL;
2301
  /* A flag whether exactn is handling binary data or not.  */
2302
  char is_exactn_bin = FALSE;
2303
#endif /* WCHAR */
2304
 
2305
  /* A random temporary spot in PATTERN.  */
2306
  const CHAR_T *p1;
2307
 
2308
  /* Points to the end of the buffer, where we should append.  */
2309
  register UCHAR_T *b;
2310
 
2311
  /* Keeps track of unclosed groups.  */
2312
  compile_stack_type compile_stack;
2313
 
2314
  /* Points to the current (ending) position in the pattern.  */
2315
#ifdef WCHAR
2316
  const CHAR_T *p;
2317
  const CHAR_T *pend;
2318
#else /* BYTE */
2319
  const CHAR_T *p = pattern;
2320
  const CHAR_T *pend = pattern + size;
2321
#endif /* WCHAR */
2322
 
2323
  /* How to translate the characters in the pattern.  */
2324
  RE_TRANSLATE_TYPE translate = bufp->translate;
2325
 
2326
  /* Address of the count-byte of the most recently inserted `exactn'
2327
     command.  This makes it possible to tell if a new exact-match
2328
     character can be added to that command or if the character requires
2329
     a new `exactn' command.  */
2330
  UCHAR_T *pending_exact = 0;
2331
 
2332
  /* Address of start of the most recently finished expression.
2333
     This tells, e.g., postfix * where to find the start of its
2334
     operand.  Reset at the beginning of groups and alternatives.  */
2335
  UCHAR_T *laststart = 0;
2336
 
2337
  /* Address of beginning of regexp, or inside of last group.  */
2338
  UCHAR_T *begalt;
2339
 
2340
  /* Address of the place where a forward jump should go to the end of
2341
     the containing expression.  Each alternative of an `or' -- except the
2342
     last -- ends with a forward jump of this sort.  */
2343
  UCHAR_T *fixup_alt_jump = 0;
2344
 
2345
  /* Counts open-groups as they are encountered.  Remembered for the
2346
     matching close-group on the compile stack, so the same register
2347
     number is put in the stop_memory as the start_memory.  */
2348
  regnum_t regnum = 0;
2349
 
2350
#ifdef WCHAR
2351
  /* Initialize the wchar_t PATTERN and offset_buffer.  */
2352
  p = pend = pattern = TALLOC(csize + 1, CHAR_T);
2353
  mbs_offset = TALLOC(csize + 1, int);
2354
  is_binary = TALLOC(csize + 1, char);
2355
  if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2356
    {
2357
      free(pattern);
2358
      free(mbs_offset);
2359
      free(is_binary);
2360
      return REG_ESPACE;
2361
    }
2362
  pattern[csize] = L'\0';	/* sentinel */
2363
  size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2364
  pend = p + size;
2365
  if (size < 0)
2366
    {
2367
      free(pattern);
2368
      free(mbs_offset);
2369
      free(is_binary);
2370
      return REG_BADPAT;
2371
    }
2372
#endif
2373
 
2374
#ifdef DEBUG
2375
  DEBUG_PRINT1 ("\nCompiling pattern: ");
2376
  if (debug)
2377
    {
2378
      unsigned debug_count;
2379
 
2380
      for (debug_count = 0; debug_count < size; debug_count++)
2381
        PUT_CHAR (pattern[debug_count]);
2382
      putchar ('\n');
2383
    }
2384
#endif /* DEBUG */
2385
 
2386
  /* Initialize the compile stack.  */
2387
  compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2388
  if (compile_stack.stack == NULL)
2389
    {
2390
#ifdef WCHAR
2391
      free(pattern);
2392
      free(mbs_offset);
2393
      free(is_binary);
2394
#endif
2395
      return REG_ESPACE;
2396
    }
2397
 
2398
  compile_stack.size = INIT_COMPILE_STACK_SIZE;
2399
  compile_stack.avail = 0;
2400
 
2401
  /* Initialize the pattern buffer.  */
2402
  bufp->syntax = syntax;
2403
  bufp->fastmap_accurate = 0;
2404
  bufp->not_bol = bufp->not_eol = 0;
2405
 
2406
  /* Set `used' to zero, so that if we return an error, the pattern
2407
     printer (for debugging) will think there's no pattern.  We reset it
2408
     at the end.  */
2409
  bufp->used = 0;
2410
 
2411
  /* Always count groups, whether or not bufp->no_sub is set.  */
2412
  bufp->re_nsub = 0;
2413
 
2414
#if !defined emacs && !defined SYNTAX_TABLE
2415
  /* Initialize the syntax table.  */
2416
   init_syntax_once ();
2417
#endif
2418
 
2419
  if (bufp->allocated == 0)
2420
    {
2421
      if (bufp->buffer)
2422
	{ /* If zero allocated, but buffer is non-null, try to realloc
2423
             enough space.  This loses if buffer's address is bogus, but
2424
             that is the user's responsibility.  */
2425
#ifdef WCHAR
2426
	  /* Free bufp->buffer and allocate an array for wchar_t pattern
2427
	     buffer.  */
2428
          free(bufp->buffer);
2429
          COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
2430
					UCHAR_T);
2431
#else
2432
          RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
2433
#endif /* WCHAR */
2434
        }
2435
      else
2436
        { /* Caller did not allocate a buffer.  Do it for them.  */
2437
          COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
2438
					UCHAR_T);
2439
        }
2440
 
2441
      if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2442
#ifdef WCHAR
2443
      bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2444
#endif /* WCHAR */
2445
      bufp->allocated = INIT_BUF_SIZE;
2446
    }
2447
#ifdef WCHAR
2448
  else
2449
    COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2450
#endif
2451
 
2452
  begalt = b = COMPILED_BUFFER_VAR;
2453
 
2454
  /* Loop through the uncompiled pattern until we're at the end.  */
2455
  while (p != pend)
2456
    {
2457
      PATFETCH (c);
2458
 
2459
      switch (c)
2460
        {
2461
        case '^':
2462
          {
2463
            if (   /* If at start of pattern, it's an operator.  */
2464
                   p == pattern + 1
2465
                   /* If context independent, it's an operator.  */
2466
                || syntax & RE_CONTEXT_INDEP_ANCHORS
2467
                   /* Otherwise, depends on what's come before.  */
2468
                || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2469
              BUF_PUSH (begline);
2470
            else
2471
              goto normal_char;
2472
          }
2473
          break;
2474
 
2475
 
2476
        case '$':
2477
          {
2478
            if (   /* If at end of pattern, it's an operator.  */
2479
                   p == pend
2480
                   /* If context independent, it's an operator.  */
2481
                || syntax & RE_CONTEXT_INDEP_ANCHORS
2482
                   /* Otherwise, depends on what's next.  */
2483
                || PREFIX(at_endline_loc_p) (p, pend, syntax))
2484
               BUF_PUSH (endline);
2485
             else
2486
               goto normal_char;
2487
           }
2488
           break;
2489
 
2490
 
2491
	case '+':
2492
        case '?':
2493
          if ((syntax & RE_BK_PLUS_QM)
2494
              || (syntax & RE_LIMITED_OPS))
2495
            goto normal_char;
2496
        handle_plus:
2497
        case '*':
2498
          /* If there is no previous pattern... */
2499
          if (!laststart)
2500
            {
2501
              if (syntax & RE_CONTEXT_INVALID_OPS)
2502
                FREE_STACK_RETURN (REG_BADRPT);
2503
              else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2504
                goto normal_char;
2505
            }
2506
 
2507
          {
2508
            /* Are we optimizing this jump?  */
2509
            boolean keep_string_p = false;
2510
 
2511
            /* 1 means zero (many) matches is allowed.  */
2512
            char zero_times_ok = 0, many_times_ok = 0;
2513
 
2514
            /* If there is a sequence of repetition chars, collapse it
2515
               down to just one (the right one).  We can't combine
2516
               interval operators with these because of, e.g., `a{2}*',
2517
               which should only match an even number of `a's.  */
2518
 
2519
            for (;;)
2520
              {
2521
                zero_times_ok |= c != '+';
2522
                many_times_ok |= c != '?';
2523
 
2524
                if (p == pend)
2525
                  break;
2526
 
2527
                PATFETCH (c);
2528
 
2529
                if (c == '*'
2530
                    || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2531
                  ;
2532
 
2533
                else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
2534
                  {
2535
                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2536
 
2537
                    PATFETCH (c1);
2538
                    if (!(c1 == '+' || c1 == '?'))
2539
                      {
2540
                        PATUNFETCH;
2541
                        PATUNFETCH;
2542
                        break;
2543
                      }
2544
 
2545
                    c = c1;
2546
                  }
2547
                else
2548
                  {
2549
                    PATUNFETCH;
2550
                    break;
2551
                  }
2552
 
2553
                /* If we get here, we found another repeat character.  */
2554
               }
2555
 
2556
            /* Star, etc. applied to an empty pattern is equivalent
2557
               to an empty pattern.  */
2558
            if (!laststart)
2559
              break;
2560
 
2561
            /* Now we know whether or not zero matches is allowed
2562
               and also whether or not two or more matches is allowed.  */
2563
            if (many_times_ok)
2564
              { /* More than one repetition is allowed, so put in at the
2565
                   end a backward relative jump from `b' to before the next
2566
                   jump we're going to put in below (which jumps from
2567
                   laststart to after this jump).
2568
 
2569
                   But if we are at the `*' in the exact sequence `.*\n',
2570
                   insert an unconditional jump backwards to the .,
2571
                   instead of the beginning of the loop.  This way we only
2572
                   push a failure point once, instead of every time
2573
                   through the loop.  */
2574
                assert (p - 1 > pattern);
2575
 
2576
                /* Allocate the space for the jump.  */
2577
                GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2578
 
2579
                /* We know we are not at the first character of the pattern,
2580
                   because laststart was nonzero.  And we've already
2581
                   incremented `p', by the way, to be the character after
2582
                   the `*'.  Do we have to do something analogous here
2583
                   for null bytes, because of RE_DOT_NOT_NULL?  */
2584
                if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2585
		    && zero_times_ok
2586
                    && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2587
                    && !(syntax & RE_DOT_NEWLINE))
2588
                  { /* We have .*\n.  */
2589
                    STORE_JUMP (jump, b, laststart);
2590
                    keep_string_p = true;
2591
                  }
2592
                else
2593
                  /* Anything else.  */
2594
                  STORE_JUMP (maybe_pop_jump, b, laststart -
2595
			      (1 + OFFSET_ADDRESS_SIZE));
2596
 
2597
                /* We've added more stuff to the buffer.  */
2598
                b += 1 + OFFSET_ADDRESS_SIZE;
2599
              }
2600
 
2601
            /* On failure, jump from laststart to b + 3, which will be the
2602
               end of the buffer after this jump is inserted.  */
2603
	    /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2604
	       'b + 3'.  */
2605
            GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2606
            INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2607
                                       : on_failure_jump,
2608
                         laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2609
            pending_exact = 0;
2610
            b += 1 + OFFSET_ADDRESS_SIZE;
2611
 
2612
            if (!zero_times_ok)
2613
              {
2614
                /* At least one repetition is required, so insert a
2615
                   `dummy_failure_jump' before the initial
2616
                   `on_failure_jump' instruction of the loop. This
2617
                   effects a skip over that instruction the first time
2618
                   we hit that loop.  */
2619
                GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2620
                INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2621
			     2 + 2 * OFFSET_ADDRESS_SIZE);
2622
                b += 1 + OFFSET_ADDRESS_SIZE;
2623
              }
2624
            }
2625
	  break;
2626
 
2627
 
2628
	case '.':
2629
          laststart = b;
2630
          BUF_PUSH (anychar);
2631
          break;
2632
 
2633
 
2634
        case '[':
2635
          {
2636
            boolean had_char_class = false;
2637
#ifdef WCHAR
2638
	    CHAR_T range_start = 0xffffffff;
2639
#else
2640
	    unsigned int range_start = 0xffffffff;
2641
#endif
2642
            if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2643
 
2644
#ifdef WCHAR
2645
	    /* We assume a charset(_not) structure as a wchar_t array.
2646
	       charset[0] = (re_opcode_t) charset(_not)
2647
               charset[1] = l (= length of char_classes)
2648
               charset[2] = m (= length of collating_symbols)
2649
               charset[3] = n (= length of equivalence_classes)
2650
	       charset[4] = o (= length of char_ranges)
2651
	       charset[5] = p (= length of chars)
2652
 
2653
               charset[6] = char_class (wctype_t)
2654
               charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2655
                         ...
2656
               charset[l+5]  = char_class (wctype_t)
2657
 
2658
               charset[l+6]  = collating_symbol (wchar_t)
2659
                            ...
2660
               charset[l+m+5]  = collating_symbol (wchar_t)
2661
					ifdef _LIBC we use the index if
2662
					_NL_COLLATE_SYMB_EXTRAMB instead of
2663
					wchar_t string.
2664
 
2665
               charset[l+m+6]  = equivalence_classes (wchar_t)
2666
                              ...
2667
               charset[l+m+n+5]  = equivalence_classes (wchar_t)
2668
					ifdef _LIBC we use the index in
2669
					_NL_COLLATE_WEIGHT instead of
2670
					wchar_t string.
2671
 
2672
	       charset[l+m+n+6] = range_start
2673
	       charset[l+m+n+7] = range_end
2674
	                       ...
2675
	       charset[l+m+n+2o+4] = range_start
2676
	       charset[l+m+n+2o+5] = range_end
2677
					ifdef _LIBC we use the value looked up
2678
					in _NL_COLLATE_COLLSEQ instead of
2679
					wchar_t character.
2680
 
2681
	       charset[l+m+n+2o+6] = char
2682
	                          ...
2683
	       charset[l+m+n+2o+p+5] = char
2684
 
2685
	     */
2686
 
2687
	    /* We need at least 6 spaces: the opcode, the length of
2688
               char_classes, the length of collating_symbols, the length of
2689
               equivalence_classes, the length of char_ranges, the length of
2690
               chars.  */
2691
	    GET_BUFFER_SPACE (6);
2692
 
2693
	    /* Save b as laststart. And We use laststart as the pointer
2694
	       to the first element of the charset here.
2695
	       In other words, laststart[i] indicates charset[i].  */
2696
            laststart = b;
2697
 
2698
            /* We test `*p == '^' twice, instead of using an if
2699
               statement, so we only need one BUF_PUSH.  */
2700
            BUF_PUSH (*p == '^' ? charset_not : charset);
2701
            if (*p == '^')
2702
              p++;
2703
 
2704
            /* Push the length of char_classes, the length of
2705
               collating_symbols, the length of equivalence_classes, the
2706
               length of char_ranges and the length of chars.  */
2707
            BUF_PUSH_3 (0, 0, 0);
2708
            BUF_PUSH_2 (0, 0);
2709
 
2710
            /* Remember the first position in the bracket expression.  */
2711
            p1 = p;
2712
 
2713
            /* charset_not matches newline according to a syntax bit.  */
2714
            if ((re_opcode_t) b[-6] == charset_not
2715
                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2716
	      {
2717
		BUF_PUSH('\n');
2718
		laststart[5]++; /* Update the length of characters  */
2719
	      }
2720
 
2721
            /* Read in characters and ranges, setting map bits.  */
2722
            for (;;)
2723
              {
2724
                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2725
 
2726
                PATFETCH (c);
2727
 
2728
                /* \ might escape characters inside [...] and [^...].  */
2729
                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2730
                  {
2731
                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2732
 
2733
                    PATFETCH (c1);
2734
		    BUF_PUSH(c1);
2735
		    laststart[5]++; /* Update the length of chars  */
2736
		    range_start = c1;
2737
                    continue;
2738
                  }
2739
 
2740
                /* Could be the end of the bracket expression.  If it's
2741
                   not (i.e., when the bracket expression is `[]' so
2742
                   far), the ']' character bit gets set way below.  */
2743
                if (c == ']' && p != p1 + 1)
2744
                  break;
2745
 
2746
                /* Look ahead to see if it's a range when the last thing
2747
                   was a character class.  */
2748
                if (had_char_class && c == '-' && *p != ']')
2749
                  FREE_STACK_RETURN (REG_ERANGE);
2750
 
2751
                /* Look ahead to see if it's a range when the last thing
2752
                   was a character: if this is a hyphen not at the
2753
                   beginning or the end of a list, then it's the range
2754
                   operator.  */
2755
                if (c == '-'
2756
                    && !(p - 2 >= pattern && p[-2] == '[')
2757
                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2758
                    && *p != ']')
2759
                  {
2760
                    reg_errcode_t ret;
2761
		    /* Allocate the space for range_start and range_end.  */
2762
		    GET_BUFFER_SPACE (2);
2763
		    /* Update the pointer to indicate end of buffer.  */
2764
                    b += 2;
2765
                    ret = wcs_compile_range (range_start, &p, pend, translate,
2766
                                         syntax, b, laststart);
2767
                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2768
                    range_start = 0xffffffff;
2769
                  }
2770
                else if (p[0] == '-' && p[1] != ']')
2771
                  { /* This handles ranges made up of characters only.  */
2772
                    reg_errcode_t ret;
2773
 
2774
		    /* Move past the `-'.  */
2775
                    PATFETCH (c1);
2776
		    /* Allocate the space for range_start and range_end.  */
2777
		    GET_BUFFER_SPACE (2);
2778
		    /* Update the pointer to indicate end of buffer.  */
2779
                    b += 2;
2780
                    ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2781
                                         laststart);
2782
                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2783
		    range_start = 0xffffffff;
2784
                  }
2785
 
2786
                /* See if we're at the beginning of a possible character
2787
                   class.  */
2788
                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2789
                  { /* Leave room for the null.  */
2790
                    char str[CHAR_CLASS_MAX_LENGTH + 1];
2791
 
2792
                    PATFETCH (c);
2793
                    c1 = 0;
2794
 
2795
                    /* If pattern is `[[:'.  */
2796
                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2797
 
2798
                    for (;;)
2799
                      {
2800
                        PATFETCH (c);
2801
                        if ((c == ':' && *p == ']') || p == pend)
2802
                          break;
2803
			if (c1 < CHAR_CLASS_MAX_LENGTH)
2804
			  str[c1++] = c;
2805
			else
2806
			  /* This is in any case an invalid class name.  */
2807
			  str[0] = '\0';
2808
                      }
2809
                    str[c1] = '\0';
2810
 
2811
                    /* If isn't a word bracketed by `[:' and `:]':
2812
                       undo the ending character, the letters, and leave
2813
                       the leading `:' and `[' (but store them as character).  */
2814
                    if (c == ':' && *p == ']')
2815
                      {
2816
			wctype_t wt;
2817
			uintptr_t alignedp;
2818
 
2819
			/* Query the character class as wctype_t.  */
2820
			wt = IS_CHAR_CLASS (str);
2821
			if (wt == 0)
2822
			  FREE_STACK_RETURN (REG_ECTYPE);
2823
 
2824
                        /* Throw away the ] at the end of the character
2825
                           class.  */
2826
                        PATFETCH (c);
2827
 
2828
                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2829
 
2830
			/* Allocate the space for character class.  */
2831
                        GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2832
			/* Update the pointer to indicate end of buffer.  */
2833
                        b += CHAR_CLASS_SIZE;
2834
			/* Move data which follow character classes
2835
			    not to violate the data.  */
2836
                        insert_space(CHAR_CLASS_SIZE,
2837
				     laststart + 6 + laststart[1],
2838
				     b - 1);
2839
			alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2840
				    + __alignof__(wctype_t) - 1)
2841
			  	    & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2842
			/* Store the character class.  */
2843
                        *((wctype_t*)alignedp) = wt;
2844
                        /* Update length of char_classes */
2845
                        laststart[1] += CHAR_CLASS_SIZE;
2846
 
2847
                        had_char_class = true;
2848
                      }
2849
                    else
2850
                      {
2851
                        c1++;
2852
                        while (c1--)
2853
                          PATUNFETCH;
2854
                        BUF_PUSH ('[');
2855
                        BUF_PUSH (':');
2856
                        laststart[5] += 2; /* Update the length of characters  */
2857
			range_start = ':';
2858
                        had_char_class = false;
2859
                      }
2860
                  }
2861
                else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2862
							  || *p == '.'))
2863
		  {
2864
		    CHAR_T str[128];	/* Should be large enough.  */
2865
		    CHAR_T delim = *p; /* '=' or '.'  */
2866
# ifdef _LIBC
2867
		    uint32_t nrules =
2868
		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2869
# endif
2870
		    PATFETCH (c);
2871
		    c1 = 0;
2872
 
2873
		    /* If pattern is `[[=' or '[[.'.  */
2874
		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2875
 
2876
		    for (;;)
2877
		      {
2878
			PATFETCH (c);
2879
			if ((c == delim && *p == ']') || p == pend)
2880
			  break;
2881
			if (c1 < sizeof (str) - 1)
2882
			  str[c1++] = c;
2883
			else
2884
			  /* This is in any case an invalid class name.  */
2885
			  str[0] = '\0';
2886
                      }
2887
		    str[c1] = '\0';
2888
 
2889
		    if (c == delim && *p == ']' && str[0] != '\0')
2890
		      {
2891
                        unsigned int i, offset;
2892
			/* If we have no collation data we use the default
2893
			   collation in which each character is in a class
2894
			   by itself.  It also means that ASCII is the
2895
			   character set and therefore we cannot have character
2896
			   with more than one byte in the multibyte
2897
			   representation.  */
2898
 
2899
                        /* If not defined _LIBC, we push the name and
2900
			   `\0' for the sake of matching performance.  */
2901
			int datasize = c1 + 1;
2902
 
2903
# ifdef _LIBC
2904
			int32_t idx = 0;
2905
			if (nrules == 0)
2906
# endif
2907
			  {
2908
			    if (c1 != 1)
2909
			      FREE_STACK_RETURN (REG_ECOLLATE);
2910
			  }
2911
# ifdef _LIBC
2912
			else
2913
			  {
2914
			    const int32_t *table;
2915
			    const int32_t *weights;
2916
			    const int32_t *extra;
2917
			    const int32_t *indirect;
2918
			    wint_t *cp;
2919
 
2920
			    /* This #include defines a local function!  */
2921
#  include 
2922
 
2923
			    if(delim == '=')
2924
			      {
2925
				/* We push the index for equivalence class.  */
2926
				cp = (wint_t*)str;
2927
 
2928
				table = (const int32_t *)
2929
				  _NL_CURRENT (LC_COLLATE,
2930
					       _NL_COLLATE_TABLEWC);
2931
				weights = (const int32_t *)
2932
				  _NL_CURRENT (LC_COLLATE,
2933
					       _NL_COLLATE_WEIGHTWC);
2934
				extra = (const int32_t *)
2935
				  _NL_CURRENT (LC_COLLATE,
2936
					       _NL_COLLATE_EXTRAWC);
2937
				indirect = (const int32_t *)
2938
				  _NL_CURRENT (LC_COLLATE,
2939
					       _NL_COLLATE_INDIRECTWC);
2940
 
2941
				idx = findidx ((const wint_t**)&cp);
2942
				if (idx == 0 || cp < (wint_t*) str + c1)
2943
				  /* This is no valid character.  */
2944
				  FREE_STACK_RETURN (REG_ECOLLATE);
2945
 
2946
				str[0] = (wchar_t)idx;
2947
			      }
2948
			    else /* delim == '.' */
2949
			      {
2950
				/* We push collation sequence value
2951
				   for collating symbol.  */
2952
				int32_t table_size;
2953
				const int32_t *symb_table;
2954
				const unsigned char *extra;
2955
				int32_t idx;
2956
				int32_t elem;
2957
				int32_t second;
2958
				int32_t hash;
2959
				char char_str[c1];
2960
 
2961
				/* We have to convert the name to a single-byte
2962
				   string.  This is possible since the names
2963
				   consist of ASCII characters and the internal
2964
				   representation is UCS4.  */
2965
				for (i = 0; i < c1; ++i)
2966
				  char_str[i] = str[i];
2967
 
2968
				table_size =
2969
				  _NL_CURRENT_WORD (LC_COLLATE,
2970
						    _NL_COLLATE_SYMB_HASH_SIZEMB);
2971
				symb_table = (const int32_t *)
2972
				  _NL_CURRENT (LC_COLLATE,
2973
					       _NL_COLLATE_SYMB_TABLEMB);
2974
				extra = (const unsigned char *)
2975
				  _NL_CURRENT (LC_COLLATE,
2976
					       _NL_COLLATE_SYMB_EXTRAMB);
2977
 
2978
				/* Locate the character in the hashing table.  */
2979
				hash = elem_hash (char_str, c1);
2980
 
2981
				idx = 0;
2982
				elem = hash % table_size;
2983
				second = hash % (table_size - 2);
2984
				while (symb_table[2 * elem] != 0)
2985
				  {
2986
				    /* First compare the hashing value.  */
2987
				    if (symb_table[2 * elem] == hash
2988
					&& c1 == extra[symb_table[2 * elem + 1]]
2989
					&& memcmp (char_str,
2990
						   &extra[symb_table[2 * elem + 1]
2991
							 + 1], c1) == 0)
2992
				      {
2993
					/* Yep, this is the entry.  */
2994
					idx = symb_table[2 * elem + 1];
2995
					idx += 1 + extra[idx];
2996
					break;
2997
				      }
2998
 
2999
				    /* Next entry.  */
3000
				    elem += second;
3001
				  }
3002
 
3003
				if (symb_table[2 * elem] != 0)
3004
				  {
3005
				    /* Compute the index of the byte sequence
3006
				       in the table.  */
3007
				    idx += 1 + extra[idx];
3008
				    /* Adjust for the alignment.  */
3009
				    idx = (idx + 3) & ~3;
3010
 
3011
				    str[0] = (wchar_t) idx + 4;
3012
				  }
3013
				else if (symb_table[2 * elem] == 0 && c1 == 1)
3014
				  {
3015
				    /* No valid character.  Match it as a
3016
				       single byte character.  */
3017
				    had_char_class = false;
3018
				    BUF_PUSH(str[0]);
3019
				    /* Update the length of characters  */
3020
				    laststart[5]++;
3021
				    range_start = str[0];
3022
 
3023
				    /* Throw away the ] at the end of the
3024
				       collating symbol.  */
3025
				    PATFETCH (c);
3026
				    /* exit from the switch block.  */
3027
				    continue;
3028
				  }
3029
				else
3030
				  FREE_STACK_RETURN (REG_ECOLLATE);
3031
			      }
3032
			    datasize = 1;
3033
			  }
3034
# endif
3035
                        /* Throw away the ] at the end of the equivalence
3036
                           class (or collating symbol).  */
3037
                        PATFETCH (c);
3038
 
3039
			/* Allocate the space for the equivalence class
3040
			   (or collating symbol) (and '\0' if needed).  */
3041
                        GET_BUFFER_SPACE(datasize);
3042
			/* Update the pointer to indicate end of buffer.  */
3043
                        b += datasize;
3044
 
3045
			if (delim == '=')
3046
			  { /* equivalence class  */
3047
			    /* Calculate the offset of char_ranges,
3048
			       which is next to equivalence_classes.  */
3049
			    offset = laststart[1] + laststart[2]
3050
			      + laststart[3] +6;
3051
			    /* Insert space.  */
3052
			    insert_space(datasize, laststart + offset, b - 1);
3053
 
3054
			    /* Write the equivalence_class and \0.  */
3055
			    for (i = 0 ; i < datasize ; i++)
3056
			      laststart[offset + i] = str[i];
3057
 
3058
			    /* Update the length of equivalence_classes.  */
3059
			    laststart[3] += datasize;
3060
			    had_char_class = true;
3061
			  }
3062
			else /* delim == '.' */
3063
			  { /* collating symbol  */
3064
			    /* Calculate the offset of the equivalence_classes,
3065
			       which is next to collating_symbols.  */
3066
			    offset = laststart[1] + laststart[2] + 6;
3067
			    /* Insert space and write the collationg_symbol
3068
			       and \0.  */
3069
			    insert_space(datasize, laststart + offset, b-1);
3070
			    for (i = 0 ; i < datasize ; i++)
3071
			      laststart[offset + i] = str[i];
3072
 
3073
			    /* In re_match_2_internal if range_start < -1, we
3074
			       assume -range_start is the offset of the
3075
			       collating symbol which is specified as
3076
			       the character of the range start.  So we assign
3077
			       -(laststart[1] + laststart[2] + 6) to
3078
			       range_start.  */
3079
			    range_start = -(laststart[1] + laststart[2] + 6);
3080
			    /* Update the length of collating_symbol.  */
3081
			    laststart[2] += datasize;
3082
			    had_char_class = false;
3083
			  }
3084
		      }
3085
                    else
3086
                      {
3087
                        c1++;
3088
                        while (c1--)
3089
                          PATUNFETCH;
3090
                        BUF_PUSH ('[');
3091
                        BUF_PUSH (delim);
3092
                        laststart[5] += 2; /* Update the length of characters  */
3093
			range_start = delim;
3094
                        had_char_class = false;
3095
                      }
3096
		  }
3097
                else
3098
                  {
3099
                    had_char_class = false;
3100
		    BUF_PUSH(c);
3101
		    laststart[5]++;  /* Update the length of characters  */
3102
		    range_start = c;
3103
                  }
3104
	      }
3105
 
3106
#else /* BYTE */
3107
            /* Ensure that we have enough space to push a charset: the
3108
               opcode, the length count, and the bitset; 34 bytes in all.  */
3109
	    GET_BUFFER_SPACE (34);
3110
 
3111
            laststart = b;
3112
 
3113
            /* We test `*p == '^' twice, instead of using an if
3114
               statement, so we only need one BUF_PUSH.  */
3115
            BUF_PUSH (*p == '^' ? charset_not : charset);
3116
            if (*p == '^')
3117
              p++;
3118
 
3119
            /* Remember the first position in the bracket expression.  */
3120
            p1 = p;
3121
 
3122
            /* Push the number of bytes in the bitmap.  */
3123
            BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3124
 
3125
            /* Clear the whole map.  */
3126
            bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3127
 
3128
            /* charset_not matches newline according to a syntax bit.  */
3129
            if ((re_opcode_t) b[-2] == charset_not
3130
                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3131
              SET_LIST_BIT ('\n');
3132
 
3133
            /* Read in characters and ranges, setting map bits.  */
3134
            for (;;)
3135
              {
3136
                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3137
 
3138
                PATFETCH (c);
3139
 
3140
                /* \ might escape characters inside [...] and [^...].  */
3141
                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3142
                  {
3143
                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3144
 
3145
                    PATFETCH (c1);
3146
                    SET_LIST_BIT (c1);
3147
		    range_start = c1;
3148
                    continue;
3149
                  }
3150
 
3151
                /* Could be the end of the bracket expression.  If it's
3152
                   not (i.e., when the bracket expression is `[]' so
3153
                   far), the ']' character bit gets set way below.  */
3154
                if (c == ']' && p != p1 + 1)
3155
                  break;
3156
 
3157
                /* Look ahead to see if it's a range when the last thing
3158
                   was a character class.  */
3159
                if (had_char_class && c == '-' && *p != ']')
3160
                  FREE_STACK_RETURN (REG_ERANGE);
3161
 
3162
                /* Look ahead to see if it's a range when the last thing
3163
                   was a character: if this is a hyphen not at the
3164
                   beginning or the end of a list, then it's the range
3165
                   operator.  */
3166
                if (c == '-'
3167
                    && !(p - 2 >= pattern && p[-2] == '[')
3168
                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3169
                    && *p != ']')
3170
                  {
3171
                    reg_errcode_t ret
3172
                      = byte_compile_range (range_start, &p, pend, translate,
3173
					    syntax, b);
3174
                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3175
		    range_start = 0xffffffff;
3176
                  }
3177
 
3178
                else if (p[0] == '-' && p[1] != ']')
3179
                  { /* This handles ranges made up of characters only.  */
3180
                    reg_errcode_t ret;
3181
 
3182
		    /* Move past the `-'.  */
3183
                    PATFETCH (c1);
3184
 
3185
                    ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3186
                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3187
		    range_start = 0xffffffff;
3188
                  }
3189
 
3190
                /* See if we're at the beginning of a possible character
3191
                   class.  */
3192
 
3193
                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3194
                  { /* Leave room for the null.  */
3195
                    char str[CHAR_CLASS_MAX_LENGTH + 1];
3196
 
3197
                    PATFETCH (c);
3198
                    c1 = 0;
3199
 
3200
                    /* If pattern is `[[:'.  */
3201
                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3202
 
3203
                    for (;;)
3204
                      {
3205
                        PATFETCH (c);
3206
                        if ((c == ':' && *p == ']') || p == pend)
3207
                          break;
3208
			if (c1 < CHAR_CLASS_MAX_LENGTH)
3209
			  str[c1++] = c;
3210
			else
3211
			  /* This is in any case an invalid class name.  */
3212
			  str[0] = '\0';
3213
                      }
3214
                    str[c1] = '\0';
3215
 
3216
                    /* If isn't a word bracketed by `[:' and `:]':
3217
                       undo the ending character, the letters, and leave
3218
                       the leading `:' and `[' (but set bits for them).  */
3219
                    if (c == ':' && *p == ']')
3220
                      {
3221
# if defined _LIBC || WIDE_CHAR_SUPPORT
3222
                        boolean is_lower = STREQ (str, "lower");
3223
                        boolean is_upper = STREQ (str, "upper");
3224
			wctype_t wt;
3225
                        int ch;
3226
 
3227
			wt = IS_CHAR_CLASS (str);
3228
			if (wt == 0)
3229
			  FREE_STACK_RETURN (REG_ECTYPE);
3230
 
3231
                        /* Throw away the ] at the end of the character
3232
                           class.  */
3233
                        PATFETCH (c);
3234
 
3235
                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3236
 
3237
                        for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3238
			  {
3239
#  ifdef _LIBC
3240
			    if (__iswctype (__btowc (ch), wt))
3241
			      SET_LIST_BIT (ch);
3242
#  else
3243
			    if (iswctype (btowc (ch), wt))
3244
			      SET_LIST_BIT (ch);
3245
#  endif
3246
 
3247
			    if (translate && (is_upper || is_lower)
3248
				&& (ISUPPER (ch) || ISLOWER (ch)))
3249
			      SET_LIST_BIT (ch);
3250
			  }
3251
 
3252
                        had_char_class = true;
3253
# else
3254
                        int ch;
3255
                        boolean is_alnum = STREQ (str, "alnum");
3256
                        boolean is_alpha = STREQ (str, "alpha");
3257
                        boolean is_blank = STREQ (str, "blank");
3258
                        boolean is_cntrl = STREQ (str, "cntrl");
3259
                        boolean is_digit = STREQ (str, "digit");
3260
                        boolean is_graph = STREQ (str, "graph");
3261
                        boolean is_lower = STREQ (str, "lower");
3262
                        boolean is_print = STREQ (str, "print");
3263
                        boolean is_punct = STREQ (str, "punct");
3264
                        boolean is_space = STREQ (str, "space");
3265
                        boolean is_upper = STREQ (str, "upper");
3266
                        boolean is_xdigit = STREQ (str, "xdigit");
3267
 
3268
                        if (!IS_CHAR_CLASS (str))
3269
			  FREE_STACK_RETURN (REG_ECTYPE);
3270
 
3271
                        /* Throw away the ] at the end of the character
3272
                           class.  */
3273
                        PATFETCH (c);
3274
 
3275
                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3276
 
3277
                        for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3278
                          {
3279
			    /* This was split into 3 if's to
3280
			       avoid an arbitrary limit in some compiler.  */
3281
                            if (   (is_alnum  && ISALNUM (ch))
3282
                                || (is_alpha  && ISALPHA (ch))
3283
                                || (is_blank  && ISBLANK (ch))
3284
                                || (is_cntrl  && ISCNTRL (ch)))
3285
			      SET_LIST_BIT (ch);
3286
			    if (   (is_digit  && ISDIGIT (ch))
3287
                                || (is_graph  && ISGRAPH (ch))
3288
                                || (is_lower  && ISLOWER (ch))
3289
                                || (is_print  && ISPRINT (ch)))
3290
			      SET_LIST_BIT (ch);
3291
			    if (   (is_punct  && ISPUNCT (ch))
3292
                                || (is_space  && ISSPACE (ch))
3293
                                || (is_upper  && ISUPPER (ch))
3294
                                || (is_xdigit && ISXDIGIT (ch)))
3295
			      SET_LIST_BIT (ch);
3296
			    if (   translate && (is_upper || is_lower)
3297
				&& (ISUPPER (ch) || ISLOWER (ch)))
3298
			      SET_LIST_BIT (ch);
3299
                          }
3300
                        had_char_class = true;
3301
# endif	/* libc || wctype.h */
3302
                      }
3303
                    else
3304
                      {
3305
                        c1++;
3306
                        while (c1--)
3307
                          PATUNFETCH;
3308
                        SET_LIST_BIT ('[');
3309
                        SET_LIST_BIT (':');
3310
			range_start = ':';
3311
                        had_char_class = false;
3312
                      }
3313
                  }
3314
                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3315
		  {
3316
		    unsigned char str[MB_LEN_MAX + 1];
3317
# ifdef _LIBC
3318
		    uint32_t nrules =
3319
		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3320
# endif
3321
 
3322
		    PATFETCH (c);
3323
		    c1 = 0;
3324
 
3325
		    /* If pattern is `[[='.  */
3326
		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3327
 
3328
		    for (;;)
3329
		      {
3330
			PATFETCH (c);
3331
			if ((c == '=' && *p == ']') || p == pend)
3332
			  break;
3333
			if (c1 < MB_LEN_MAX)
3334
			  str[c1++] = c;
3335
			else
3336
			  /* This is in any case an invalid class name.  */
3337
			  str[0] = '\0';
3338
                      }
3339
		    str[c1] = '\0';
3340
 
3341
		    if (c == '=' && *p == ']' && str[0] != '\0')
3342
		      {
3343
			/* If we have no collation data we use the default
3344
			   collation in which each character is in a class
3345
			   by itself.  It also means that ASCII is the
3346
			   character set and therefore we cannot have character
3347
			   with more than one byte in the multibyte
3348
			   representation.  */
3349
# ifdef _LIBC
3350
			if (nrules == 0)
3351
# endif
3352
			  {
3353
			    if (c1 != 1)
3354
			      FREE_STACK_RETURN (REG_ECOLLATE);
3355
 
3356
			    /* Throw away the ] at the end of the equivalence
3357
			       class.  */
3358
			    PATFETCH (c);
3359
 
3360
			    /* Set the bit for the character.  */
3361
			    SET_LIST_BIT (str[0]);
3362
			  }
3363
# ifdef _LIBC
3364
			else
3365
			  {
3366
			    /* Try to match the byte sequence in `str' against
3367
			       those known to the collate implementation.
3368
			       First find out whether the bytes in `str' are
3369
			       actually from exactly one character.  */
3370
			    const int32_t *table;
3371
			    const unsigned char *weights;
3372
			    const unsigned char *extra;
3373
			    const int32_t *indirect;
3374
			    int32_t idx;
3375
			    const unsigned char *cp = str;
3376
			    int ch;
3377
 
3378
			    /* This #include defines a local function!  */
3379
#  include 
3380
 
3381
			    table = (const int32_t *)
3382
			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3383
			    weights = (const unsigned char *)
3384
			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3385
			    extra = (const unsigned char *)
3386
			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3387
			    indirect = (const int32_t *)
3388
			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3389
 
3390
			    idx = findidx (&cp);
3391
			    if (idx == 0 || cp < str + c1)
3392
			      /* This is no valid character.  */
3393
			      FREE_STACK_RETURN (REG_ECOLLATE);
3394
 
3395
			    /* Throw away the ] at the end of the equivalence
3396
			       class.  */
3397
			    PATFETCH (c);
3398
 
3399
			    /* Now we have to go through the whole table
3400
			       and find all characters which have the same
3401
			       first level weight.
3402
 
3403
			       XXX Note that this is not entirely correct.
3404
			       we would have to match multibyte sequences
3405
			       but this is not possible with the current
3406
			       implementation.  */
3407
			    for (ch = 1; ch < 256; ++ch)
3408
			      /* XXX This test would have to be changed if we
3409
				 would allow matching multibyte sequences.  */
3410
			      if (table[ch] > 0)
3411
				{
3412
				  int32_t idx2 = table[ch];
3413
				  size_t len = weights[idx2];
3414
 
3415
				  /* Test whether the lenghts match.  */
3416
				  if (weights[idx] == len)
3417
				    {
3418
				      /* They do.  New compare the bytes of
3419
					 the weight.  */
3420
				      size_t cnt = 0;
3421
 
3422
				      while (cnt < len
3423
					     && (weights[idx + 1 + cnt]
3424
						 == weights[idx2 + 1 + cnt]))
3425
					++cnt;
3426
 
3427
				      if (cnt == len)
3428
					/* They match.  Mark the character as
3429
					   acceptable.  */
3430
					SET_LIST_BIT (ch);
3431
				    }
3432
				}
3433
			  }
3434
# endif
3435
			had_char_class = true;
3436
		      }
3437
                    else
3438
                      {
3439
                        c1++;
3440
                        while (c1--)
3441
                          PATUNFETCH;
3442
                        SET_LIST_BIT ('[');
3443
                        SET_LIST_BIT ('=');
3444
			range_start = '=';
3445
                        had_char_class = false;
3446
                      }
3447
		  }
3448
                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3449
		  {
3450
		    unsigned char str[128];	/* Should be large enough.  */
3451
# ifdef _LIBC
3452
		    uint32_t nrules =
3453
		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3454
# endif
3455
 
3456
		    PATFETCH (c);
3457
		    c1 = 0;
3458
 
3459
		    /* If pattern is `[[.'.  */
3460
		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3461
 
3462
		    for (;;)
3463
		      {
3464
			PATFETCH (c);
3465
			if ((c == '.' && *p == ']') || p == pend)
3466
			  break;
3467
			if (c1 < sizeof (str))
3468
			  str[c1++] = c;
3469
			else
3470
			  /* This is in any case an invalid class name.  */
3471
			  str[0] = '\0';
3472
                      }
3473
		    str[c1] = '\0';
3474
 
3475
		    if (c == '.' && *p == ']' && str[0] != '\0')
3476
		      {
3477
			/* If we have no collation data we use the default
3478
			   collation in which each character is the name
3479
			   for its own class which contains only the one
3480
			   character.  It also means that ASCII is the
3481
			   character set and therefore we cannot have character
3482
			   with more than one byte in the multibyte
3483
			   representation.  */
3484
# ifdef _LIBC
3485
			if (nrules == 0)
3486
# endif
3487
			  {
3488
			    if (c1 != 1)
3489
			      FREE_STACK_RETURN (REG_ECOLLATE);
3490
 
3491
			    /* Throw away the ] at the end of the equivalence
3492
			       class.  */
3493
			    PATFETCH (c);
3494
 
3495
			    /* Set the bit for the character.  */
3496
			    SET_LIST_BIT (str[0]);
3497
			    range_start = ((const unsigned char *) str)[0];
3498
			  }
3499
# ifdef _LIBC
3500
			else
3501
			  {
3502
			    /* Try to match the byte sequence in `str' against
3503
			       those known to the collate implementation.
3504
			       First find out whether the bytes in `str' are
3505
			       actually from exactly one character.  */
3506
			    int32_t table_size;
3507
			    const int32_t *symb_table;
3508
			    const unsigned char *extra;
3509
			    int32_t idx;
3510
			    int32_t elem;
3511
			    int32_t second;
3512
			    int32_t hash;
3513
 
3514
			    table_size =
3515
			      _NL_CURRENT_WORD (LC_COLLATE,
3516
						_NL_COLLATE_SYMB_HASH_SIZEMB);
3517
			    symb_table = (const int32_t *)
3518
			      _NL_CURRENT (LC_COLLATE,
3519
					   _NL_COLLATE_SYMB_TABLEMB);
3520
			    extra = (const unsigned char *)
3521
			      _NL_CURRENT (LC_COLLATE,
3522
					   _NL_COLLATE_SYMB_EXTRAMB);
3523
 
3524
			    /* Locate the character in the hashing table.  */
3525
			    hash = elem_hash (str, c1);
3526
 
3527
			    idx = 0;
3528
			    elem = hash % table_size;
3529
			    second = hash % (table_size - 2);
3530
			    while (symb_table[2 * elem] != 0)
3531
			      {
3532
				/* First compare the hashing value.  */
3533
				if (symb_table[2 * elem] == hash
3534
				    && c1 == extra[symb_table[2 * elem + 1]]
3535
				    && memcmp (str,
3536
					       &extra[symb_table[2 * elem + 1]
3537
						     + 1],
3538
					       c1) == 0)
3539
				  {
3540
				    /* Yep, this is the entry.  */
3541
				    idx = symb_table[2 * elem + 1];
3542
				    idx += 1 + extra[idx];
3543
				    break;
3544
				  }
3545
 
3546
				/* Next entry.  */
3547
				elem += second;
3548
			      }
3549
 
3550
			    if (symb_table[2 * elem] == 0)
3551
			      /* This is no valid character.  */
3552
			      FREE_STACK_RETURN (REG_ECOLLATE);
3553
 
3554
			    /* Throw away the ] at the end of the equivalence
3555
			       class.  */
3556
			    PATFETCH (c);
3557
 
3558
			    /* Now add the multibyte character(s) we found
3559
			       to the accept list.
3560
 
3561
			       XXX Note that this is not entirely correct.
3562
			       we would have to match multibyte sequences
3563
			       but this is not possible with the current
3564
			       implementation.  Also, we have to match
3565
			       collating symbols, which expand to more than
3566
			       one file, as a whole and not allow the
3567
			       individual bytes.  */
3568
			    c1 = extra[idx++];
3569
			    if (c1 == 1)
3570
			      range_start = extra[idx];
3571
			    while (c1-- > 0)
3572
			      {
3573
				SET_LIST_BIT (extra[idx]);
3574
				++idx;
3575
			      }
3576
			  }
3577
# endif
3578
			had_char_class = false;
3579
		      }
3580
                    else
3581
                      {
3582
                        c1++;
3583
                        while (c1--)
3584
                          PATUNFETCH;
3585
                        SET_LIST_BIT ('[');
3586
                        SET_LIST_BIT ('.');
3587
			range_start = '.';
3588
                        had_char_class = false;
3589
                      }
3590
		  }
3591
                else
3592
                  {
3593
                    had_char_class = false;
3594
                    SET_LIST_BIT (c);
3595
		    range_start = c;
3596
                  }
3597
              }
3598
 
3599
            /* Discard any (non)matching list bytes that are all 0 at the
3600
               end of the map.  Decrease the map-length byte too.  */
3601
            while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3602
              b[-1]--;
3603
            b += b[-1];
3604
#endif /* WCHAR */
3605
          }
3606
          break;
3607
 
3608
 
3609
	case '(':
3610
          if (syntax & RE_NO_BK_PARENS)
3611
            goto handle_open;
3612
          else
3613
            goto normal_char;
3614
 
3615
 
3616
        case ')':
3617
          if (syntax & RE_NO_BK_PARENS)
3618
            goto handle_close;
3619
          else
3620
            goto normal_char;
3621
 
3622
 
3623
        case '\n':
3624
          if (syntax & RE_NEWLINE_ALT)
3625
            goto handle_alt;
3626
          else
3627
            goto normal_char;
3628
 
3629
 
3630
	case '|':
3631
          if (syntax & RE_NO_BK_VBAR)
3632
            goto handle_alt;
3633
          else
3634
            goto normal_char;
3635
 
3636
 
3637
        case '{':
3638
           if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3639
             goto handle_interval;
3640
           else
3641
             goto normal_char;
3642
 
3643
 
3644
        case '\\':
3645
          if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3646
 
3647
          /* Do not translate the character after the \, so that we can
3648
             distinguish, e.g., \B from \b, even if we normally would
3649
             translate, e.g., B to b.  */
3650
          PATFETCH_RAW (c);
3651
 
3652
          switch (c)
3653
            {
3654
            case '(':
3655
              if (syntax & RE_NO_BK_PARENS)
3656
                goto normal_backslash;
3657
 
3658
            handle_open:
3659
              bufp->re_nsub++;
3660
              regnum++;
3661
 
3662
              if (COMPILE_STACK_FULL)
3663
                {
3664
                  RETALLOC (compile_stack.stack, compile_stack.size << 1,
3665
                            compile_stack_elt_t);
3666
                  if (compile_stack.stack == NULL) return REG_ESPACE;
3667
 
3668
                  compile_stack.size <<= 1;
3669
                }
3670
 
3671
              /* These are the values to restore when we hit end of this
3672
                 group.  They are all relative offsets, so that if the
3673
                 whole pattern moves because of realloc, they will still
3674
                 be valid.  */
3675
              COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3676
              COMPILE_STACK_TOP.fixup_alt_jump
3677
                = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3678
              COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3679
              COMPILE_STACK_TOP.regnum = regnum;
3680
 
3681
              /* We will eventually replace the 0 with the number of
3682
                 groups inner to this one.  But do not push a
3683
                 start_memory for groups beyond the last one we can
3684
                 represent in the compiled pattern.  */
3685
              if (regnum <= MAX_REGNUM)
3686
                {
3687
                  COMPILE_STACK_TOP.inner_group_offset = b
3688
		    - COMPILED_BUFFER_VAR + 2;
3689
                  BUF_PUSH_3 (start_memory, regnum, 0);
3690
                }
3691
 
3692
              compile_stack.avail++;
3693
 
3694
              fixup_alt_jump = 0;
3695
              laststart = 0;
3696
              begalt = b;
3697
	      /* If we've reached MAX_REGNUM groups, then this open
3698
		 won't actually generate any code, so we'll have to
3699
		 clear pending_exact explicitly.  */
3700
	      pending_exact = 0;
3701
              break;
3702
 
3703
 
3704
            case ')':
3705
              if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3706
 
3707
              if (COMPILE_STACK_EMPTY)
3708
		{
3709
		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3710
		    goto normal_backslash;
3711
		  else
3712
		    FREE_STACK_RETURN (REG_ERPAREN);
3713
		}
3714
 
3715
            handle_close:
3716
              if (fixup_alt_jump)
3717
                { /* Push a dummy failure point at the end of the
3718
                     alternative for a possible future
3719
                     `pop_failure_jump' to pop.  See comments at
3720
                     `push_dummy_failure' in `re_match_2'.  */
3721
                  BUF_PUSH (push_dummy_failure);
3722
 
3723
                  /* We allocated space for this jump when we assigned
3724
                     to `fixup_alt_jump', in the `handle_alt' case below.  */
3725
                  STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3726
                }
3727
 
3728
              /* See similar code for backslashed left paren above.  */
3729
              if (COMPILE_STACK_EMPTY)
3730
		{
3731
		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3732
		    goto normal_char;
3733
		  else
3734
		    FREE_STACK_RETURN (REG_ERPAREN);
3735
		}
3736
 
3737
              /* Since we just checked for an empty stack above, this
3738
                 ``can't happen''.  */
3739
              assert (compile_stack.avail != 0);
3740
              {
3741
                /* We don't just want to restore into `regnum', because
3742
                   later groups should continue to be numbered higher,
3743
                   as in `(ab)c(de)' -- the second group is #2.  */
3744
                regnum_t this_group_regnum;
3745
 
3746
                compile_stack.avail--;
3747
                begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3748
                fixup_alt_jump
3749
                  = COMPILE_STACK_TOP.fixup_alt_jump
3750
                    ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3751
                    : 0;
3752
                laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3753
                this_group_regnum = COMPILE_STACK_TOP.regnum;
3754
		/* If we've reached MAX_REGNUM groups, then this open
3755
		   won't actually generate any code, so we'll have to
3756
		   clear pending_exact explicitly.  */
3757
		pending_exact = 0;
3758
 
3759
                /* We're at the end of the group, so now we know how many
3760
                   groups were inside this one.  */
3761
                if (this_group_regnum <= MAX_REGNUM)
3762
                  {
3763
		    UCHAR_T *inner_group_loc
3764
                      = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3765
 
3766
                    *inner_group_loc = regnum - this_group_regnum;
3767
                    BUF_PUSH_3 (stop_memory, this_group_regnum,
3768
                                regnum - this_group_regnum);
3769
                  }
3770
              }
3771
              break;
3772
 
3773
 
3774
            case '|':					/* `\|'.  */
3775
              if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3776
                goto normal_backslash;
3777
            handle_alt:
3778
              if (syntax & RE_LIMITED_OPS)
3779
                goto normal_char;
3780
 
3781
              /* Insert before the previous alternative a jump which
3782
                 jumps to this alternative if the former fails.  */
3783
              GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3784
              INSERT_JUMP (on_failure_jump, begalt,
3785
			   b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3786
              pending_exact = 0;
3787
              b += 1 + OFFSET_ADDRESS_SIZE;
3788
 
3789
              /* The alternative before this one has a jump after it
3790
                 which gets executed if it gets matched.  Adjust that
3791
                 jump so it will jump to this alternative's analogous
3792
                 jump (put in below, which in turn will jump to the next
3793
                 (if any) alternative's such jump, etc.).  The last such
3794
                 jump jumps to the correct final destination.  A picture:
3795
                          _____ _____
3796
                          |   | |   |
3797
                          |   v |   v
3798
                         a | b   | c
3799
 
3800
                 If we are at `b', then fixup_alt_jump right now points to a
3801
                 three-byte space after `a'.  We'll put in the jump, set
3802
                 fixup_alt_jump to right after `b', and leave behind three
3803
                 bytes which we'll fill in when we get to after `c'.  */
3804
 
3805
              if (fixup_alt_jump)
3806
                STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3807
 
3808
              /* Mark and leave space for a jump after this alternative,
3809
                 to be filled in later either by next alternative or
3810
                 when know we're at the end of a series of alternatives.  */
3811
              fixup_alt_jump = b;
3812
              GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3813
              b += 1 + OFFSET_ADDRESS_SIZE;
3814
 
3815
              laststart = 0;
3816
              begalt = b;
3817
              break;
3818
 
3819
 
3820
            case '{':
3821
              /* If \{ is a literal.  */
3822
              if (!(syntax & RE_INTERVALS)
3823
                     /* If we're at `\{' and it's not the open-interval
3824
                        operator.  */
3825
		  || (syntax & RE_NO_BK_BRACES))
3826
                goto normal_backslash;
3827
 
3828
            handle_interval:
3829
              {
3830
                /* If got here, then the syntax allows intervals.  */
3831
 
3832
                /* At least (most) this many matches must be made.  */
3833
                int lower_bound = -1, upper_bound = -1;
3834
 
3835
		/* Place in the uncompiled pattern (i.e., just after
3836
		   the '{') to go back to if the interval is invalid.  */
3837
		const CHAR_T *beg_interval = p;
3838
 
3839
                if (p == pend)
3840
		  goto invalid_interval;
3841
 
3842
                GET_UNSIGNED_NUMBER (lower_bound);
3843
 
3844
                if (c == ',')
3845
                  {
3846
                    GET_UNSIGNED_NUMBER (upper_bound);
3847
		    if (upper_bound < 0)
3848
		      upper_bound = RE_DUP_MAX;
3849
                  }
3850
                else
3851
                  /* Interval such as `{1}' => match exactly once. */
3852
                  upper_bound = lower_bound;
3853
 
3854
                if (! (0 <= lower_bound && lower_bound <= upper_bound))
3855
		  goto invalid_interval;
3856
 
3857
                if (!(syntax & RE_NO_BK_BRACES))
3858
                  {
3859
		    if (c != '\\' || p == pend)
3860
		      goto invalid_interval;
3861
                    PATFETCH (c);
3862
                  }
3863
 
3864
                if (c != '}')
3865
		  goto invalid_interval;
3866
 
3867
                /* If it's invalid to have no preceding re.  */
3868
                if (!laststart)
3869
                  {
3870
		    if (syntax & RE_CONTEXT_INVALID_OPS
3871
			&& !(syntax & RE_INVALID_INTERVAL_ORD))
3872
                      FREE_STACK_RETURN (REG_BADRPT);
3873
                    else if (syntax & RE_CONTEXT_INDEP_OPS)
3874
                      laststart = b;
3875
                    else
3876
                      goto unfetch_interval;
3877
                  }
3878
 
3879
                /* We just parsed a valid interval.  */
3880
 
3881
                if (RE_DUP_MAX < upper_bound)
3882
		  FREE_STACK_RETURN (REG_BADBR);
3883
 
3884
                /* If the upper bound is zero, don't want to succeed at
3885
                   all; jump from `laststart' to `b + 3', which will be
3886
		   the end of the buffer after we insert the jump.  */
3887
		/* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3888
		   instead of 'b + 3'.  */
3889
                 if (upper_bound == 0)
3890
                   {
3891
                     GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3892
                     INSERT_JUMP (jump, laststart, b + 1
3893
				  + OFFSET_ADDRESS_SIZE);
3894
                     b += 1 + OFFSET_ADDRESS_SIZE;
3895
                   }
3896
 
3897
                 /* Otherwise, we have a nontrivial interval.  When
3898
                    we're all done, the pattern will look like:
3899
                      set_number_at  
3900
                      set_number_at  
3901
                      succeed_n  
3902
                      
3903
                      jump_n  
3904
                    (The upper bound and `jump_n' are omitted if
3905
                    `upper_bound' is 1, though.)  */
3906
                 else
3907
                   { /* If the upper bound is > 1, we need to insert
3908
                        more at the end of the loop.  */
3909
                     unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3910
		       (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3911
 
3912
                     GET_BUFFER_SPACE (nbytes);
3913
 
3914
                     /* Initialize lower bound of the `succeed_n', even
3915
                        though it will be set during matching by its
3916
                        attendant `set_number_at' (inserted next),
3917
                        because `re_compile_fastmap' needs to know.
3918
                        Jump to the `jump_n' we might insert below.  */
3919
                     INSERT_JUMP2 (succeed_n, laststart,
3920
                                   b + 1 + 2 * OFFSET_ADDRESS_SIZE
3921
				   + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3922
				   , lower_bound);
3923
                     b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3924
 
3925
                     /* Code to initialize the lower bound.  Insert
3926
                        before the `succeed_n'.  The `5' is the last two
3927
                        bytes of this `set_number_at', plus 3 bytes of
3928
                        the following `succeed_n'.  */
3929
		     /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
3930
			is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3931
			of the following `succeed_n'.  */
3932
                     PREFIX(insert_op2) (set_number_at, laststart, 1
3933
				 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
3934
                     b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3935
 
3936
                     if (upper_bound > 1)
3937
                       { /* More than one repetition is allowed, so
3938
                            append a backward jump to the `succeed_n'
3939
                            that starts this interval.
3940
 
3941
                            When we've reached this during matching,
3942
                            we'll have matched the interval once, so
3943
                            jump back only `upper_bound - 1' times.  */
3944
                         STORE_JUMP2 (jump_n, b, laststart
3945
				      + 2 * OFFSET_ADDRESS_SIZE + 1,
3946
                                      upper_bound - 1);
3947
                         b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3948
 
3949
                         /* The location we want to set is the second
3950
                            parameter of the `jump_n'; that is `b-2' as
3951
                            an absolute address.  `laststart' will be
3952
                            the `set_number_at' we're about to insert;
3953
                            `laststart+3' the number to set, the source
3954
                            for the relative address.  But we are
3955
                            inserting into the middle of the pattern --
3956
                            so everything is getting moved up by 5.
3957
                            Conclusion: (b - 2) - (laststart + 3) + 5,
3958
                            i.e., b - laststart.
3959
 
3960
                            We insert this at the beginning of the loop
3961
                            so that if we fail during matching, we'll
3962
                            reinitialize the bounds.  */
3963
                         PREFIX(insert_op2) (set_number_at, laststart,
3964
					     b - laststart,
3965
					     upper_bound - 1, b);
3966
                         b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3967
                       }
3968
                   }
3969
                pending_exact = 0;
3970
		break;
3971
 
3972
	      invalid_interval:
3973
		if (!(syntax & RE_INVALID_INTERVAL_ORD))
3974
		  FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
3975
	      unfetch_interval:
3976
		/* Match the characters as literals.  */
3977
		p = beg_interval;
3978
		c = '{';
3979
		if (syntax & RE_NO_BK_BRACES)
3980
		  goto normal_char;
3981
		else
3982
		  goto normal_backslash;
3983
	      }
3984
 
3985
#ifdef emacs
3986
            /* There is no way to specify the before_dot and after_dot
3987
               operators.  rms says this is ok.  --karl  */
3988
            case '=':
3989
              BUF_PUSH (at_dot);
3990
              break;
3991
 
3992
            case 's':
3993
              laststart = b;
3994
              PATFETCH (c);
3995
              BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3996
              break;
3997
 
3998
            case 'S':
3999
              laststart = b;
4000
              PATFETCH (c);
4001
              BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4002
              break;
4003
#endif /* emacs */
4004
 
4005
 
4006
            case 'w':
4007
	      if (syntax & RE_NO_GNU_OPS)
4008
		goto normal_char;
4009
              laststart = b;
4010
              BUF_PUSH (wordchar);
4011
              break;
4012
 
4013
 
4014
            case 'W':
4015
	      if (syntax & RE_NO_GNU_OPS)
4016
		goto normal_char;
4017
              laststart = b;
4018
              BUF_PUSH (notwordchar);
4019
              break;
4020
 
4021
 
4022
            case '<':
4023
	      if (syntax & RE_NO_GNU_OPS)
4024
		goto normal_char;
4025
              BUF_PUSH (wordbeg);
4026
              break;
4027
 
4028
            case '>':
4029
	      if (syntax & RE_NO_GNU_OPS)
4030
		goto normal_char;
4031
              BUF_PUSH (wordend);
4032
              break;
4033
 
4034
            case 'b':
4035
	      if (syntax & RE_NO_GNU_OPS)
4036
		goto normal_char;
4037
              BUF_PUSH (wordbound);
4038
              break;
4039
 
4040
            case 'B':
4041
	      if (syntax & RE_NO_GNU_OPS)
4042
		goto normal_char;
4043
              BUF_PUSH (notwordbound);
4044
              break;
4045
 
4046
            case '`':
4047
	      if (syntax & RE_NO_GNU_OPS)
4048
		goto normal_char;
4049
              BUF_PUSH (begbuf);
4050
              break;
4051
 
4052
            case '\'':
4053
	      if (syntax & RE_NO_GNU_OPS)
4054
		goto normal_char;
4055
              BUF_PUSH (endbuf);
4056
              break;
4057
 
4058
            case '1': case '2': case '3': case '4': case '5':
4059
            case '6': case '7': case '8': case '9':
4060
              if (syntax & RE_NO_BK_REFS)
4061
                goto normal_char;
4062
 
4063
              c1 = c - '0';
4064
 
4065
              if (c1 > regnum)
4066
                FREE_STACK_RETURN (REG_ESUBREG);
4067
 
4068
              /* Can't back reference to a subexpression if inside of it.  */
4069
              if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4070
                goto normal_char;
4071
 
4072
              laststart = b;
4073
              BUF_PUSH_2 (duplicate, c1);
4074
              break;
4075
 
4076
 
4077
            case '+':
4078
            case '?':
4079
              if (syntax & RE_BK_PLUS_QM)
4080
                goto handle_plus;
4081
              else
4082
                goto normal_backslash;
4083
 
4084
            default:
4085
            normal_backslash:
4086
              /* You might think it would be useful for \ to mean
4087
                 not to translate; but if we don't translate it
4088
                 it will never match anything.  */
4089
              c = TRANSLATE (c);
4090
              goto normal_char;
4091
            }
4092
          break;
4093
 
4094
 
4095
	default:
4096
        /* Expects the character in `c'.  */
4097
	normal_char:
4098
	      /* If no exactn currently being built.  */
4099
          if (!pending_exact
4100
#ifdef WCHAR
4101
	      /* If last exactn handle binary(or character) and
4102
		 new exactn handle character(or binary).  */
4103
	      || is_exactn_bin != is_binary[p - 1 - pattern]
4104
#endif /* WCHAR */
4105
 
4106
              /* If last exactn not at current position.  */
4107
              || pending_exact + *pending_exact + 1 != b
4108
 
4109
              /* We have only one byte following the exactn for the count.  */
4110
	      || *pending_exact == (1 << BYTEWIDTH) - 1
4111
 
4112
              /* If followed by a repetition operator.  */
4113
              || *p == '*' || *p == '^'
4114
	      || ((syntax & RE_BK_PLUS_QM)
4115
		  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4116
		  : (*p == '+' || *p == '?'))
4117
	      || ((syntax & RE_INTERVALS)
4118
                  && ((syntax & RE_NO_BK_BRACES)
4119
		      ? *p == '{'
4120
                      : (p[0] == '\\' && p[1] == '{'))))
4121
	    {
4122
	      /* Start building a new exactn.  */
4123
 
4124
              laststart = b;
4125
 
4126
#ifdef WCHAR
4127
	      /* Is this exactn binary data or character? */
4128
	      is_exactn_bin = is_binary[p - 1 - pattern];
4129
	      if (is_exactn_bin)
4130
		  BUF_PUSH_2 (exactn_bin, 0);
4131
	      else
4132
		  BUF_PUSH_2 (exactn, 0);
4133
#else
4134
	      BUF_PUSH_2 (exactn, 0);
4135
#endif /* WCHAR */
4136
	      pending_exact = b - 1;
4137
            }
4138
 
4139
	  BUF_PUSH (c);
4140
          (*pending_exact)++;
4141
	  break;
4142
        } /* switch (c) */
4143
    } /* while p != pend */
4144
 
4145
 
4146
  /* Through the pattern now.  */
4147
 
4148
  if (fixup_alt_jump)
4149
    STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4150
 
4151
  if (!COMPILE_STACK_EMPTY)
4152
    FREE_STACK_RETURN (REG_EPAREN);
4153
 
4154
  /* If we don't want backtracking, force success
4155
     the first time we reach the end of the compiled pattern.  */
4156
  if (syntax & RE_NO_POSIX_BACKTRACKING)
4157
    BUF_PUSH (succeed);
4158
 
4159
#ifdef WCHAR
4160
  free (pattern);
4161
  free (mbs_offset);
4162
  free (is_binary);
4163
#endif
4164
  free (compile_stack.stack);
4165
 
4166
  /* We have succeeded; set the length of the buffer.  */
4167
#ifdef WCHAR
4168
  bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4169
#else
4170
  bufp->used = b - bufp->buffer;
4171
#endif
4172
 
4173
#ifdef DEBUG
4174
  if (debug)
4175
    {
4176
      DEBUG_PRINT1 ("\nCompiled pattern: \n");
4177
      PREFIX(print_compiled_pattern) (bufp);
4178
    }
4179
#endif /* DEBUG */
4180
 
4181
#ifndef MATCH_MAY_ALLOCATE
4182
  /* Initialize the failure stack to the largest possible stack.  This
4183
     isn't necessary unless we're trying to avoid calling alloca in
4184
     the search and match routines.  */
4185
  {
4186
    int num_regs = bufp->re_nsub + 1;
4187
 
4188
    /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4189
       is strictly greater than re_max_failures, the largest possible stack
4190
       is 2 * re_max_failures failure points.  */
4191
    if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4192
      {
4193
	fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4194
 
4195
# ifdef emacs
4196
	if (! fail_stack.stack)
4197
	  fail_stack.stack
4198
	    = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4199
				    * sizeof (PREFIX(fail_stack_elt_t)));
4200
	else
4201
	  fail_stack.stack
4202
	    = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4203
				     (fail_stack.size
4204
				      * sizeof (PREFIX(fail_stack_elt_t))));
4205
# else /* not emacs */
4206
	if (! fail_stack.stack)
4207
	  fail_stack.stack
4208
	    = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
4209
				   * sizeof (PREFIX(fail_stack_elt_t)));
4210
	else
4211
	  fail_stack.stack
4212
	    = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
4213
					    (fail_stack.size
4214
				     * sizeof (PREFIX(fail_stack_elt_t))));
4215
# endif /* not emacs */
4216
      }
4217
 
4218
   PREFIX(regex_grow_registers) (num_regs);
4219
  }
4220
#endif /* not MATCH_MAY_ALLOCATE */
4221
 
4222
  return REG_NOERROR;
4223
} /* regex_compile */
4224
 
4225
/* Subroutines for `regex_compile'.  */
4226
 
4227
/* Store OP at LOC followed by two-byte integer parameter ARG.  */
4228
/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4229
 
4230
static void
4231
PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg)
4232
{
4233
  *loc = (UCHAR_T) op;
4234
  STORE_NUMBER (loc + 1, arg);
4235
}
4236
 
4237
 
4238
/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
4239
/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4240
 
4241
static void
4242
PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc, int arg1, int arg2)
4243
{
4244
  *loc = (UCHAR_T) op;
4245
  STORE_NUMBER (loc + 1, arg1);
4246
  STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4247
}
4248
 
4249
 
4250
/* Copy the bytes from LOC to END to open up three bytes of space at LOC
4251
   for OP followed by two-byte integer parameter ARG.  */
4252
/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4253
 
4254
static void
4255
PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc, int arg, UCHAR_T *end)
4256
{
4257
  register UCHAR_T *pfrom = end;
4258
  register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4259
 
4260
  while (pfrom != loc)
4261
    *--pto = *--pfrom;
4262
 
4263
  PREFIX(store_op1) (op, loc, arg);
4264
}
4265
 
4266
 
4267
/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
4268
/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4269
 
4270
static void
4271
PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc, int arg1,
4272
                    int arg2, UCHAR_T *end)
4273
{
4274
  register UCHAR_T *pfrom = end;
4275
  register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4276
 
4277
  while (pfrom != loc)
4278
    *--pto = *--pfrom;
4279
 
4280
  PREFIX(store_op2) (op, loc, arg1, arg2);
4281
}
4282
 
4283
 
4284
/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
4285
   after an alternative or a begin-subexpression.  We assume there is at
4286
   least one character before the ^.  */
4287
 
4288
static boolean
4289
PREFIX(at_begline_loc_p) (const CHAR_T *pattern, const CHAR_T *p,
4290
                          reg_syntax_t syntax)
4291
{
4292
  const CHAR_T *prev = p - 2;
4293
  boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4294
 
4295
  return
4296
       /* After a subexpression?  */
4297
       (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4298
       /* After an alternative?  */
4299
    || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4300
}
4301
 
4302
 
4303
/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
4304
   at least one character after the $, i.e., `P < PEND'.  */
4305
 
4306
static boolean
4307
PREFIX(at_endline_loc_p) (const CHAR_T *p, const CHAR_T *pend,
4308
                          reg_syntax_t syntax)
4309
{
4310
  const CHAR_T *next = p;
4311
  boolean next_backslash = *next == '\\';
4312
  const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4313
 
4314
  return
4315
       /* Before a subexpression?  */
4316
       (syntax & RE_NO_BK_PARENS ? *next == ')'
4317
        : next_backslash && next_next && *next_next == ')')
4318
       /* Before an alternative?  */
4319
    || (syntax & RE_NO_BK_VBAR ? *next == '|'
4320
        : next_backslash && next_next && *next_next == '|');
4321
}
4322
 
4323
#else /* not INSIDE_RECURSION */
4324
 
4325
/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4326
   false if it's not.  */
4327
 
4328
static boolean
4329
group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
4330
{
4331
  int this_element;
4332
 
4333
  for (this_element = compile_stack.avail - 1;
4334
       this_element >= 0;
4335
       this_element--)
4336
    if (compile_stack.stack[this_element].regnum == regnum)
4337
      return true;
4338
 
4339
  return false;
4340
}
4341
#endif /* not INSIDE_RECURSION */
4342
 
4343
#ifdef INSIDE_RECURSION
4344
 
4345
#ifdef WCHAR
4346
/* This insert space, which size is "num", into the pattern at "loc".
4347
   "end" must point the end of the allocated buffer.  */
4348
static void
4349
insert_space (int num, CHAR_T *loc, CHAR_T *end)
4350
{
4351
  register CHAR_T *pto = end;
4352
  register CHAR_T *pfrom = end - num;
4353
 
4354
  while (pfrom >= loc)
4355
    *pto-- = *pfrom--;
4356
}
4357
#endif /* WCHAR */
4358
 
4359
#ifdef WCHAR
4360
static reg_errcode_t
4361
wcs_compile_range (CHAR_T range_start_char, const CHAR_T **p_ptr,
4362
                   const CHAR_T *pend, RE_TRANSLATE_TYPE translate,
4363
                   reg_syntax_t syntax, CHAR_T *b, CHAR_T *char_set)
4364
{
4365
  const CHAR_T *p = *p_ptr;
4366
  CHAR_T range_start, range_end;
4367
  reg_errcode_t ret;
4368
# ifdef _LIBC
4369
  uint32_t nrules;
4370
  uint32_t start_val, end_val;
4371
# endif
4372
  if (p == pend)
4373
    return REG_ERANGE;
4374
 
4375
# ifdef _LIBC
4376
  nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4377
  if (nrules != 0)
4378
    {
4379
      const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4380
						       _NL_COLLATE_COLLSEQWC);
4381
      const unsigned char *extra = (const unsigned char *)
4382
	_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4383
 
4384
      if (range_start_char < -1)
4385
	{
4386
	  /* range_start is a collating symbol.  */
4387
	  int32_t *wextra;
4388
	  /* Retreive the index and get collation sequence value.  */
4389
	  wextra = (int32_t*)(extra + char_set[-range_start_char]);
4390
	  start_val = wextra[1 + *wextra];
4391
	}
4392
      else
4393
	start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4394
 
4395
      end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4396
 
4397
      /* Report an error if the range is empty and the syntax prohibits
4398
	 this.  */
4399
      ret = ((syntax & RE_NO_EMPTY_RANGES)
4400
	     && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4401
 
4402
      /* Insert space to the end of the char_ranges.  */
4403
      insert_space(2, b - char_set[5] - 2, b - 1);
4404
      *(b - char_set[5] - 2) = (wchar_t)start_val;
4405
      *(b - char_set[5] - 1) = (wchar_t)end_val;
4406
      char_set[4]++; /* ranges_index */
4407
    }
4408
  else
4409
# endif
4410
    {
4411
      range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4412
	range_start_char;
4413
      range_end = TRANSLATE (p[0]);
4414
      /* Report an error if the range is empty and the syntax prohibits
4415
	 this.  */
4416
      ret = ((syntax & RE_NO_EMPTY_RANGES)
4417
	     && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4418
 
4419
      /* Insert space to the end of the char_ranges.  */
4420
      insert_space(2, b - char_set[5] - 2, b - 1);
4421
      *(b - char_set[5] - 2) = range_start;
4422
      *(b - char_set[5] - 1) = range_end;
4423
      char_set[4]++; /* ranges_index */
4424
    }
4425
  /* Have to increment the pointer into the pattern string, so the
4426
     caller isn't still at the ending character.  */
4427
  (*p_ptr)++;
4428
 
4429
  return ret;
4430
}
4431
#else /* BYTE */
4432
/* Read the ending character of a range (in a bracket expression) from the
4433
   uncompiled pattern *P_PTR (which ends at PEND).  We assume the
4434
   starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
4435
   Then we set the translation of all bits between the starting and
4436
   ending characters (inclusive) in the compiled pattern B.
4437
 
4438
   Return an error code.
4439
 
4440
   We use these short variable names so we can use the same macros as
4441
   `regex_compile' itself.  */
4442
 
4443
static reg_errcode_t
4444
byte_compile_range (unsigned int range_start_char, const char **p_ptr,
4445
                    const char *pend, RE_TRANSLATE_TYPE translate,
4446
                    reg_syntax_t syntax, unsigned char *b)
4447
{
4448
  unsigned this_char;
4449
  const char *p = *p_ptr;
4450
  reg_errcode_t ret;
4451
# if _LIBC
4452
  const unsigned char *collseq;
4453
  unsigned int start_colseq;
4454
  unsigned int end_colseq;
4455
# else
4456
  unsigned end_char;
4457
# endif
4458
 
4459
  if (p == pend)
4460
    return REG_ERANGE;
4461
 
4462
  /* Have to increment the pointer into the pattern string, so the
4463
     caller isn't still at the ending character.  */
4464
  (*p_ptr)++;
4465
 
4466
  /* Report an error if the range is empty and the syntax prohibits this.  */
4467
  ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4468
 
4469
# if _LIBC
4470
  collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4471
						 _NL_COLLATE_COLLSEQMB);
4472
 
4473
  start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4474
  end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4475
  for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4476
    {
4477
      unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4478
 
4479
      if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4480
	{
4481
	  SET_LIST_BIT (TRANSLATE (this_char));
4482
	  ret = REG_NOERROR;
4483
	}
4484
    }
4485
# else
4486
  /* Here we see why `this_char' has to be larger than an `unsigned
4487
     char' -- we would otherwise go into an infinite loop, since all
4488
     characters <= 0xff.  */
4489
  range_start_char = TRANSLATE (range_start_char);
4490
  /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4491
     and some compilers cast it to int implicitly, so following for_loop
4492
     may fall to (almost) infinite loop.
4493
     e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4494
     To avoid this, we cast p[0] to unsigned int and truncate it.  */
4495
  end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4496
 
4497
  for (this_char = range_start_char; this_char <= end_char; ++this_char)
4498
    {
4499
      SET_LIST_BIT (TRANSLATE (this_char));
4500
      ret = REG_NOERROR;
4501
    }
4502
# endif
4503
 
4504
  return ret;
4505
}
4506
#endif /* WCHAR */
4507
 
4508
/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4509
   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
4510
   characters can start a string that matches the pattern.  This fastmap
4511
   is used by re_search to skip quickly over impossible starting points.
4512
 
4513
   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4514
   area as BUFP->fastmap.
4515
 
4516
   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4517
   the pattern buffer.
4518
 
4519
   Returns 0 if we succeed, -2 if an internal error.   */
4520
 
4521
#ifdef WCHAR
4522
/* local function for re_compile_fastmap.
4523
   truncate wchar_t character to char.  */
4524
static unsigned char truncate_wchar (CHAR_T c);
4525
 
4526
static unsigned char
4527
truncate_wchar (CHAR_T c)
4528
{
4529
  unsigned char buf[MB_CUR_MAX];
4530
  mbstate_t state;
4531
  int retval;
4532
  memset (&state, '\0', sizeof (state));
4533
# ifdef _LIBC
4534
  retval = __wcrtomb (buf, c, &state);
4535
# else
4536
  retval = wcrtomb (buf, c, &state);
4537
# endif
4538
  return retval > 0 ? buf[0] : (unsigned char) c;
4539
}
4540
#endif /* WCHAR */
4541
 
4542
static int
4543
PREFIX(re_compile_fastmap) (struct re_pattern_buffer *bufp)
4544
{
4545
  int j, k;
4546
#ifdef MATCH_MAY_ALLOCATE
4547
  PREFIX(fail_stack_type) fail_stack;
4548
#endif
4549
#ifndef REGEX_MALLOC
4550
  char *destination;
4551
#endif
4552
 
4553
  register char *fastmap = bufp->fastmap;
4554
 
4555
#ifdef WCHAR
4556
  /* We need to cast pattern to (wchar_t*), because we casted this compiled
4557
     pattern to (char*) in regex_compile.  */
4558
  UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4559
  register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4560
#else /* BYTE */
4561
  UCHAR_T *pattern = bufp->buffer;
4562
  register UCHAR_T *pend = pattern + bufp->used;
4563
#endif /* WCHAR */
4564
  UCHAR_T *p = pattern;
4565
 
4566
#ifdef REL_ALLOC
4567
  /* This holds the pointer to the failure stack, when
4568
     it is allocated relocatably.  */
4569
  fail_stack_elt_t *failure_stack_ptr;
4570
#endif
4571
 
4572
  /* Assume that each path through the pattern can be null until
4573
     proven otherwise.  We set this false at the bottom of switch
4574
     statement, to which we get only if a particular path doesn't
4575
     match the empty string.  */
4576
  boolean path_can_be_null = true;
4577
 
4578
  /* We aren't doing a `succeed_n' to begin with.  */
4579
  boolean succeed_n_p = false;
4580
 
4581
  assert (fastmap != NULL && p != NULL);
4582
 
4583
  INIT_FAIL_STACK ();
4584
  bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
4585
  bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
4586
  bufp->can_be_null = 0;
4587
 
4588
  while (1)
4589
    {
4590
      if (p == pend || *p == (UCHAR_T) succeed)
4591
	{
4592
	  /* We have reached the (effective) end of pattern.  */
4593
	  if (!FAIL_STACK_EMPTY ())
4594
	    {
4595
	      bufp->can_be_null |= path_can_be_null;
4596
 
4597
	      /* Reset for next path.  */
4598
	      path_can_be_null = true;
4599
 
4600
	      p = fail_stack.stack[--fail_stack.avail].pointer;
4601
 
4602
	      continue;
4603
	    }
4604
	  else
4605
	    break;
4606
	}
4607
 
4608
      /* We should never be about to go beyond the end of the pattern.  */
4609
      assert (p < pend);
4610
 
4611
      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4612
	{
4613
 
4614
        /* I guess the idea here is to simply not bother with a fastmap
4615
           if a backreference is used, since it's too hard to figure out
4616
           the fastmap for the corresponding group.  Setting
4617
           `can_be_null' stops `re_search_2' from using the fastmap, so
4618
           that is all we do.  */
4619
	case duplicate:
4620
	  bufp->can_be_null = 1;
4621
          goto done;
4622
 
4623
 
4624
      /* Following are the cases which match a character.  These end
4625
         with `break'.  */
4626
 
4627
#ifdef WCHAR
4628
	case exactn:
4629
          fastmap[truncate_wchar(p[1])] = 1;
4630
	  break;
4631
#else /* BYTE */
4632
	case exactn:
4633
          fastmap[p[1]] = 1;
4634
	  break;
4635
#endif /* WCHAR */
4636
#ifdef MBS_SUPPORT
4637
	case exactn_bin:
4638
	  fastmap[p[1]] = 1;
4639
	  break;
4640
#endif
4641
 
4642
#ifdef WCHAR
4643
        /* It is hard to distinguish fastmap from (multi byte) characters
4644
           which depends on current locale.  */
4645
        case charset:
4646
	case charset_not:
4647
	case wordchar:
4648
	case notwordchar:
4649
          bufp->can_be_null = 1;
4650
          goto done;
4651
#else /* BYTE */
4652
        case charset:
4653
          for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4654
	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4655
              fastmap[j] = 1;
4656
	  break;
4657
 
4658
 
4659
	case charset_not:
4660
	  /* Chars beyond end of map must be allowed.  */
4661
	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4662
            fastmap[j] = 1;
4663
 
4664
	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4665
	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4666
              fastmap[j] = 1;
4667
          break;
4668
 
4669
 
4670
	case wordchar:
4671
	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4672
	    if (SYNTAX (j) == Sword)
4673
	      fastmap[j] = 1;
4674
	  break;
4675
 
4676
 
4677
	case notwordchar:
4678
	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4679
	    if (SYNTAX (j) != Sword)
4680
	      fastmap[j] = 1;
4681
	  break;
4682
#endif /* WCHAR */
4683
 
4684
        case anychar:
4685
	  {
4686
	    int fastmap_newline = fastmap['\n'];
4687
 
4688
	    /* `.' matches anything ...  */
4689
	    for (j = 0; j < (1 << BYTEWIDTH); j++)
4690
	      fastmap[j] = 1;
4691
 
4692
	    /* ... except perhaps newline.  */
4693
	    if (!(bufp->syntax & RE_DOT_NEWLINE))
4694
	      fastmap['\n'] = fastmap_newline;
4695
 
4696
	    /* Return if we have already set `can_be_null'; if we have,
4697
	       then the fastmap is irrelevant.  Something's wrong here.  */
4698
	    else if (bufp->can_be_null)
4699
	      goto done;
4700
 
4701
	    /* Otherwise, have to check alternative paths.  */
4702
	    break;
4703
	  }
4704
 
4705
#ifdef emacs
4706
        case syntaxspec:
4707
	  k = *p++;
4708
	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4709
	    if (SYNTAX (j) == (enum syntaxcode) k)
4710
	      fastmap[j] = 1;
4711
	  break;
4712
 
4713
 
4714
	case notsyntaxspec:
4715
	  k = *p++;
4716
	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4717
	    if (SYNTAX (j) != (enum syntaxcode) k)
4718
	      fastmap[j] = 1;
4719
	  break;
4720
 
4721
 
4722
      /* All cases after this match the empty string.  These end with
4723
         `continue'.  */
4724
 
4725
 
4726
	case before_dot:
4727
	case at_dot:
4728
	case after_dot:
4729
          continue;
4730
#endif /* emacs */
4731
 
4732
 
4733
        case no_op:
4734
        case begline:
4735
        case endline:
4736
	case begbuf:
4737
	case endbuf:
4738
	case wordbound:
4739
	case notwordbound:
4740
	case wordbeg:
4741
	case wordend:
4742
        case push_dummy_failure:
4743
          continue;
4744
 
4745
 
4746
	case jump_n:
4747
        case pop_failure_jump:
4748
	case maybe_pop_jump:
4749
	case jump:
4750
        case jump_past_alt:
4751
	case dummy_failure_jump:
4752
          EXTRACT_NUMBER_AND_INCR (j, p);
4753
	  p += j;
4754
	  if (j > 0)
4755
	    continue;
4756
 
4757
          /* Jump backward implies we just went through the body of a
4758
             loop and matched nothing.  Opcode jumped to should be
4759
             `on_failure_jump' or `succeed_n'.  Just treat it like an
4760
             ordinary jump.  For a * loop, it has pushed its failure
4761
             point already; if so, discard that as redundant.  */
4762
          if ((re_opcode_t) *p != on_failure_jump
4763
	      && (re_opcode_t) *p != succeed_n)
4764
	    continue;
4765
 
4766
          p++;
4767
          EXTRACT_NUMBER_AND_INCR (j, p);
4768
          p += j;
4769
 
4770
          /* If what's on the stack is where we are now, pop it.  */
4771
          if (!FAIL_STACK_EMPTY ()
4772
	      && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4773
            fail_stack.avail--;
4774
 
4775
          continue;
4776
 
4777
 
4778
        case on_failure_jump:
4779
        case on_failure_keep_string_jump:
4780
	handle_on_failure_jump:
4781
          EXTRACT_NUMBER_AND_INCR (j, p);
4782
 
4783
          /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4784
             end of the pattern.  We don't want to push such a point,
4785
             since when we restore it above, entering the switch will
4786
             increment `p' past the end of the pattern.  We don't need
4787
             to push such a point since we obviously won't find any more
4788
             fastmap entries beyond `pend'.  Such a pattern can match
4789
             the null string, though.  */
4790
          if (p + j < pend)
4791
            {
4792
              if (!PUSH_PATTERN_OP (p + j, fail_stack))
4793
		{
4794
		  RESET_FAIL_STACK ();
4795
		  return -2;
4796
		}
4797
            }
4798
          else
4799
            bufp->can_be_null = 1;
4800
 
4801
          if (succeed_n_p)
4802
            {
4803
              EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.  */
4804
              succeed_n_p = false;
4805
	    }
4806
 
4807
          continue;
4808
 
4809
 
4810
	case succeed_n:
4811
          /* Get to the number of times to succeed.  */
4812
          p += OFFSET_ADDRESS_SIZE;
4813
 
4814
          /* Increment p past the n for when k != 0.  */
4815
          EXTRACT_NUMBER_AND_INCR (k, p);
4816
          if (k == 0)
4817
	    {
4818
              p -= 2 * OFFSET_ADDRESS_SIZE;
4819
  	      succeed_n_p = true;  /* Spaghetti code alert.  */
4820
              goto handle_on_failure_jump;
4821
            }
4822
          continue;
4823
 
4824
 
4825
	case set_number_at:
4826
          p += 2 * OFFSET_ADDRESS_SIZE;
4827
          continue;
4828
 
4829
 
4830
	case start_memory:
4831
        case stop_memory:
4832
	  p += 2;
4833
	  continue;
4834
 
4835
 
4836
	default:
4837
          abort (); /* We have listed all the cases.  */
4838
        } /* switch *p++ */
4839
 
4840
      /* Getting here means we have found the possible starting
4841
         characters for one path of the pattern -- and that the empty
4842
         string does not match.  We need not follow this path further.
4843
         Instead, look at the next alternative (remembered on the
4844
         stack), or quit if no more.  The test at the top of the loop
4845
         does these things.  */
4846
      path_can_be_null = false;
4847
      p = pend;
4848
    } /* while p */
4849
 
4850
  /* Set `can_be_null' for the last path (also the first path, if the
4851
     pattern is empty).  */
4852
  bufp->can_be_null |= path_can_be_null;
4853
 
4854
 done:
4855
  RESET_FAIL_STACK ();
4856
  return 0;
4857
}
4858
 
4859
#else /* not INSIDE_RECURSION */
4860
 
4861
int
4862
re_compile_fastmap (struct re_pattern_buffer *bufp)
4863
{
4864
# ifdef MBS_SUPPORT
4865
  if (MB_CUR_MAX != 1)
4866
    return wcs_re_compile_fastmap(bufp);
4867
  else
4868
# endif
4869
    return byte_re_compile_fastmap(bufp);
4870
} /* re_compile_fastmap */
4871
#ifdef _LIBC
4872
weak_alias (__re_compile_fastmap, re_compile_fastmap)
4873
#endif
4874
 
4875
 
4876
/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4877
   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
4878
   this memory for recording register information.  STARTS and ENDS
4879
   must be allocated using the malloc library routine, and must each
4880
   be at least NUM_REGS * sizeof (regoff_t) bytes long.
4881
 
4882
   If NUM_REGS == 0, then subsequent matches should allocate their own
4883
   register data.
4884
 
4885
   Unless this function is called, the first search or match using
4886
   PATTERN_BUFFER will allocate its own register data, without
4887
   freeing the old data.  */
4888
 
4889
void
4890
re_set_registers (struct re_pattern_buffer *bufp,
4891
                  struct re_registers *regs, unsigned num_regs,
4892
                  regoff_t *starts, regoff_t *ends)
4893
{
4894
  if (num_regs)
4895
    {
4896
      bufp->regs_allocated = REGS_REALLOCATE;
4897
      regs->num_regs = num_regs;
4898
      regs->start = starts;
4899
      regs->end = ends;
4900
    }
4901
  else
4902
    {
4903
      bufp->regs_allocated = REGS_UNALLOCATED;
4904
      regs->num_regs = 0;
4905
      regs->start = regs->end = (regoff_t *) 0;
4906
    }
4907
}
4908
#ifdef _LIBC
4909
weak_alias (__re_set_registers, re_set_registers)
4910
#endif
4911
 
4912
/* Searching routines.  */
4913
 
4914
/* Like re_search_2, below, but only one string is specified, and
4915
   doesn't let you say where to stop matching.  */
4916
 
4917
int
4918
re_search (struct re_pattern_buffer *bufp, const char *string, int size,
4919
           int startpos, int range, struct re_registers *regs)
4920
{
4921
  return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4922
		      regs, size);
4923
}
4924
#ifdef _LIBC
4925
weak_alias (__re_search, re_search)
4926
#endif
4927
 
4928
 
4929
/* Using the compiled pattern in BUFP->buffer, first tries to match the
4930
   virtual concatenation of STRING1 and STRING2, starting first at index
4931
   STARTPOS, then at STARTPOS + 1, and so on.
4932
 
4933
   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4934
 
4935
   RANGE is how far to scan while trying to match.  RANGE = 0 means try
4936
   only at STARTPOS; in general, the last start tried is STARTPOS +
4937
   RANGE.
4938
 
4939
   In REGS, return the indices of the virtual concatenation of STRING1
4940
   and STRING2 that matched the entire BUFP->buffer and its contained
4941
   subexpressions.
4942
 
4943
   Do not consider matching one past the index STOP in the virtual
4944
   concatenation of STRING1 and STRING2.
4945
 
4946
   We return either the position in the strings at which the match was
4947
   found, -1 if no match, or -2 if error (such as failure
4948
   stack overflow).  */
4949
 
4950
int
4951
re_search_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
4952
             const char *string2, int size2, int startpos, int range,
4953
             struct re_registers *regs, int stop)
4954
{
4955
# ifdef MBS_SUPPORT
4956
  if (MB_CUR_MAX != 1)
4957
    return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4958
			    range, regs, stop);
4959
  else
4960
# endif
4961
    return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4962
			     range, regs, stop);
4963
} /* re_search_2 */
4964
#ifdef _LIBC
4965
weak_alias (__re_search_2, re_search_2)
4966
#endif
4967
 
4968
#endif /* not INSIDE_RECURSION */
4969
 
4970
#ifdef INSIDE_RECURSION
4971
 
4972
#ifdef MATCH_MAY_ALLOCATE
4973
# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
4974
#else
4975
# define FREE_VAR(var) free (var); var = NULL
4976
#endif
4977
 
4978
#ifdef WCHAR
4979
# define MAX_ALLOCA_SIZE	2000
4980
 
4981
# define FREE_WCS_BUFFERS() \
4982
  do {									      \
4983
    if (size1 > MAX_ALLOCA_SIZE)					      \
4984
      {									      \
4985
	free (wcs_string1);						      \
4986
	free (mbs_offset1);						      \
4987
      }									      \
4988
    else								      \
4989
      {									      \
4990
	FREE_VAR (wcs_string1);						      \
4991
	FREE_VAR (mbs_offset1);						      \
4992
      }									      \
4993
    if (size2 > MAX_ALLOCA_SIZE) 					      \
4994
      {									      \
4995
	free (wcs_string2);						      \
4996
	free (mbs_offset2);						      \
4997
      }									      \
4998
    else								      \
4999
      {									      \
5000
	FREE_VAR (wcs_string2);						      \
5001
	FREE_VAR (mbs_offset2);						      \
5002
      }									      \
5003
  } while (0)
5004
 
5005
#endif
5006
 
5007
 
5008
static int
5009
PREFIX(re_search_2) (struct re_pattern_buffer *bufp, const char *string1,
5010
                     int size1, const char *string2, int size2,
5011
                     int startpos, int range,
5012
                     struct re_registers *regs, int stop)
5013
{
5014
  int val;
5015
  register char *fastmap = bufp->fastmap;
5016
  register RE_TRANSLATE_TYPE translate = bufp->translate;
5017
  int total_size = size1 + size2;
5018
  int endpos = startpos + range;
5019
#ifdef WCHAR
5020
  /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5021
  wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
5022
  /* We need the size of wchar_t buffers correspond to csize1, csize2.  */
5023
  int wcs_size1 = 0, wcs_size2 = 0;
5024
  /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5025
  int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5026
  /* They hold whether each wchar_t is binary data or not.  */
5027
  char *is_binary = NULL;
5028
#endif /* WCHAR */
5029
 
5030
  /* Check for out-of-range STARTPOS.  */
5031
  if (startpos < 0 || startpos > total_size)
5032
    return -1;
5033
 
5034
  /* Fix up RANGE if it might eventually take us outside
5035
     the virtual concatenation of STRING1 and STRING2.
5036
     Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
5037
  if (endpos < 0)
5038
    range = 0 - startpos;
5039
  else if (endpos > total_size)
5040
    range = total_size - startpos;
5041
 
5042
  /* If the search isn't to be a backwards one, don't waste time in a
5043
     search for a pattern that must be anchored.  */
5044
  if (bufp->used > 0 && range > 0
5045
      && ((re_opcode_t) bufp->buffer[0] == begbuf
5046
	  /* `begline' is like `begbuf' if it cannot match at newlines.  */
5047
	  || ((re_opcode_t) bufp->buffer[0] == begline
5048
	      && !bufp->newline_anchor)))
5049
    {
5050
      if (startpos > 0)
5051
	return -1;
5052
      else
5053
	range = 1;
5054
    }
5055
 
5056
#ifdef emacs
5057
  /* In a forward search for something that starts with \=.
5058
     don't keep searching past point.  */
5059
  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5060
    {
5061
      range = PT - startpos;
5062
      if (range <= 0)
5063
	return -1;
5064
    }
5065
#endif /* emacs */
5066
 
5067
  /* Update the fastmap now if not correct already.  */
5068
  if (fastmap && !bufp->fastmap_accurate)
5069
    if (re_compile_fastmap (bufp) == -2)
5070
      return -2;
5071
 
5072
#ifdef WCHAR
5073
  /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5074
     fill them with converted string.  */
5075
  if (size1 != 0)
5076
    {
5077
      if (size1 > MAX_ALLOCA_SIZE)
5078
	{
5079
	  wcs_string1 = TALLOC (size1 + 1, CHAR_T);
5080
	  mbs_offset1 = TALLOC (size1 + 1, int);
5081
	  is_binary = TALLOC (size1 + 1, char);
5082
	}
5083
      else
5084
	{
5085
	  wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
5086
	  mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
5087
	  is_binary = REGEX_TALLOC (size1 + 1, char);
5088
	}
5089
      if (!wcs_string1 || !mbs_offset1 || !is_binary)
5090
	{
5091
	  if (size1 > MAX_ALLOCA_SIZE)
5092
	    {
5093
	      free (wcs_string1);
5094
	      free (mbs_offset1);
5095
	      free (is_binary);
5096
	    }
5097
	  else
5098
	    {
5099
	      FREE_VAR (wcs_string1);
5100
	      FREE_VAR (mbs_offset1);
5101
	      FREE_VAR (is_binary);
5102
	    }
5103
	  return -2;
5104
	}
5105
      wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5106
				     mbs_offset1, is_binary);
5107
      wcs_string1[wcs_size1] = L'\0'; /* for a sentinel  */
5108
      if (size1 > MAX_ALLOCA_SIZE)
5109
	free (is_binary);
5110
      else
5111
	FREE_VAR (is_binary);
5112
    }
5113
  if (size2 != 0)
5114
    {
5115
      if (size2 > MAX_ALLOCA_SIZE)
5116
	{
5117
	  wcs_string2 = TALLOC (size2 + 1, CHAR_T);
5118
	  mbs_offset2 = TALLOC (size2 + 1, int);
5119
	  is_binary = TALLOC (size2 + 1, char);
5120
	}
5121
      else
5122
	{
5123
	  wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
5124
	  mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
5125
	  is_binary = REGEX_TALLOC (size2 + 1, char);
5126
	}
5127
      if (!wcs_string2 || !mbs_offset2 || !is_binary)
5128
	{
5129
	  FREE_WCS_BUFFERS ();
5130
	  if (size2 > MAX_ALLOCA_SIZE)
5131
	    free (is_binary);
5132
	  else
5133
	    FREE_VAR (is_binary);
5134
	  return -2;
5135
	}
5136
      wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5137
				     mbs_offset2, is_binary);
5138
      wcs_string2[wcs_size2] = L'\0'; /* for a sentinel  */
5139
      if (size2 > MAX_ALLOCA_SIZE)
5140
	free (is_binary);
5141
      else
5142
	FREE_VAR (is_binary);
5143
    }
5144
#endif /* WCHAR */
5145
 
5146
 
5147
  /* Loop through the string, looking for a place to start matching.  */
5148
  for (;;)
5149
    {
5150
      /* If a fastmap is supplied, skip quickly over characters that
5151
         cannot be the start of a match.  If the pattern can match the
5152
         null string, however, we don't need to skip characters; we want
5153
         the first null string.  */
5154
      if (fastmap && startpos < total_size && !bufp->can_be_null)
5155
	{
5156
	  if (range > 0)	/* Searching forwards.  */
5157
	    {
5158
	      register const char *d;
5159
	      register int lim = 0;
5160
	      int irange = range;
5161
 
5162
              if (startpos < size1 && startpos + range >= size1)
5163
                lim = range - (size1 - startpos);
5164
 
5165
	      d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5166
 
5167
              /* Written out as an if-else to avoid testing `translate'
5168
                 inside the loop.  */
5169
	      if (translate)
5170
                while (range > lim
5171
                       && !fastmap[(unsigned char)
5172
				   translate[(unsigned char) *d++]])
5173
                  range--;
5174
	      else
5175
                while (range > lim && !fastmap[(unsigned char) *d++])
5176
                  range--;
5177
 
5178
	      startpos += irange - range;
5179
	    }
5180
	  else				/* Searching backwards.  */
5181
	    {
5182
	      register CHAR_T c = (size1 == 0 || startpos >= size1
5183
				      ? string2[startpos - size1]
5184
				      : string1[startpos]);
5185
 
5186
	      if (!fastmap[(unsigned char) TRANSLATE (c)])
5187
		goto advance;
5188
	    }
5189
	}
5190
 
5191
      /* If can't match the null string, and that's all we have left, fail.  */
5192
      if (range >= 0 && startpos == total_size && fastmap
5193
          && !bufp->can_be_null)
5194
       {
5195
#ifdef WCHAR
5196
         FREE_WCS_BUFFERS ();
5197
#endif
5198
         return -1;
5199
       }
5200
 
5201
#ifdef WCHAR
5202
      val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5203
				     size2, startpos, regs, stop,
5204
				     wcs_string1, wcs_size1,
5205
				     wcs_string2, wcs_size2,
5206
				     mbs_offset1, mbs_offset2);
5207
#else /* BYTE */
5208
      val = byte_re_match_2_internal (bufp, string1, size1, string2,
5209
				      size2, startpos, regs, stop);
5210
#endif /* BYTE */
5211
 
5212
#ifndef REGEX_MALLOC
5213
# ifdef C_ALLOCA
5214
      alloca (0);
5215
# endif
5216
#endif
5217
 
5218
      if (val >= 0)
5219
	{
5220
#ifdef WCHAR
5221
	  FREE_WCS_BUFFERS ();
5222
#endif
5223
	  return startpos;
5224
	}
5225
 
5226
      if (val == -2)
5227
	{
5228
#ifdef WCHAR
5229
	  FREE_WCS_BUFFERS ();
5230
#endif
5231
	  return -2;
5232
	}
5233
 
5234
    advance:
5235
      if (!range)
5236
        break;
5237
      else if (range > 0)
5238
        {
5239
          range--;
5240
          startpos++;
5241
        }
5242
      else
5243
        {
5244
          range++;
5245
          startpos--;
5246
        }
5247
    }
5248
#ifdef WCHAR
5249
  FREE_WCS_BUFFERS ();
5250
#endif
5251
  return -1;
5252
}
5253
 
5254
#ifdef WCHAR
5255
/* This converts PTR, a pointer into one of the search wchar_t strings
5256
   `string1' and `string2' into an multibyte string offset from the
5257
   beginning of that string. We use mbs_offset to optimize.
5258
   See convert_mbs_to_wcs.  */
5259
# define POINTER_TO_OFFSET(ptr)						\
5260
  (FIRST_STRING_P (ptr)							\
5261
   ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0))	\
5262
   : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0)	\
5263
		 + csize1)))
5264
#else /* BYTE */
5265
/* This converts PTR, a pointer into one of the search strings `string1'
5266
   and `string2' into an offset from the beginning of that string.  */
5267
# define POINTER_TO_OFFSET(ptr)			\
5268
  (FIRST_STRING_P (ptr)				\
5269
   ? ((regoff_t) ((ptr) - string1))		\
5270
   : ((regoff_t) ((ptr) - string2 + size1)))
5271
#endif /* WCHAR */
5272
 
5273
/* Macros for dealing with the split strings in re_match_2.  */
5274
 
5275
#define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
5276
 
5277
/* Call before fetching a character with *d.  This switches over to
5278
   string2 if necessary.  */
5279
#define PREFETCH()							\
5280
  while (d == dend)						    	\
5281
    {									\
5282
      /* End of string2 => fail.  */					\
5283
      if (dend == end_match_2) 						\
5284
        goto fail;							\
5285
      /* End of string1 => advance to string2.  */ 			\
5286
      d = string2;						        \
5287
      dend = end_match_2;						\
5288
    }
5289
 
5290
/* Test if at very beginning or at very end of the virtual concatenation
5291
   of `string1' and `string2'.  If only one string, it's `string2'.  */
5292
#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5293
#define AT_STRINGS_END(d) ((d) == end2)
5294
 
5295
 
5296
/* Test if D points to a character which is word-constituent.  We have
5297
   two special cases to check for: if past the end of string1, look at
5298
   the first character in string2; and if before the beginning of
5299
   string2, look at the last character in string1.  */
5300
#ifdef WCHAR
5301
/* Use internationalized API instead of SYNTAX.  */
5302
# define WORDCHAR_P(d)							\
5303
  (iswalnum ((wint_t)((d) == end1 ? *string2				\
5304
           : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0		\
5305
   || ((d) == end1 ? *string2						\
5306
       : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5307
#else /* BYTE */
5308
# define WORDCHAR_P(d)							\
5309
  (SYNTAX ((d) == end1 ? *string2					\
5310
           : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
5311
   == Sword)
5312
#endif /* WCHAR */
5313
 
5314
/* Disabled due to a compiler bug -- see comment at case wordbound */
5315
#if 0
5316
/* Test if the character before D and the one at D differ with respect
5317
   to being word-constituent.  */
5318
#define AT_WORD_BOUNDARY(d)						\
5319
  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
5320
   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5321
#endif
5322
 
5323
/* Free everything we malloc.  */
5324
#ifdef MATCH_MAY_ALLOCATE
5325
# ifdef WCHAR
5326
#  define FREE_VARIABLES()						\
5327
  do {									\
5328
    REGEX_FREE_STACK (fail_stack.stack);				\
5329
    FREE_VAR (regstart);						\
5330
    FREE_VAR (regend);							\
5331
    FREE_VAR (old_regstart);						\
5332
    FREE_VAR (old_regend);						\
5333
    FREE_VAR (best_regstart);						\
5334
    FREE_VAR (best_regend);						\
5335
    FREE_VAR (reg_info);						\
5336
    FREE_VAR (reg_dummy);						\
5337
    FREE_VAR (reg_info_dummy);						\
5338
    if (!cant_free_wcs_buf)						\
5339
      {									\
5340
        FREE_VAR (string1);						\
5341
        FREE_VAR (string2);						\
5342
        FREE_VAR (mbs_offset1);						\
5343
        FREE_VAR (mbs_offset2);						\
5344
      }									\
5345
  } while (0)
5346
# else /* BYTE */
5347
#  define FREE_VARIABLES()						\
5348
  do {									\
5349
    REGEX_FREE_STACK (fail_stack.stack);				\
5350
    FREE_VAR (regstart);						\
5351
    FREE_VAR (regend);							\
5352
    FREE_VAR (old_regstart);						\
5353
    FREE_VAR (old_regend);						\
5354
    FREE_VAR (best_regstart);						\
5355
    FREE_VAR (best_regend);						\
5356
    FREE_VAR (reg_info);						\
5357
    FREE_VAR (reg_dummy);						\
5358
    FREE_VAR (reg_info_dummy);						\
5359
  } while (0)
5360
# endif /* WCHAR */
5361
#else
5362
# ifdef WCHAR
5363
#  define FREE_VARIABLES()						\
5364
  do {									\
5365
    if (!cant_free_wcs_buf)						\
5366
      {									\
5367
        FREE_VAR (string1);						\
5368
        FREE_VAR (string2);						\
5369
        FREE_VAR (mbs_offset1);						\
5370
        FREE_VAR (mbs_offset2);						\
5371
      }									\
5372
  } while (0)
5373
# else /* BYTE */
5374
#  define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning. */
5375
# endif /* WCHAR */
5376
#endif /* not MATCH_MAY_ALLOCATE */
5377
 
5378
/* These values must meet several constraints.  They must not be valid
5379
   register values; since we have a limit of 255 registers (because
5380
   we use only one byte in the pattern for the register number), we can
5381
   use numbers larger than 255.  They must differ by 1, because of
5382
   NUM_FAILURE_ITEMS above.  And the value for the lowest register must
5383
   be larger than the value for the highest register, so we do not try
5384
   to actually save any registers when none are active.  */
5385
#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5386
#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5387
 
5388
#else /* not INSIDE_RECURSION */
5389
/* Matching routines.  */
5390
 
5391
#ifndef emacs   /* Emacs never uses this.  */
5392
/* re_match is like re_match_2 except it takes only a single string.  */
5393
 
5394
int
5395
re_match (struct re_pattern_buffer *bufp, const char *string,
5396
          int size, int pos, struct re_registers *regs)
5397
{
5398
  int result;
5399
# ifdef MBS_SUPPORT
5400
  if (MB_CUR_MAX != 1)
5401
    result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
5402
				      pos, regs, size,
5403
				      NULL, 0, NULL, 0, NULL, NULL);
5404
  else
5405
# endif
5406
    result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
5407
				  pos, regs, size);
5408
# ifndef REGEX_MALLOC
5409
#  ifdef C_ALLOCA
5410
  alloca (0);
5411
#  endif
5412
# endif
5413
  return result;
5414
}
5415
# ifdef _LIBC
5416
weak_alias (__re_match, re_match)
5417
# endif
5418
#endif /* not emacs */
5419
 
5420
#endif /* not INSIDE_RECURSION */
5421
 
5422
#ifdef INSIDE_RECURSION
5423
static boolean PREFIX(group_match_null_string_p) (UCHAR_T **p,
5424
                                                  UCHAR_T *end,
5425
					PREFIX(register_info_type) *reg_info);
5426
static boolean PREFIX(alt_match_null_string_p) (UCHAR_T *p,
5427
                                                UCHAR_T *end,
5428
					PREFIX(register_info_type) *reg_info);
5429
static boolean PREFIX(common_op_match_null_string_p) (UCHAR_T **p,
5430
                                                      UCHAR_T *end,
5431
					PREFIX(register_info_type) *reg_info);
5432
static int PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2,
5433
                                   int len, char *translate);
5434
#else /* not INSIDE_RECURSION */
5435
 
5436
/* re_match_2 matches the compiled pattern in BUFP against the
5437
   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5438
   and SIZE2, respectively).  We start matching at POS, and stop
5439
   matching at STOP.
5440
 
5441
   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5442
   store offsets for the substring each group matched in REGS.  See the
5443
   documentation for exactly how many groups we fill.
5444
 
5445
   We return -1 if no match, -2 if an internal error (such as the
5446
   failure stack overflowing).  Otherwise, we return the length of the
5447
   matched substring.  */
5448
 
5449
int
5450
re_match_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
5451
            const char *string2, int size2, int pos,
5452
            struct re_registers *regs, int stop)
5453
{
5454
  int result;
5455
# ifdef MBS_SUPPORT
5456
  if (MB_CUR_MAX != 1)
5457
    result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5458
				      pos, regs, stop,
5459
				      NULL, 0, NULL, 0, NULL, NULL);
5460
  else
5461
# endif
5462
    result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5463
				  pos, regs, stop);
5464
 
5465
#ifndef REGEX_MALLOC
5466
# ifdef C_ALLOCA
5467
  alloca (0);
5468
# endif
5469
#endif
5470
  return result;
5471
}
5472
#ifdef _LIBC
5473
weak_alias (__re_match_2, re_match_2)
5474
#endif
5475
 
5476
#endif /* not INSIDE_RECURSION */
5477
 
5478
#ifdef INSIDE_RECURSION
5479
 
5480
#ifdef WCHAR
5481
static int count_mbs_length (int *, int);
5482
 
5483
/* This check the substring (from 0, to length) of the multibyte string,
5484
   to which offset_buffer correspond. And count how many wchar_t_characters
5485
   the substring occupy. We use offset_buffer to optimization.
5486
   See convert_mbs_to_wcs.  */
5487
 
5488
static int
5489
count_mbs_length(int *offset_buffer, int length)
5490
{
5491
  int upper, lower;
5492
 
5493
  /* Check whether the size is valid.  */
5494
  if (length < 0)
5495
    return -1;
5496
 
5497
  if (offset_buffer == NULL)
5498
    return 0;
5499
 
5500
  /* If there are no multibyte character, offset_buffer[i] == i.
5501
   Optmize for this case.  */
5502
  if (offset_buffer[length] == length)
5503
    return length;
5504
 
5505
  /* Set up upper with length. (because for all i, offset_buffer[i] >= i)  */
5506
  upper = length;
5507
  lower = 0;
5508
 
5509
  while (true)
5510
    {
5511
      int middle = (lower + upper) / 2;
5512
      if (middle == lower || middle == upper)
5513
	break;
5514
      if (offset_buffer[middle] > length)
5515
	upper = middle;
5516
      else if (offset_buffer[middle] < length)
5517
	lower = middle;
5518
      else
5519
	return middle;
5520
    }
5521
 
5522
  return -1;
5523
}
5524
#endif /* WCHAR */
5525
 
5526
/* This is a separate function so that we can force an alloca cleanup
5527
   afterwards.  */
5528
#ifdef WCHAR
5529
static int
5530
wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
5531
                         const char *cstring1, int csize1,
5532
                         const char *cstring2, int csize2,
5533
                         int pos,
5534
			 struct re_registers *regs,
5535
                         int stop,
5536
     /* string1 == string2 == NULL means string1/2, size1/2 and
5537
	mbs_offset1/2 need seting up in this function.  */
5538
     /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5539
                         wchar_t *string1, int size1,
5540
                         wchar_t *string2, int size2,
5541
     /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5542
			 int *mbs_offset1, int *mbs_offset2)
5543
#else /* BYTE */
5544
static int
5545
byte_re_match_2_internal (struct re_pattern_buffer *bufp,
5546
                          const char *string1, int size1,
5547
                          const char *string2, int size2,
5548
                          int pos,
5549
			  struct re_registers *regs, int stop)
5550
#endif /* BYTE */
5551
{
5552
  /* General temporaries.  */
5553
  int mcnt;
5554
  UCHAR_T *p1;
5555
#ifdef WCHAR
5556
  /* They hold whether each wchar_t is binary data or not.  */
5557
  char *is_binary = NULL;
5558
  /* If true, we can't free string1/2, mbs_offset1/2.  */
5559
  int cant_free_wcs_buf = 1;
5560
#endif /* WCHAR */
5561
 
5562
  /* Just past the end of the corresponding string.  */
5563
  const CHAR_T *end1, *end2;
5564
 
5565
  /* Pointers into string1 and string2, just past the last characters in
5566
     each to consider matching.  */
5567
  const CHAR_T *end_match_1, *end_match_2;
5568
 
5569
  /* Where we are in the data, and the end of the current string.  */
5570
  const CHAR_T *d, *dend;
5571
 
5572
  /* Where we are in the pattern, and the end of the pattern.  */
5573
#ifdef WCHAR
5574
  UCHAR_T *pattern, *p;
5575
  register UCHAR_T *pend;
5576
#else /* BYTE */
5577
  UCHAR_T *p = bufp->buffer;
5578
  register UCHAR_T *pend = p + bufp->used;
5579
#endif /* WCHAR */
5580
 
5581
  /* Mark the opcode just after a start_memory, so we can test for an
5582
     empty subpattern when we get to the stop_memory.  */
5583
  UCHAR_T *just_past_start_mem = 0;
5584
 
5585
  /* We use this to map every character in the string.  */
5586
  RE_TRANSLATE_TYPE translate = bufp->translate;
5587
 
5588
  /* Failure point stack.  Each place that can handle a failure further
5589
     down the line pushes a failure point on this stack.  It consists of
5590
     restart, regend, and reg_info for all registers corresponding to
5591
     the subexpressions we're currently inside, plus the number of such
5592
     registers, and, finally, two char *'s.  The first char * is where
5593
     to resume scanning the pattern; the second one is where to resume
5594
     scanning the strings.  If the latter is zero, the failure point is
5595
     a ``dummy''; if a failure happens and the failure point is a dummy,
5596
     it gets discarded and the next next one is tried.  */
5597
#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5598
  PREFIX(fail_stack_type) fail_stack;
5599
#endif
5600
#ifdef DEBUG
5601
  static unsigned failure_id;
5602
  unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5603
#endif
5604
 
5605
#ifdef REL_ALLOC
5606
  /* This holds the pointer to the failure stack, when
5607
     it is allocated relocatably.  */
5608
  fail_stack_elt_t *failure_stack_ptr;
5609
#endif
5610
 
5611
  /* We fill all the registers internally, independent of what we
5612
     return, for use in backreferences.  The number here includes
5613
     an element for register zero.  */
5614
  size_t num_regs = bufp->re_nsub + 1;
5615
 
5616
  /* The currently active registers.  */
5617
  active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5618
  active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5619
 
5620
  /* Information on the contents of registers. These are pointers into
5621
     the input strings; they record just what was matched (on this
5622
     attempt) by a subexpression part of the pattern, that is, the
5623
     regnum-th regstart pointer points to where in the pattern we began
5624
     matching and the regnum-th regend points to right after where we
5625
     stopped matching the regnum-th subexpression.  (The zeroth register
5626
     keeps track of what the whole pattern matches.)  */
5627
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5628
  const CHAR_T **regstart, **regend;
5629
#endif
5630
 
5631
  /* If a group that's operated upon by a repetition operator fails to
5632
     match anything, then the register for its start will need to be
5633
     restored because it will have been set to wherever in the string we
5634
     are when we last see its open-group operator.  Similarly for a
5635
     register's end.  */
5636
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5637
  const CHAR_T **old_regstart, **old_regend;
5638
#endif
5639
 
5640
  /* The is_active field of reg_info helps us keep track of which (possibly
5641
     nested) subexpressions we are currently in. The matched_something
5642
     field of reg_info[reg_num] helps us tell whether or not we have
5643
     matched any of the pattern so far this time through the reg_num-th
5644
     subexpression.  These two fields get reset each time through any
5645
     loop their register is in.  */
5646
#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5647
  PREFIX(register_info_type) *reg_info;
5648
#endif
5649
 
5650
  /* The following record the register info as found in the above
5651
     variables when we find a match better than any we've seen before.
5652
     This happens as we backtrack through the failure points, which in
5653
     turn happens only if we have not yet matched the entire string. */
5654
  unsigned best_regs_set = false;
5655
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5656
  const CHAR_T **best_regstart, **best_regend;
5657
#endif
5658
 
5659
  /* Logically, this is `best_regend[0]'.  But we don't want to have to
5660
     allocate space for that if we're not allocating space for anything
5661
     else (see below).  Also, we never need info about register 0 for
5662
     any of the other register vectors, and it seems rather a kludge to
5663
     treat `best_regend' differently than the rest.  So we keep track of
5664
     the end of the best match so far in a separate variable.  We
5665
     initialize this to NULL so that when we backtrack the first time
5666
     and need to test it, it's not garbage.  */
5667
  const CHAR_T *match_end = NULL;
5668
 
5669
  /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
5670
  int set_regs_matched_done = 0;
5671
 
5672
  /* Used when we pop values we don't care about.  */
5673
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5674
  const CHAR_T **reg_dummy;
5675
  PREFIX(register_info_type) *reg_info_dummy;
5676
#endif
5677
 
5678
#ifdef DEBUG
5679
  /* Counts the total number of registers pushed.  */
5680
  unsigned num_regs_pushed = 0;
5681
#endif
5682
 
5683
  DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5684
 
5685
  INIT_FAIL_STACK ();
5686
 
5687
#ifdef MATCH_MAY_ALLOCATE
5688
  /* Do not bother to initialize all the register variables if there are
5689
     no groups in the pattern, as it takes a fair amount of time.  If
5690
     there are groups, we include space for register 0 (the whole
5691
     pattern), even though we never use it, since it simplifies the
5692
     array indexing.  We should fix this.  */
5693
  if (bufp->re_nsub)
5694
    {
5695
      regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5696
      regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5697
      old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5698
      old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5699
      best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5700
      best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5701
      reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5702
      reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
5703
      reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5704
 
5705
      if (!(regstart && regend && old_regstart && old_regend && reg_info
5706
            && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5707
        {
5708
          FREE_VARIABLES ();
5709
          return -2;
5710
        }
5711
    }
5712
  else
5713
    {
5714
      /* We must initialize all our variables to NULL, so that
5715
         `FREE_VARIABLES' doesn't try to free them.  */
5716
      regstart = regend = old_regstart = old_regend = best_regstart
5717
        = best_regend = reg_dummy = NULL;
5718
      reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
5719
    }
5720
#endif /* MATCH_MAY_ALLOCATE */
5721
 
5722
  /* The starting position is bogus.  */
5723
#ifdef WCHAR
5724
  if (pos < 0 || pos > csize1 + csize2)
5725
#else /* BYTE */
5726
  if (pos < 0 || pos > size1 + size2)
5727
#endif
5728
    {
5729
      FREE_VARIABLES ();
5730
      return -1;
5731
    }
5732
 
5733
#ifdef WCHAR
5734
  /* Allocate wchar_t array for string1 and string2 and
5735
     fill them with converted string.  */
5736
  if (string1 == NULL && string2 == NULL)
5737
    {
5738
      /* We need seting up buffers here.  */
5739
 
5740
      /* We must free wcs buffers in this function.  */
5741
      cant_free_wcs_buf = 0;
5742
 
5743
      if (csize1 != 0)
5744
	{
5745
	  string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
5746
	  mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5747
	  is_binary = REGEX_TALLOC (csize1 + 1, char);
5748
	  if (!string1 || !mbs_offset1 || !is_binary)
5749
	    {
5750
	      FREE_VAR (string1);
5751
	      FREE_VAR (mbs_offset1);
5752
	      FREE_VAR (is_binary);
5753
	      return -2;
5754
	    }
5755
	}
5756
      if (csize2 != 0)
5757
	{
5758
	  string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
5759
	  mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5760
	  is_binary = REGEX_TALLOC (csize2 + 1, char);
5761
	  if (!string2 || !mbs_offset2 || !is_binary)
5762
	    {
5763
	      FREE_VAR (string1);
5764
	      FREE_VAR (mbs_offset1);
5765
	      FREE_VAR (string2);
5766
	      FREE_VAR (mbs_offset2);
5767
	      FREE_VAR (is_binary);
5768
	      return -2;
5769
	    }
5770
	  size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5771
				     mbs_offset2, is_binary);
5772
	  string2[size2] = L'\0'; /* for a sentinel  */
5773
	  FREE_VAR (is_binary);
5774
	}
5775
    }
5776
 
5777
  /* We need to cast pattern to (wchar_t*), because we casted this compiled
5778
     pattern to (char*) in regex_compile.  */
5779
  p = pattern = (CHAR_T*)bufp->buffer;
5780
  pend = (CHAR_T*)(bufp->buffer + bufp->used);
5781
 
5782
#endif /* WCHAR */
5783
 
5784
  /* Initialize subexpression text positions to -1 to mark ones that no
5785
     start_memory/stop_memory has been seen for. Also initialize the
5786
     register information struct.  */
5787
  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5788
    {
5789
      regstart[mcnt] = regend[mcnt]
5790
        = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5791
 
5792
      REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
5793
      IS_ACTIVE (reg_info[mcnt]) = 0;
5794
      MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5795
      EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5796
    }
5797
 
5798
  /* We move `string1' into `string2' if the latter's empty -- but not if
5799
     `string1' is null.  */
5800
  if (size2 == 0 && string1 != NULL)
5801
    {
5802
      string2 = string1;
5803
      size2 = size1;
5804
      string1 = 0;
5805
      size1 = 0;
5806
#ifdef WCHAR
5807
      mbs_offset2 = mbs_offset1;
5808
      csize2 = csize1;
5809
      mbs_offset1 = NULL;
5810
      csize1 = 0;
5811
#endif
5812
    }
5813
  end1 = string1 + size1;
5814
  end2 = string2 + size2;
5815
 
5816
  /* Compute where to stop matching, within the two strings.  */
5817
#ifdef WCHAR
5818
  if (stop <= csize1)
5819
    {
5820
      mcnt = count_mbs_length(mbs_offset1, stop);
5821
      end_match_1 = string1 + mcnt;
5822
      end_match_2 = string2;
5823
    }
5824
  else
5825
    {
5826
      if (stop > csize1 + csize2)
5827
	stop = csize1 + csize2;
5828
      end_match_1 = end1;
5829
      mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5830
      end_match_2 = string2 + mcnt;
5831
    }
5832
  if (mcnt < 0)
5833
    { /* count_mbs_length return error.  */
5834
      FREE_VARIABLES ();
5835
      return -1;
5836
    }
5837
#else
5838
  if (stop <= size1)
5839
    {
5840
      end_match_1 = string1 + stop;
5841
      end_match_2 = string2;
5842
    }
5843
  else
5844
    {
5845
      end_match_1 = end1;
5846
      end_match_2 = string2 + stop - size1;
5847
    }
5848
#endif /* WCHAR */
5849
 
5850
  /* `p' scans through the pattern as `d' scans through the data.
5851
     `dend' is the end of the input string that `d' points within.  `d'
5852
     is advanced into the following input string whenever necessary, but
5853
     this happens before fetching; therefore, at the beginning of the
5854
     loop, `d' can be pointing at the end of a string, but it cannot
5855
     equal `string2'.  */
5856
#ifdef WCHAR
5857
  if (size1 > 0 && pos <= csize1)
5858
    {
5859
      mcnt = count_mbs_length(mbs_offset1, pos);
5860
      d = string1 + mcnt;
5861
      dend = end_match_1;
5862
    }
5863
  else
5864
    {
5865
      mcnt = count_mbs_length(mbs_offset2, pos-csize1);
5866
      d = string2 + mcnt;
5867
      dend = end_match_2;
5868
    }
5869
 
5870
  if (mcnt < 0)
5871
    { /* count_mbs_length return error.  */
5872
      FREE_VARIABLES ();
5873
      return -1;
5874
    }
5875
#else
5876
  if (size1 > 0 && pos <= size1)
5877
    {
5878
      d = string1 + pos;
5879
      dend = end_match_1;
5880
    }
5881
  else
5882
    {
5883
      d = string2 + pos - size1;
5884
      dend = end_match_2;
5885
    }
5886
#endif /* WCHAR */
5887
 
5888
  DEBUG_PRINT1 ("The compiled pattern is:\n");
5889
  DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5890
  DEBUG_PRINT1 ("The string to match is: `");
5891
  DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5892
  DEBUG_PRINT1 ("'\n");
5893
 
5894
  /* This loops over pattern commands.  It exits by returning from the
5895
     function if the match is complete, or it drops through if the match
5896
     fails at this starting point in the input data.  */
5897
  for (;;)
5898
    {
5899
#ifdef _LIBC
5900
      DEBUG_PRINT2 ("\n%p: ", p);
5901
#else
5902
      DEBUG_PRINT2 ("\n0x%x: ", p);
5903
#endif
5904
 
5905
      if (p == pend)
5906
	{ /* End of pattern means we might have succeeded.  */
5907
          DEBUG_PRINT1 ("end of pattern ... ");
5908
 
5909
	  /* If we haven't matched the entire string, and we want the
5910
             longest match, try backtracking.  */
5911
          if (d != end_match_2)
5912
	    {
5913
	      /* 1 if this match ends in the same string (string1 or string2)
5914
		 as the best previous match.  */
5915
	      boolean same_str_p;
5916
 
5917
	      /* 1 if this match is the best seen so far.  */
5918
	      boolean best_match_p;
5919
 
5920
              same_str_p = (FIRST_STRING_P (match_end)
5921
                            == MATCHING_IN_FIRST_STRING);
5922
 
5923
	      /* AIX compiler got confused when this was combined
5924
		 with the previous declaration.  */
5925
	      if (same_str_p)
5926
		best_match_p = d > match_end;
5927
	      else
5928
		best_match_p = !MATCHING_IN_FIRST_STRING;
5929
 
5930
              DEBUG_PRINT1 ("backtracking.\n");
5931
 
5932
              if (!FAIL_STACK_EMPTY ())
5933
                { /* More failure points to try.  */
5934
 
5935
                  /* If exceeds best match so far, save it.  */
5936
                  if (!best_regs_set || best_match_p)
5937
                    {
5938
                      best_regs_set = true;
5939
                      match_end = d;
5940
 
5941
                      DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5942
 
5943
                      for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5944
                        {
5945
                          best_regstart[mcnt] = regstart[mcnt];
5946
                          best_regend[mcnt] = regend[mcnt];
5947
                        }
5948
                    }
5949
                  goto fail;
5950
                }
5951
 
5952
              /* If no failure points, don't restore garbage.  And if
5953
                 last match is real best match, don't restore second
5954
                 best one. */
5955
              else if (best_regs_set && !best_match_p)
5956
                {
5957
  	        restore_best_regs:
5958
                  /* Restore best match.  It may happen that `dend ==
5959
                     end_match_1' while the restored d is in string2.
5960
                     For example, the pattern `x.*y.*z' against the
5961
                     strings `x-' and `y-z-', if the two strings are
5962
                     not consecutive in memory.  */
5963
                  DEBUG_PRINT1 ("Restoring best registers.\n");
5964
 
5965
                  d = match_end;
5966
                  dend = ((d >= string1 && d <= end1)
5967
		           ? end_match_1 : end_match_2);
5968
 
5969
		  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5970
		    {
5971
		      regstart[mcnt] = best_regstart[mcnt];
5972
		      regend[mcnt] = best_regend[mcnt];
5973
		    }
5974
                }
5975
            } /* d != end_match_2 */
5976
 
5977
	succeed_label:
5978
          DEBUG_PRINT1 ("Accepting match.\n");
5979
          /* If caller wants register contents data back, do it.  */
5980
          if (regs && !bufp->no_sub)
5981
	    {
5982
	      /* Have the register data arrays been allocated?  */
5983
              if (bufp->regs_allocated == REGS_UNALLOCATED)
5984
                { /* No.  So allocate them with malloc.  We need one
5985
                     extra element beyond `num_regs' for the `-1' marker
5986
                     GNU code uses.  */
5987
                  regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5988
                  regs->start = TALLOC (regs->num_regs, regoff_t);
5989
                  regs->end = TALLOC (regs->num_regs, regoff_t);
5990
                  if (regs->start == NULL || regs->end == NULL)
5991
		    {
5992
		      FREE_VARIABLES ();
5993
		      return -2;
5994
		    }
5995
                  bufp->regs_allocated = REGS_REALLOCATE;
5996
                }
5997
              else if (bufp->regs_allocated == REGS_REALLOCATE)
5998
                { /* Yes.  If we need more elements than were already
5999
                     allocated, reallocate them.  If we need fewer, just
6000
                     leave it alone.  */
6001
                  if (regs->num_regs < num_regs + 1)
6002
                    {
6003
                      regs->num_regs = num_regs + 1;
6004
                      RETALLOC (regs->start, regs->num_regs, regoff_t);
6005
                      RETALLOC (regs->end, regs->num_regs, regoff_t);
6006
                      if (regs->start == NULL || regs->end == NULL)
6007
			{
6008
			  FREE_VARIABLES ();
6009
			  return -2;
6010
			}
6011
                    }
6012
                }
6013
              else
6014
		{
6015
		  /* These braces fend off a "empty body in an else-statement"
6016
		     warning under GCC when assert expands to nothing.  */
6017
		  assert (bufp->regs_allocated == REGS_FIXED);
6018
		}
6019
 
6020
              /* Convert the pointer data in `regstart' and `regend' to
6021
                 indices.  Register zero has to be set differently,
6022
                 since we haven't kept track of any info for it.  */
6023
              if (regs->num_regs > 0)
6024
                {
6025
                  regs->start[0] = pos;
6026
#ifdef WCHAR
6027
		  if (MATCHING_IN_FIRST_STRING)
6028
		    regs->end[0] = mbs_offset1 != NULL ?
6029
					mbs_offset1[d-string1] : 0;
6030
		  else
6031
		    regs->end[0] = csize1 + (mbs_offset2 != NULL ?
6032
					     mbs_offset2[d-string2] : 0);
6033
#else
6034
                  regs->end[0] = (MATCHING_IN_FIRST_STRING
6035
				  ? ((regoff_t) (d - string1))
6036
			          : ((regoff_t) (d - string2 + size1)));
6037
#endif /* WCHAR */
6038
                }
6039
 
6040
              /* Go through the first `min (num_regs, regs->num_regs)'
6041
                 registers, since that is all we initialized.  */
6042
	      for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
6043
		   mcnt++)
6044
		{
6045
                  if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6046
                    regs->start[mcnt] = regs->end[mcnt] = -1;
6047
                  else
6048
                    {
6049
		      regs->start[mcnt]
6050
			= (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6051
                      regs->end[mcnt]
6052
			= (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6053
                    }
6054
		}
6055
 
6056
              /* If the regs structure we return has more elements than
6057
                 were in the pattern, set the extra elements to -1.  If
6058
                 we (re)allocated the registers, this is the case,
6059
                 because we always allocate enough to have at least one
6060
                 -1 at the end.  */
6061
              for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6062
                regs->start[mcnt] = regs->end[mcnt] = -1;
6063
	    } /* regs && !bufp->no_sub */
6064
 
6065
          DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6066
                        nfailure_points_pushed, nfailure_points_popped,
6067
                        nfailure_points_pushed - nfailure_points_popped);
6068
          DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6069
 
6070
#ifdef WCHAR
6071
	  if (MATCHING_IN_FIRST_STRING)
6072
	    mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
6073
	  else
6074
	    mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
6075
			csize1;
6076
          mcnt -= pos;
6077
#else
6078
          mcnt = d - pos - (MATCHING_IN_FIRST_STRING
6079
			    ? string1
6080
			    : string2 - size1);
6081
#endif /* WCHAR */
6082
 
6083
          DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6084
 
6085
          FREE_VARIABLES ();
6086
          return mcnt;
6087
        }
6088
 
6089
      /* Otherwise match next pattern command.  */
6090
      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
6091
	{
6092
        /* Ignore these.  Used to ignore the n of succeed_n's which
6093
           currently have n == 0.  */
6094
        case no_op:
6095
          DEBUG_PRINT1 ("EXECUTING no_op.\n");
6096
          break;
6097
 
6098
	case succeed:
6099
          DEBUG_PRINT1 ("EXECUTING succeed.\n");
6100
	  goto succeed_label;
6101
 
6102
        /* Match the next n pattern characters exactly.  The following
6103
           byte in the pattern defines n, and the n bytes after that
6104
           are the characters to match.  */
6105
	case exactn:
6106
#ifdef MBS_SUPPORT
6107
	case exactn_bin:
6108
#endif
6109
	  mcnt = *p++;
6110
          DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6111
 
6112
          /* This is written out as an if-else so we don't waste time
6113
             testing `translate' inside the loop.  */
6114
          if (translate)
6115
	    {
6116
	      do
6117
		{
6118
		  PREFETCH ();
6119
#ifdef WCHAR
6120
		  if (*d <= 0xff)
6121
		    {
6122
		      if ((UCHAR_T) translate[(unsigned char) *d++]
6123
			  != (UCHAR_T) *p++)
6124
			goto fail;
6125
		    }
6126
		  else
6127
		    {
6128
		      if (*d++ != (CHAR_T) *p++)
6129
			goto fail;
6130
		    }
6131
#else
6132
		  if ((UCHAR_T) translate[(unsigned char) *d++]
6133
		      != (UCHAR_T) *p++)
6134
                    goto fail;
6135
#endif /* WCHAR */
6136
		}
6137
	      while (--mcnt);
6138
	    }
6139
	  else
6140
	    {
6141
	      do
6142
		{
6143
		  PREFETCH ();
6144
		  if (*d++ != (CHAR_T) *p++) goto fail;
6145
		}
6146
	      while (--mcnt);
6147
	    }
6148
	  SET_REGS_MATCHED ();
6149
          break;
6150
 
6151
 
6152
        /* Match any character except possibly a newline or a null.  */
6153
	case anychar:
6154
          DEBUG_PRINT1 ("EXECUTING anychar.\n");
6155
 
6156
          PREFETCH ();
6157
 
6158
          if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
6159
              || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
6160
	    goto fail;
6161
 
6162
          SET_REGS_MATCHED ();
6163
          DEBUG_PRINT2 ("  Matched `%ld'.\n", (long int) *d);
6164
          d++;
6165
	  break;
6166
 
6167
 
6168
	case charset:
6169
	case charset_not:
6170
	  {
6171
	    register UCHAR_T c;
6172
#ifdef WCHAR
6173
	    unsigned int i, char_class_length, coll_symbol_length,
6174
              equiv_class_length, ranges_length, chars_length, length;
6175
	    CHAR_T *workp, *workp2, *charset_top;
6176
#define WORK_BUFFER_SIZE 128
6177
            CHAR_T str_buf[WORK_BUFFER_SIZE];
6178
# ifdef _LIBC
6179
	    uint32_t nrules;
6180
# endif /* _LIBC */
6181
#endif /* WCHAR */
6182
	    boolean negate = (re_opcode_t) *(p - 1) == charset_not;
6183
 
6184
            DEBUG_PRINT2 ("EXECUTING charset%s.\n", negate ? "_not" : "");
6185
	    PREFETCH ();
6186
	    c = TRANSLATE (*d); /* The character to match.  */
6187
#ifdef WCHAR
6188
# ifdef _LIBC
6189
	    nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6190
# endif /* _LIBC */
6191
	    charset_top = p - 1;
6192
	    char_class_length = *p++;
6193
	    coll_symbol_length = *p++;
6194
	    equiv_class_length = *p++;
6195
	    ranges_length = *p++;
6196
	    chars_length = *p++;
6197
	    /* p points charset[6], so the address of the next instruction
6198
	       (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6199
	       where l=length of char_classes, m=length of collating_symbol,
6200
	       n=equivalence_class, o=length of char_range,
6201
	       p'=length of character.  */
6202
	    workp = p;
6203
	    /* Update p to indicate the next instruction.  */
6204
	    p += char_class_length + coll_symbol_length+ equiv_class_length +
6205
              2*ranges_length + chars_length;
6206
 
6207
            /* match with char_class?  */
6208
	    for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6209
	      {
6210
		wctype_t wctype;
6211
		uintptr_t alignedp = ((uintptr_t)workp
6212
				      + __alignof__(wctype_t) - 1)
6213
		  		      & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6214
		wctype = *((wctype_t*)alignedp);
6215
		workp += CHAR_CLASS_SIZE;
6216
# ifdef _LIBC
6217
		if (__iswctype((wint_t)c, wctype))
6218
		  goto char_set_matched;
6219
# else
6220
		if (iswctype((wint_t)c, wctype))
6221
		  goto char_set_matched;
6222
# endif
6223
	      }
6224
 
6225
            /* match with collating_symbol?  */
6226
# ifdef _LIBC
6227
	    if (nrules != 0)
6228
	      {
6229
		const unsigned char *extra = (const unsigned char *)
6230
		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6231
 
6232
		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6233
		     workp++)
6234
		  {
6235
		    int32_t *wextra;
6236
		    wextra = (int32_t*)(extra + *workp++);
6237
		    for (i = 0; i < *wextra; ++i)
6238
		      if (TRANSLATE(d[i]) != wextra[1 + i])
6239
			break;
6240
 
6241
		    if (i == *wextra)
6242
		      {
6243
			/* Update d, however d will be incremented at
6244
			   char_set_matched:, we decrement d here.  */
6245
			d += i - 1;
6246
			goto char_set_matched;
6247
		      }
6248
		  }
6249
	      }
6250
	    else /* (nrules == 0) */
6251
# endif
6252
	      /* If we can't look up collation data, we use wcscoll
6253
		 instead.  */
6254
	      {
6255
		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6256
		  {
6257
		    const CHAR_T *backup_d = d, *backup_dend = dend;
6258
# ifdef _LIBC
6259
		    length = __wcslen (workp);
6260
# else
6261
		    length = wcslen (workp);
6262
# endif
6263
 
6264
		    /* If wcscoll(the collating symbol, whole string) > 0,
6265
		       any substring of the string never match with the
6266
		       collating symbol.  */
6267
# ifdef _LIBC
6268
		    if (__wcscoll (workp, d) > 0)
6269
# else
6270
		    if (wcscoll (workp, d) > 0)
6271
# endif
6272
		      {
6273
			workp += length + 1;
6274
			continue;
6275
		      }
6276
 
6277
		    /* First, we compare the collating symbol with
6278
		       the first character of the string.
6279
		       If it don't match, we add the next character to
6280
		       the compare buffer in turn.  */
6281
		    for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6282
		      {
6283
			int match;
6284
			if (d == dend)
6285
			  {
6286
			    if (dend == end_match_2)
6287
			      break;
6288
			    d = string2;
6289
			    dend = end_match_2;
6290
			  }
6291
 
6292
			/* add next character to the compare buffer.  */
6293
			str_buf[i] = TRANSLATE(*d);
6294
			str_buf[i+1] = '\0';
6295
 
6296
# ifdef _LIBC
6297
			match = __wcscoll (workp, str_buf);
6298
# else
6299
			match = wcscoll (workp, str_buf);
6300
# endif
6301
			if (match == 0)
6302
			  goto char_set_matched;
6303
 
6304
			if (match < 0)
6305
			  /* (str_buf > workp) indicate (str_buf + X > workp),
6306
			     because for all X (str_buf + X > str_buf).
6307
			     So we don't need continue this loop.  */
6308
			  break;
6309
 
6310
			/* Otherwise(str_buf < workp),
6311
			   (str_buf+next_character) may equals (workp).
6312
			   So we continue this loop.  */
6313
		      }
6314
		    /* not matched */
6315
		    d = backup_d;
6316
		    dend = backup_dend;
6317
		    workp += length + 1;
6318
		  }
6319
              }
6320
            /* match with equivalence_class?  */
6321
# ifdef _LIBC
6322
	    if (nrules != 0)
6323
	      {
6324
                const CHAR_T *backup_d = d, *backup_dend = dend;
6325
		/* Try to match the equivalence class against
6326
		   those known to the collate implementation.  */
6327
		const int32_t *table;
6328
		const int32_t *weights;
6329
		const int32_t *extra;
6330
		const int32_t *indirect;
6331
		int32_t idx, idx2;
6332
		wint_t *cp;
6333
		size_t len;
6334
 
6335
		/* This #include defines a local function!  */
6336
#  include 
6337
 
6338
		table = (const int32_t *)
6339
		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6340
		weights = (const wint_t *)
6341
		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6342
		extra = (const wint_t *)
6343
		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6344
		indirect = (const int32_t *)
6345
		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6346
 
6347
		/* Write 1 collating element to str_buf, and
6348
		   get its index.  */
6349
		idx2 = 0;
6350
 
6351
		for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6352
		  {
6353
		    cp = (wint_t*)str_buf;
6354
		    if (d == dend)
6355
		      {
6356
			if (dend == end_match_2)
6357
			  break;
6358
			d = string2;
6359
			dend = end_match_2;
6360
		      }
6361
		    str_buf[i] = TRANSLATE(*(d+i));
6362
		    str_buf[i+1] = '\0'; /* sentinel */
6363
		    idx2 = findidx ((const wint_t**)&cp);
6364
		  }
6365
 
6366
		/* Update d, however d will be incremented at
6367
		   char_set_matched:, we decrement d here.  */
6368
		d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6369
		if (d >= dend)
6370
		  {
6371
		    if (dend == end_match_2)
6372
			d = dend;
6373
		    else
6374
		      {
6375
			d = string2;
6376
			dend = end_match_2;
6377
		      }
6378
		  }
6379
 
6380
		len = weights[idx2];
6381
 
6382
		for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6383
		     workp++)
6384
		  {
6385
		    idx = (int32_t)*workp;
6386
		    /* We already checked idx != 0 in regex_compile. */
6387
 
6388
		    if (idx2 != 0 && len == weights[idx])
6389
		      {
6390
			int cnt = 0;
6391
			while (cnt < len && (weights[idx + 1 + cnt]
6392
					     == weights[idx2 + 1 + cnt]))
6393
			  ++cnt;
6394
 
6395
			if (cnt == len)
6396
			  goto char_set_matched;
6397
		      }
6398
		  }
6399
		/* not matched */
6400
                d = backup_d;
6401
                dend = backup_dend;
6402
	      }
6403
	    else /* (nrules == 0) */
6404
# endif
6405
	      /* If we can't look up collation data, we use wcscoll
6406
		 instead.  */
6407
	      {
6408
		for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6409
		  {
6410
		    const CHAR_T *backup_d = d, *backup_dend = dend;
6411
# ifdef _LIBC
6412
		    length = __wcslen (workp);
6413
# else
6414
		    length = wcslen (workp);
6415
# endif
6416
 
6417
		    /* If wcscoll(the collating symbol, whole string) > 0,
6418
		       any substring of the string never match with the
6419
		       collating symbol.  */
6420
# ifdef _LIBC
6421
		    if (__wcscoll (workp, d) > 0)
6422
# else
6423
		    if (wcscoll (workp, d) > 0)
6424
# endif
6425
		      {
6426
			workp += length + 1;
6427
			break;
6428
		      }
6429
 
6430
		    /* First, we compare the equivalence class with
6431
		       the first character of the string.
6432
		       If it don't match, we add the next character to
6433
		       the compare buffer in turn.  */
6434
		    for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6435
		      {
6436
			int match;
6437
			if (d == dend)
6438
			  {
6439
			    if (dend == end_match_2)
6440
			      break;
6441
			    d = string2;
6442
			    dend = end_match_2;
6443
			  }
6444
 
6445
			/* add next character to the compare buffer.  */
6446
			str_buf[i] = TRANSLATE(*d);
6447
			str_buf[i+1] = '\0';
6448
 
6449
# ifdef _LIBC
6450
			match = __wcscoll (workp, str_buf);
6451
# else
6452
			match = wcscoll (workp, str_buf);
6453
# endif
6454
 
6455
			if (match == 0)
6456
			  goto char_set_matched;
6457
 
6458
			if (match < 0)
6459
			/* (str_buf > workp) indicate (str_buf + X > workp),
6460
			   because for all X (str_buf + X > str_buf).
6461
			   So we don't need continue this loop.  */
6462
			  break;
6463
 
6464
			/* Otherwise(str_buf < workp),
6465
			   (str_buf+next_character) may equals (workp).
6466
			   So we continue this loop.  */
6467
		      }
6468
		    /* not matched */
6469
		    d = backup_d;
6470
		    dend = backup_dend;
6471
		    workp += length + 1;
6472
		  }
6473
	      }
6474
 
6475
            /* match with char_range?  */
6476
# ifdef _LIBC
6477
	    if (nrules != 0)
6478
	      {
6479
		uint32_t collseqval;
6480
		const char *collseq = (const char *)
6481
		  _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6482
 
6483
		collseqval = collseq_table_lookup (collseq, c);
6484
 
6485
		for (; workp < p - chars_length ;)
6486
		  {
6487
		    uint32_t start_val, end_val;
6488
 
6489
		    /* We already compute the collation sequence value
6490
		       of the characters (or collating symbols).  */
6491
		    start_val = (uint32_t) *workp++; /* range_start */
6492
		    end_val = (uint32_t) *workp++; /* range_end */
6493
 
6494
		    if (start_val <= collseqval && collseqval <= end_val)
6495
		      goto char_set_matched;
6496
		  }
6497
	      }
6498
	    else
6499
# endif
6500
	      {
6501
		/* We set range_start_char at str_buf[0], range_end_char
6502
		   at str_buf[4], and compared char at str_buf[2].  */
6503
		str_buf[1] = 0;
6504
		str_buf[2] = c;
6505
		str_buf[3] = 0;
6506
		str_buf[5] = 0;
6507
		for (; workp < p - chars_length ;)
6508
		  {
6509
		    wchar_t *range_start_char, *range_end_char;
6510
 
6511
		    /* match if (range_start_char <= c <= range_end_char).  */
6512
 
6513
		    /* If range_start(or end) < 0, we assume -range_start(end)
6514
		       is the offset of the collating symbol which is specified
6515
		       as the character of the range start(end).  */
6516
 
6517
		    /* range_start */
6518
		    if (*workp < 0)
6519
		      range_start_char = charset_top - (*workp++);
6520
		    else
6521
		      {
6522
			str_buf[0] = *workp++;
6523
			range_start_char = str_buf;
6524
		      }
6525
 
6526
		    /* range_end */
6527
		    if (*workp < 0)
6528
		      range_end_char = charset_top - (*workp++);
6529
		    else
6530
		      {
6531
			str_buf[4] = *workp++;
6532
			range_end_char = str_buf + 4;
6533
		      }
6534
 
6535
# ifdef _LIBC
6536
		    if (__wcscoll (range_start_char, str_buf+2) <= 0
6537
			&& __wcscoll (str_buf+2, range_end_char) <= 0)
6538
# else
6539
		    if (wcscoll (range_start_char, str_buf+2) <= 0
6540
			&& wcscoll (str_buf+2, range_end_char) <= 0)
6541
# endif
6542
		      goto char_set_matched;
6543
		  }
6544
	      }
6545
 
6546
            /* match with char?  */
6547
	    for (; workp < p ; workp++)
6548
	      if (c == *workp)
6549
		goto char_set_matched;
6550
 
6551
	    negate = !negate;
6552
 
6553
	  char_set_matched:
6554
	    if (negate) goto fail;
6555
#else
6556
            /* Cast to `unsigned' instead of `unsigned char' in case the
6557
               bit list is a full 32 bytes long.  */
6558
	    if (c < (unsigned) (*p * BYTEWIDTH)
6559
		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6560
	      negate = !negate;
6561
 
6562
	    p += 1 + *p;
6563
 
6564
	    if (!negate) goto fail;
6565
#undef WORK_BUFFER_SIZE
6566
#endif /* WCHAR */
6567
	    SET_REGS_MATCHED ();
6568
            d++;
6569
	    break;
6570
	  }
6571
 
6572
 
6573
        /* The beginning of a group is represented by start_memory.
6574
           The arguments are the register number in the next byte, and the
6575
           number of groups inner to this one in the next.  The text
6576
           matched within the group is recorded (in the internal
6577
           registers data structure) under the register number.  */
6578
        case start_memory:
6579
	  DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6580
			(long int) *p, (long int) p[1]);
6581
 
6582
          /* Find out if this group can match the empty string.  */
6583
	  p1 = p;		/* To send to group_match_null_string_p.  */
6584
 
6585
          if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6586
            REG_MATCH_NULL_STRING_P (reg_info[*p])
6587
              = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6588
 
6589
          /* Save the position in the string where we were the last time
6590
             we were at this open-group operator in case the group is
6591
             operated upon by a repetition operator, e.g., with `(a*)*b'
6592
             against `ab'; then we want to ignore where we are now in
6593
             the string in case this attempt to match fails.  */
6594
          old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6595
                             ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6596
                             : regstart[*p];
6597
	  DEBUG_PRINT2 ("  old_regstart: %d\n",
6598
			 POINTER_TO_OFFSET (old_regstart[*p]));
6599
 
6600
          regstart[*p] = d;
6601
	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6602
 
6603
          IS_ACTIVE (reg_info[*p]) = 1;
6604
          MATCHED_SOMETHING (reg_info[*p]) = 0;
6605
 
6606
	  /* Clear this whenever we change the register activity status.  */
6607
	  set_regs_matched_done = 0;
6608
 
6609
          /* This is the new highest active register.  */
6610
          highest_active_reg = *p;
6611
 
6612
          /* If nothing was active before, this is the new lowest active
6613
             register.  */
6614
          if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6615
            lowest_active_reg = *p;
6616
 
6617
          /* Move past the register number and inner group count.  */
6618
          p += 2;
6619
	  just_past_start_mem = p;
6620
 
6621
          break;
6622
 
6623
 
6624
        /* The stop_memory opcode represents the end of a group.  Its
6625
           arguments are the same as start_memory's: the register
6626
           number, and the number of inner groups.  */
6627
	case stop_memory:
6628
	  DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6629
			(long int) *p, (long int) p[1]);
6630
 
6631
          /* We need to save the string position the last time we were at
6632
             this close-group operator in case the group is operated
6633
             upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6634
             against `aba'; then we want to ignore where we are now in
6635
             the string in case this attempt to match fails.  */
6636
          old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6637
                           ? REG_UNSET (regend[*p]) ? d : regend[*p]
6638
			   : regend[*p];
6639
	  DEBUG_PRINT2 ("      old_regend: %d\n",
6640
			 POINTER_TO_OFFSET (old_regend[*p]));
6641
 
6642
          regend[*p] = d;
6643
	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6644
 
6645
          /* This register isn't active anymore.  */
6646
          IS_ACTIVE (reg_info[*p]) = 0;
6647
 
6648
	  /* Clear this whenever we change the register activity status.  */
6649
	  set_regs_matched_done = 0;
6650
 
6651
          /* If this was the only register active, nothing is active
6652
             anymore.  */
6653
          if (lowest_active_reg == highest_active_reg)
6654
            {
6655
              lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6656
              highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6657
            }
6658
          else
6659
            { /* We must scan for the new highest active register, since
6660
                 it isn't necessarily one less than now: consider
6661
                 (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
6662
                 new highest active register is 1.  */
6663
              UCHAR_T r = *p - 1;
6664
              while (r > 0 && !IS_ACTIVE (reg_info[r]))
6665
                r--;
6666
 
6667
              /* If we end up at register zero, that means that we saved
6668
                 the registers as the result of an `on_failure_jump', not
6669
                 a `start_memory', and we jumped to past the innermost
6670
                 `stop_memory'.  For example, in ((.)*) we save
6671
                 registers 1 and 2 as a result of the *, but when we pop
6672
                 back to the second ), we are at the stop_memory 1.
6673
                 Thus, nothing is active.  */
6674
	      if (r == 0)
6675
                {
6676
                  lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6677
                  highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6678
                }
6679
              else
6680
                highest_active_reg = r;
6681
            }
6682
 
6683
          /* If just failed to match something this time around with a
6684
             group that's operated on by a repetition operator, try to
6685
             force exit from the ``loop'', and restore the register
6686
             information for this group that we had before trying this
6687
             last match.  */
6688
          if ((!MATCHED_SOMETHING (reg_info[*p])
6689
               || just_past_start_mem == p - 1)
6690
	      && (p + 2) < pend)
6691
            {
6692
              boolean is_a_jump_n = false;
6693
 
6694
              p1 = p + 2;
6695
              mcnt = 0;
6696
              switch ((re_opcode_t) *p1++)
6697
                {
6698
                  case jump_n:
6699
		    is_a_jump_n = true;
6700
                  case pop_failure_jump:
6701
		  case maybe_pop_jump:
6702
		  case jump:
6703
		  case dummy_failure_jump:
6704
                    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6705
		    if (is_a_jump_n)
6706
		      p1 += OFFSET_ADDRESS_SIZE;
6707
                    break;
6708
 
6709
                  default:
6710
                    /* do nothing */ ;
6711
                }
6712
	      p1 += mcnt;
6713
 
6714
              /* If the next operation is a jump backwards in the pattern
6715
	         to an on_failure_jump right before the start_memory
6716
                 corresponding to this stop_memory, exit from the loop
6717
                 by forcing a failure after pushing on the stack the
6718
                 on_failure_jump's jump in the pattern, and d.  */
6719
              if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6720
                  && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6721
		  && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6722
		{
6723
                  /* If this group ever matched anything, then restore
6724
                     what its registers were before trying this last
6725
                     failed match, e.g., with `(a*)*b' against `ab' for
6726
                     regstart[1], and, e.g., with `((a*)*(b*)*)*'
6727
                     against `aba' for regend[3].
6728
 
6729
                     Also restore the registers for inner groups for,
6730
                     e.g., `((a*)(b*))*' against `aba' (register 3 would
6731
                     otherwise get trashed).  */
6732
 
6733
                  if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6734
		    {
6735
		      unsigned r;
6736
 
6737
                      EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6738
 
6739
		      /* Restore this and inner groups' (if any) registers.  */
6740
                      for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6741
			   r++)
6742
                        {
6743
                          regstart[r] = old_regstart[r];
6744
 
6745
                          /* xx why this test?  */
6746
                          if (old_regend[r] >= regstart[r])
6747
                            regend[r] = old_regend[r];
6748
                        }
6749
                    }
6750
		  p1++;
6751
                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6752
                  PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6753
 
6754
                  goto fail;
6755
                }
6756
            }
6757
 
6758
          /* Move past the register number and the inner group count.  */
6759
          p += 2;
6760
          break;
6761
 
6762
 
6763
	/* \ has been turned into a `duplicate' command which is
6764
           followed by the numeric value of  as the register number.  */
6765
        case duplicate:
6766
	  {
6767
	    register const CHAR_T *d2, *dend2;
6768
	    int regno = *p++;   /* Get which register to match against.  */
6769
	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6770
 
6771
	    /* Can't back reference a group which we've never matched.  */
6772
            if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6773
              goto fail;
6774
 
6775
            /* Where in input to try to start matching.  */
6776
            d2 = regstart[regno];
6777
 
6778
            /* Where to stop matching; if both the place to start and
6779
               the place to stop matching are in the same string, then
6780
               set to the place to stop, otherwise, for now have to use
6781
               the end of the first string.  */
6782
 
6783
            dend2 = ((FIRST_STRING_P (regstart[regno])
6784
		      == FIRST_STRING_P (regend[regno]))
6785
		     ? regend[regno] : end_match_1);
6786
	    for (;;)
6787
	      {
6788
		/* If necessary, advance to next segment in register
6789
                   contents.  */
6790
		while (d2 == dend2)
6791
		  {
6792
		    if (dend2 == end_match_2) break;
6793
		    if (dend2 == regend[regno]) break;
6794
 
6795
                    /* End of string1 => advance to string2. */
6796
                    d2 = string2;
6797
                    dend2 = regend[regno];
6798
		  }
6799
		/* At end of register contents => success */
6800
		if (d2 == dend2) break;
6801
 
6802
		/* If necessary, advance to next segment in data.  */
6803
		PREFETCH ();
6804
 
6805
		/* How many characters left in this segment to match.  */
6806
		mcnt = dend - d;
6807
 
6808
		/* Want how many consecutive characters we can match in
6809
                   one shot, so, if necessary, adjust the count.  */
6810
                if (mcnt > dend2 - d2)
6811
		  mcnt = dend2 - d2;
6812
 
6813
		/* Compare that many; failure if mismatch, else move
6814
                   past them.  */
6815
		if (translate
6816
                    ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6817
                    : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6818
		  goto fail;
6819
		d += mcnt, d2 += mcnt;
6820
 
6821
		/* Do this because we've match some characters.  */
6822
		SET_REGS_MATCHED ();
6823
	      }
6824
	  }
6825
	  break;
6826
 
6827
 
6828
        /* begline matches the empty string at the beginning of the string
6829
           (unless `not_bol' is set in `bufp'), and, if
6830
           `newline_anchor' is set, after newlines.  */
6831
	case begline:
6832
          DEBUG_PRINT1 ("EXECUTING begline.\n");
6833
 
6834
          if (AT_STRINGS_BEG (d))
6835
            {
6836
              if (!bufp->not_bol) break;
6837
            }
6838
          else if (d[-1] == '\n' && bufp->newline_anchor)
6839
            {
6840
              break;
6841
            }
6842
          /* In all other cases, we fail.  */
6843
          goto fail;
6844
 
6845
 
6846
        /* endline is the dual of begline.  */
6847
	case endline:
6848
          DEBUG_PRINT1 ("EXECUTING endline.\n");
6849
 
6850
          if (AT_STRINGS_END (d))
6851
            {
6852
              if (!bufp->not_eol) break;
6853
            }
6854
 
6855
          /* We have to ``prefetch'' the next character.  */
6856
          else if ((d == end1 ? *string2 : *d) == '\n'
6857
                   && bufp->newline_anchor)
6858
            {
6859
              break;
6860
            }
6861
          goto fail;
6862
 
6863
 
6864
	/* Match at the very beginning of the data.  */
6865
        case begbuf:
6866
          DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6867
          if (AT_STRINGS_BEG (d))
6868
            break;
6869
          goto fail;
6870
 
6871
 
6872
	/* Match at the very end of the data.  */
6873
        case endbuf:
6874
          DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6875
	  if (AT_STRINGS_END (d))
6876
	    break;
6877
          goto fail;
6878
 
6879
 
6880
        /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
6881
           pushes NULL as the value for the string on the stack.  Then
6882
           `pop_failure_point' will keep the current value for the
6883
           string, instead of restoring it.  To see why, consider
6884
           matching `foo\nbar' against `.*\n'.  The .* matches the foo;
6885
           then the . fails against the \n.  But the next thing we want
6886
           to do is match the \n against the \n; if we restored the
6887
           string value, we would be back at the foo.
6888
 
6889
           Because this is used only in specific cases, we don't need to
6890
           check all the things that `on_failure_jump' does, to make
6891
           sure the right things get saved on the stack.  Hence we don't
6892
           share its code.  The only reason to push anything on the
6893
           stack at all is that otherwise we would have to change
6894
           `anychar's code to do something besides goto fail in this
6895
           case; that seems worse than this.  */
6896
        case on_failure_keep_string_jump:
6897
          DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6898
 
6899
          EXTRACT_NUMBER_AND_INCR (mcnt, p);
6900
#ifdef _LIBC
6901
          DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
6902
#else
6903
          DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
6904
#endif
6905
 
6906
          PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
6907
          break;
6908
 
6909
 
6910
	/* Uses of on_failure_jump:
6911
 
6912
           Each alternative starts with an on_failure_jump that points
6913
           to the beginning of the next alternative.  Each alternative
6914
           except the last ends with a jump that in effect jumps past
6915
           the rest of the alternatives.  (They really jump to the
6916
           ending jump of the following alternative, because tensioning
6917
           these jumps is a hassle.)
6918
 
6919
           Repeats start with an on_failure_jump that points past both
6920
           the repetition text and either the following jump or
6921
           pop_failure_jump back to this on_failure_jump.  */
6922
	case on_failure_jump:
6923
        on_failure:
6924
          DEBUG_PRINT1 ("EXECUTING on_failure_jump");
6925
 
6926
          EXTRACT_NUMBER_AND_INCR (mcnt, p);
6927
#ifdef _LIBC
6928
          DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
6929
#else
6930
          DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
6931
#endif
6932
 
6933
          /* If this on_failure_jump comes right before a group (i.e.,
6934
             the original * applied to a group), save the information
6935
             for that group and all inner ones, so that if we fail back
6936
             to this point, the group's information will be correct.
6937
             For example, in \(a*\)*\1, we need the preceding group,
6938
             and in \(zz\(a*\)b*\)\2, we need the inner group.  */
6939
 
6940
          /* We can't use `p' to check ahead because we push
6941
             a failure point to `p + mcnt' after we do this.  */
6942
          p1 = p;
6943
 
6944
          /* We need to skip no_op's before we look for the
6945
             start_memory in case this on_failure_jump is happening as
6946
             the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
6947
             against aba.  */
6948
          while (p1 < pend && (re_opcode_t) *p1 == no_op)
6949
            p1++;
6950
 
6951
          if (p1 < pend && (re_opcode_t) *p1 == start_memory)
6952
            {
6953
              /* We have a new highest active register now.  This will
6954
                 get reset at the start_memory we are about to get to,
6955
                 but we will have saved all the registers relevant to
6956
                 this repetition op, as described above.  */
6957
              highest_active_reg = *(p1 + 1) + *(p1 + 2);
6958
              if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6959
                lowest_active_reg = *(p1 + 1);
6960
            }
6961
 
6962
          DEBUG_PRINT1 (":\n");
6963
          PUSH_FAILURE_POINT (p + mcnt, d, -2);
6964
          break;
6965
 
6966
 
6967
        /* A smart repeat ends with `maybe_pop_jump'.
6968
	   We change it to either `pop_failure_jump' or `jump'.  */
6969
        case maybe_pop_jump:
6970
          EXTRACT_NUMBER_AND_INCR (mcnt, p);
6971
          DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
6972
          {
6973
	    register UCHAR_T *p2 = p;
6974
 
6975
            /* Compare the beginning of the repeat with what in the
6976
               pattern follows its end. If we can establish that there
6977
               is nothing that they would both match, i.e., that we
6978
               would have to backtrack because of (as in, e.g., `a*a')
6979
               then we can change to pop_failure_jump, because we'll
6980
               never have to backtrack.
6981
 
6982
               This is not true in the case of alternatives: in
6983
               `(a|ab)*' we do need to backtrack to the `ab' alternative
6984
               (e.g., if the string was `ab').  But instead of trying to
6985
               detect that here, the alternative has put on a dummy
6986
               failure point which is what we will end up popping.  */
6987
 
6988
	    /* Skip over open/close-group commands.
6989
	       If what follows this loop is a ...+ construct,
6990
	       look at what begins its body, since we will have to
6991
	       match at least one of that.  */
6992
	    while (1)
6993
	      {
6994
		if (p2 + 2 < pend
6995
		    && ((re_opcode_t) *p2 == stop_memory
6996
			|| (re_opcode_t) *p2 == start_memory))
6997
		  p2 += 3;
6998
		else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
6999
			 && (re_opcode_t) *p2 == dummy_failure_jump)
7000
		  p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
7001
		else
7002
		  break;
7003
	      }
7004
 
7005
	    p1 = p + mcnt;
7006
	    /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7007
	       to the `maybe_finalize_jump' of this case.  Examine what
7008
	       follows.  */
7009
 
7010
            /* If we're at the end of the pattern, we can change.  */
7011
            if (p2 == pend)
7012
	      {
7013
		/* Consider what happens when matching ":\(.*\)"
7014
		   against ":/".  I don't really understand this code
7015
		   yet.  */
7016
  	        p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7017
		  pop_failure_jump;
7018
                DEBUG_PRINT1
7019
                  ("  End of pattern: change to `pop_failure_jump'.\n");
7020
              }
7021
 
7022
            else if ((re_opcode_t) *p2 == exactn
7023
#ifdef MBS_SUPPORT
7024
		     || (re_opcode_t) *p2 == exactn_bin
7025
#endif
7026
		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7027
	      {
7028
		register UCHAR_T c
7029
                  = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7030
 
7031
                if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7032
#ifdef MBS_SUPPORT
7033
		     || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7034
#endif
7035
		    ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7036
                  {
7037
  		    p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7038
		      pop_failure_jump;
7039
#ifdef WCHAR
7040
		      DEBUG_PRINT3 ("  %C != %C => pop_failure_jump.\n",
7041
				    (wint_t) c,
7042
				    (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7043
#else
7044
		      DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
7045
				    (char) c,
7046
				    (char) p1[3+OFFSET_ADDRESS_SIZE]);
7047
#endif
7048
                  }
7049
 
7050
#ifndef WCHAR
7051
		else if ((re_opcode_t) p1[3] == charset
7052
			 || (re_opcode_t) p1[3] == charset_not)
7053
		  {
7054
		    int negate = (re_opcode_t) p1[3] == charset_not;
7055
 
7056
		    if (c < (unsigned) (p1[4] * BYTEWIDTH)
7057
			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
7058
		      negate = !negate;
7059
 
7060
                    /* `negate' is equal to 1 if c would match, which means
7061
                        that we can't change to pop_failure_jump.  */
7062
		    if (!negate)
7063
                      {
7064
  		        p[-3] = (unsigned char) pop_failure_jump;
7065
                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7066
                      }
7067
		  }
7068
#endif /* not WCHAR */
7069
	      }
7070
#ifndef WCHAR
7071
            else if ((re_opcode_t) *p2 == charset)
7072
	      {
7073
		/* We win if the first character of the loop is not part
7074
                   of the charset.  */
7075
                if ((re_opcode_t) p1[3] == exactn
7076
 		    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
7077
 			  && (p2[2 + p1[5] / BYTEWIDTH]
7078
 			      & (1 << (p1[5] % BYTEWIDTH)))))
7079
		  {
7080
		    p[-3] = (unsigned char) pop_failure_jump;
7081
		    DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7082
                  }
7083
 
7084
		else if ((re_opcode_t) p1[3] == charset_not)
7085
		  {
7086
		    int idx;
7087
		    /* We win if the charset_not inside the loop
7088
		       lists every character listed in the charset after.  */
7089
		    for (idx = 0; idx < (int) p2[1]; idx++)
7090
		      if (! (p2[2 + idx] == 0
7091
			     || (idx < (int) p1[4]
7092
				 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7093
			break;
7094
 
7095
		    if (idx == p2[1])
7096
                      {
7097
  		        p[-3] = (unsigned char) pop_failure_jump;
7098
                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7099
                      }
7100
		  }
7101
		else if ((re_opcode_t) p1[3] == charset)
7102
		  {
7103
		    int idx;
7104
		    /* We win if the charset inside the loop
7105
		       has no overlap with the one after the loop.  */
7106
		    for (idx = 0;
7107
			 idx < (int) p2[1] && idx < (int) p1[4];
7108
			 idx++)
7109
		      if ((p2[2 + idx] & p1[5 + idx]) != 0)
7110
			break;
7111
 
7112
		    if (idx == p2[1] || idx == p1[4])
7113
                      {
7114
  		        p[-3] = (unsigned char) pop_failure_jump;
7115
                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7116
                      }
7117
		  }
7118
	      }
7119
#endif /* not WCHAR */
7120
	  }
7121
	  p -= OFFSET_ADDRESS_SIZE;	/* Point at relative address again.  */
7122
	  if ((re_opcode_t) p[-1] != pop_failure_jump)
7123
	    {
7124
	      p[-1] = (UCHAR_T) jump;
7125
              DEBUG_PRINT1 ("  Match => jump.\n");
7126
	      goto unconditional_jump;
7127
	    }
7128
        /* Note fall through.  */
7129
 
7130
 
7131
	/* The end of a simple repeat has a pop_failure_jump back to
7132
           its matching on_failure_jump, where the latter will push a
7133
           failure point.  The pop_failure_jump takes off failure
7134
           points put on by this pop_failure_jump's matching
7135
           on_failure_jump; we got through the pattern to here from the
7136
           matching on_failure_jump, so didn't fail.  */
7137
        case pop_failure_jump:
7138
          {
7139
            /* We need to pass separate storage for the lowest and
7140
               highest registers, even though we don't care about the
7141
               actual values.  Otherwise, we will restore only one
7142
               register from the stack, since lowest will == highest in
7143
               `pop_failure_point'.  */
7144
            active_reg_t dummy_low_reg, dummy_high_reg;
7145
            UCHAR_T *pdummy ATTRIBUTE_UNUSED = NULL;
7146
            const CHAR_T *sdummy ATTRIBUTE_UNUSED = NULL;
7147
 
7148
            DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7149
            POP_FAILURE_POINT (sdummy, pdummy,
7150
                               dummy_low_reg, dummy_high_reg,
7151
                               reg_dummy, reg_dummy, reg_info_dummy);
7152
          }
7153
	  /* Note fall through.  */
7154
 
7155
	unconditional_jump:
7156
#ifdef _LIBC
7157
	  DEBUG_PRINT2 ("\n%p: ", p);
7158
#else
7159
	  DEBUG_PRINT2 ("\n0x%x: ", p);
7160
#endif
7161
          /* Note fall through.  */
7162
 
7163
        /* Unconditionally jump (without popping any failure points).  */
7164
        case jump:
7165
	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
7166
          DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7167
	  p += mcnt;				/* Do the jump.  */
7168
#ifdef _LIBC
7169
          DEBUG_PRINT2 ("(to %p).\n", p);
7170
#else
7171
          DEBUG_PRINT2 ("(to 0x%x).\n", p);
7172
#endif
7173
	  break;
7174
 
7175
 
7176
        /* We need this opcode so we can detect where alternatives end
7177
           in `group_match_null_string_p' et al.  */
7178
        case jump_past_alt:
7179
          DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7180
          goto unconditional_jump;
7181
 
7182
 
7183
        /* Normally, the on_failure_jump pushes a failure point, which
7184
           then gets popped at pop_failure_jump.  We will end up at
7185
           pop_failure_jump, also, and with a pattern of, say, `a+', we
7186
           are skipping over the on_failure_jump, so we have to push
7187
           something meaningless for pop_failure_jump to pop.  */
7188
        case dummy_failure_jump:
7189
          DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7190
          /* It doesn't matter what we push for the string here.  What
7191
             the code at `fail' tests is the value for the pattern.  */
7192
          PUSH_FAILURE_POINT (NULL, NULL, -2);
7193
          goto unconditional_jump;
7194
 
7195
 
7196
        /* At the end of an alternative, we need to push a dummy failure
7197
           point in case we are followed by a `pop_failure_jump', because
7198
           we don't want the failure point for the alternative to be
7199
           popped.  For example, matching `(a|ab)*' against `aab'
7200
           requires that we match the `ab' alternative.  */
7201
        case push_dummy_failure:
7202
          DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7203
          /* See comments just above at `dummy_failure_jump' about the
7204
             two zeroes.  */
7205
          PUSH_FAILURE_POINT (NULL, NULL, -2);
7206
          break;
7207
 
7208
        /* Have to succeed matching what follows at least n times.
7209
           After that, handle like `on_failure_jump'.  */
7210
        case succeed_n:
7211
          EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7212
          DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7213
 
7214
          assert (mcnt >= 0);
7215
          /* Originally, this is how many times we HAVE to succeed.  */
7216
          if (mcnt > 0)
7217
            {
7218
               mcnt--;
7219
	       p += OFFSET_ADDRESS_SIZE;
7220
               STORE_NUMBER_AND_INCR (p, mcnt);
7221
#ifdef _LIBC
7222
               DEBUG_PRINT3 ("  Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7223
			     , mcnt);
7224
#else
7225
               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7226
			     , mcnt);
7227
#endif
7228
            }
7229
	  else if (mcnt == 0)
7230
            {
7231
#ifdef _LIBC
7232
              DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n",
7233
			    p + OFFSET_ADDRESS_SIZE);
7234
#else
7235
              DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n",
7236
			    p + OFFSET_ADDRESS_SIZE);
7237
#endif /* _LIBC */
7238
 
7239
#ifdef WCHAR
7240
	      p[1] = (UCHAR_T) no_op;
7241
#else
7242
	      p[2] = (UCHAR_T) no_op;
7243
              p[3] = (UCHAR_T) no_op;
7244
#endif /* WCHAR */
7245
              goto on_failure;
7246
            }
7247
          break;
7248
 
7249
        case jump_n:
7250
          EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7251
          DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7252
 
7253
          /* Originally, this is how many times we CAN jump.  */
7254
          if (mcnt)
7255
            {
7256
               mcnt--;
7257
               STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7258
 
7259
#ifdef _LIBC
7260
               DEBUG_PRINT3 ("  Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7261
			     mcnt);
7262
#else
7263
               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7264
			     mcnt);
7265
#endif /* _LIBC */
7266
	       goto unconditional_jump;
7267
            }
7268
          /* If don't have to jump any more, skip over the rest of command.  */
7269
	  else
7270
	    p += 2 * OFFSET_ADDRESS_SIZE;
7271
          break;
7272
 
7273
	case set_number_at:
7274
	  {
7275
            DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7276
 
7277
            EXTRACT_NUMBER_AND_INCR (mcnt, p);
7278
            p1 = p + mcnt;
7279
            EXTRACT_NUMBER_AND_INCR (mcnt, p);
7280
#ifdef _LIBC
7281
            DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
7282
#else
7283
            DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
7284
#endif
7285
	    STORE_NUMBER (p1, mcnt);
7286
            break;
7287
          }
7288
 
7289
#if 0
7290
	/* The DEC Alpha C compiler 3.x generates incorrect code for the
7291
	   test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
7292
	   AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
7293
	   macro and introducing temporary variables works around the bug.  */
7294
 
7295
	case wordbound:
7296
	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7297
	  if (AT_WORD_BOUNDARY (d))
7298
	    break;
7299
	  goto fail;
7300
 
7301
	case notwordbound:
7302
	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7303
	  if (AT_WORD_BOUNDARY (d))
7304
	    goto fail;
7305
	  break;
7306
#else
7307
	case wordbound:
7308
	{
7309
	  boolean prevchar, thischar;
7310
 
7311
	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7312
	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7313
	    break;
7314
 
7315
	  prevchar = WORDCHAR_P (d - 1);
7316
	  thischar = WORDCHAR_P (d);
7317
	  if (prevchar != thischar)
7318
	    break;
7319
	  goto fail;
7320
	}
7321
 
7322
      case notwordbound:
7323
	{
7324
	  boolean prevchar, thischar;
7325
 
7326
	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7327
	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7328
	    goto fail;
7329
 
7330
	  prevchar = WORDCHAR_P (d - 1);
7331
	  thischar = WORDCHAR_P (d);
7332
	  if (prevchar != thischar)
7333
	    goto fail;
7334
	  break;
7335
	}
7336
#endif
7337
 
7338
	case wordbeg:
7339
          DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7340
	  if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7341
	      && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7342
	    break;
7343
          goto fail;
7344
 
7345
	case wordend:
7346
          DEBUG_PRINT1 ("EXECUTING wordend.\n");
7347
	  if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7348
              && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7349
	    break;
7350
          goto fail;
7351
 
7352
#ifdef emacs
7353
  	case before_dot:
7354
          DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7355
 	  if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7356
  	    goto fail;
7357
  	  break;
7358
 
7359
  	case at_dot:
7360
          DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7361
 	  if (PTR_CHAR_POS ((unsigned char *) d) != point)
7362
  	    goto fail;
7363
  	  break;
7364
 
7365
  	case after_dot:
7366
          DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7367
          if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7368
  	    goto fail;
7369
  	  break;
7370
 
7371
	case syntaxspec:
7372
          DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7373
	  mcnt = *p++;
7374
	  goto matchsyntax;
7375
 
7376
        case wordchar:
7377
          DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7378
	  mcnt = (int) Sword;
7379
        matchsyntax:
7380
	  PREFETCH ();
7381
	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7382
	  d++;
7383
	  if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7384
	    goto fail;
7385
          SET_REGS_MATCHED ();
7386
	  break;
7387
 
7388
	case notsyntaxspec:
7389
          DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7390
	  mcnt = *p++;
7391
	  goto matchnotsyntax;
7392
 
7393
        case notwordchar:
7394
          DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7395
	  mcnt = (int) Sword;
7396
        matchnotsyntax:
7397
	  PREFETCH ();
7398
	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7399
	  d++;
7400
	  if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7401
	    goto fail;
7402
	  SET_REGS_MATCHED ();
7403
          break;
7404
 
7405
#else /* not emacs */
7406
	case wordchar:
7407
          DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7408
	  PREFETCH ();
7409
          if (!WORDCHAR_P (d))
7410
            goto fail;
7411
	  SET_REGS_MATCHED ();
7412
          d++;
7413
	  break;
7414
 
7415
	case notwordchar:
7416
          DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7417
	  PREFETCH ();
7418
	  if (WORDCHAR_P (d))
7419
            goto fail;
7420
          SET_REGS_MATCHED ();
7421
          d++;
7422
	  break;
7423
#endif /* not emacs */
7424
 
7425
        default:
7426
          abort ();
7427
	}
7428
      continue;  /* Successfully executed one pattern command; keep going.  */
7429
 
7430
 
7431
    /* We goto here if a matching operation fails. */
7432
    fail:
7433
      if (!FAIL_STACK_EMPTY ())
7434
	{ /* A restart point is known.  Restore to that state.  */
7435
          DEBUG_PRINT1 ("\nFAIL:\n");
7436
          POP_FAILURE_POINT (d, p,
7437
                             lowest_active_reg, highest_active_reg,
7438
                             regstart, regend, reg_info);
7439
 
7440
          /* If this failure point is a dummy, try the next one.  */
7441
          if (!p)
7442
	    goto fail;
7443
 
7444
          /* If we failed to the end of the pattern, don't examine *p.  */
7445
	  assert (p <= pend);
7446
          if (p < pend)
7447
            {
7448
              boolean is_a_jump_n = false;
7449
 
7450
              /* If failed to a backwards jump that's part of a repetition
7451
                 loop, need to pop this failure point and use the next one.  */
7452
              switch ((re_opcode_t) *p)
7453
                {
7454
                case jump_n:
7455
                  is_a_jump_n = true;
7456
                case maybe_pop_jump:
7457
                case pop_failure_jump:
7458
                case jump:
7459
                  p1 = p + 1;
7460
                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7461
                  p1 += mcnt;
7462
 
7463
                  if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7464
                      || (!is_a_jump_n
7465
                          && (re_opcode_t) *p1 == on_failure_jump))
7466
                    goto fail;
7467
                  break;
7468
                default:
7469
                  /* do nothing */ ;
7470
                }
7471
            }
7472
 
7473
          if (d >= string1 && d <= end1)
7474
	    dend = end_match_1;
7475
        }
7476
      else
7477
        break;   /* Matching at this starting point really fails.  */
7478
    } /* for (;;) */
7479
 
7480
  if (best_regs_set)
7481
    goto restore_best_regs;
7482
 
7483
  FREE_VARIABLES ();
7484
 
7485
  return -1;         			/* Failure to match.  */
7486
} /* re_match_2 */
7487
 
7488
/* Subroutine definitions for re_match_2.  */
7489
 
7490
 
7491
/* We are passed P pointing to a register number after a start_memory.
7492
 
7493
   Return true if the pattern up to the corresponding stop_memory can
7494
   match the empty string, and false otherwise.
7495
 
7496
   If we find the matching stop_memory, sets P to point to one past its number.
7497
   Otherwise, sets P to an undefined byte less than or equal to END.
7498
 
7499
   We don't handle duplicates properly (yet).  */
7500
 
7501
static boolean
7502
PREFIX(group_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7503
                                   PREFIX(register_info_type) *reg_info)
7504
{
7505
  int mcnt;
7506
  /* Point to after the args to the start_memory.  */
7507
  UCHAR_T *p1 = *p + 2;
7508
 
7509
  while (p1 < end)
7510
    {
7511
      /* Skip over opcodes that can match nothing, and return true or
7512
	 false, as appropriate, when we get to one that can't, or to the
7513
         matching stop_memory.  */
7514
 
7515
      switch ((re_opcode_t) *p1)
7516
        {
7517
        /* Could be either a loop or a series of alternatives.  */
7518
        case on_failure_jump:
7519
          p1++;
7520
          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7521
 
7522
          /* If the next operation is not a jump backwards in the
7523
	     pattern.  */
7524
 
7525
	  if (mcnt >= 0)
7526
	    {
7527
              /* Go through the on_failure_jumps of the alternatives,
7528
                 seeing if any of the alternatives cannot match nothing.
7529
                 The last alternative starts with only a jump,
7530
                 whereas the rest start with on_failure_jump and end
7531
                 with a jump, e.g., here is the pattern for `a|b|c':
7532
 
7533
                 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7534
                 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7535
                 /exactn/1/c
7536
 
7537
                 So, we have to first go through the first (n-1)
7538
                 alternatives and then deal with the last one separately.  */
7539
 
7540
 
7541
              /* Deal with the first (n-1) alternatives, which start
7542
                 with an on_failure_jump (see above) that jumps to right
7543
                 past a jump_past_alt.  */
7544
 
7545
              while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7546
		     jump_past_alt)
7547
                {
7548
                  /* `mcnt' holds how many bytes long the alternative
7549
                     is, including the ending `jump_past_alt' and
7550
                     its number.  */
7551
 
7552
                  if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7553
						(1 + OFFSET_ADDRESS_SIZE),
7554
						reg_info))
7555
                    return false;
7556
 
7557
                  /* Move to right after this alternative, including the
7558
		     jump_past_alt.  */
7559
                  p1 += mcnt;
7560
 
7561
                  /* Break if it's the beginning of an n-th alternative
7562
                     that doesn't begin with an on_failure_jump.  */
7563
                  if ((re_opcode_t) *p1 != on_failure_jump)
7564
                    break;
7565
 
7566
		  /* Still have to check that it's not an n-th
7567
		     alternative that starts with an on_failure_jump.  */
7568
		  p1++;
7569
                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7570
                  if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7571
		      jump_past_alt)
7572
                    {
7573
		      /* Get to the beginning of the n-th alternative.  */
7574
                      p1 -= 1 + OFFSET_ADDRESS_SIZE;
7575
                      break;
7576
                    }
7577
                }
7578
 
7579
              /* Deal with the last alternative: go back and get number
7580
                 of the `jump_past_alt' just before it.  `mcnt' contains
7581
                 the length of the alternative.  */
7582
              EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7583
 
7584
              if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7585
                return false;
7586
 
7587
              p1 += mcnt;	/* Get past the n-th alternative.  */
7588
            } /* if mcnt > 0 */
7589
          break;
7590
 
7591
 
7592
        case stop_memory:
7593
	  assert (p1[1] == **p);
7594
          *p = p1 + 2;
7595
          return true;
7596
 
7597
 
7598
        default:
7599
          if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7600
            return false;
7601
        }
7602
    } /* while p1 < end */
7603
 
7604
  return false;
7605
} /* group_match_null_string_p */
7606
 
7607
 
7608
/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7609
   It expects P to be the first byte of a single alternative and END one
7610
   byte past the last. The alternative can contain groups.  */
7611
 
7612
static boolean
7613
PREFIX(alt_match_null_string_p) (UCHAR_T *p, UCHAR_T *end,
7614
                                 PREFIX(register_info_type) *reg_info)
7615
{
7616
  int mcnt;
7617
  UCHAR_T *p1 = p;
7618
 
7619
  while (p1 < end)
7620
    {
7621
      /* Skip over opcodes that can match nothing, and break when we get
7622
         to one that can't.  */
7623
 
7624
      switch ((re_opcode_t) *p1)
7625
        {
7626
	/* It's a loop.  */
7627
        case on_failure_jump:
7628
          p1++;
7629
          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7630
          p1 += mcnt;
7631
          break;
7632
 
7633
	default:
7634
          if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7635
            return false;
7636
        }
7637
    }  /* while p1 < end */
7638
 
7639
  return true;
7640
} /* alt_match_null_string_p */
7641
 
7642
 
7643
/* Deals with the ops common to group_match_null_string_p and
7644
   alt_match_null_string_p.
7645
 
7646
   Sets P to one after the op and its arguments, if any.  */
7647
 
7648
static boolean
7649
PREFIX(common_op_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7650
                                       PREFIX(register_info_type) *reg_info)
7651
{
7652
  int mcnt;
7653
  boolean ret;
7654
  int reg_no;
7655
  UCHAR_T *p1 = *p;
7656
 
7657
  switch ((re_opcode_t) *p1++)
7658
    {
7659
    case no_op:
7660
    case begline:
7661
    case endline:
7662
    case begbuf:
7663
    case endbuf:
7664
    case wordbeg:
7665
    case wordend:
7666
    case wordbound:
7667
    case notwordbound:
7668
#ifdef emacs
7669
    case before_dot:
7670
    case at_dot:
7671
    case after_dot:
7672
#endif
7673
      break;
7674
 
7675
    case start_memory:
7676
      reg_no = *p1;
7677
      assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7678
      ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7679
 
7680
      /* Have to set this here in case we're checking a group which
7681
         contains a group and a back reference to it.  */
7682
 
7683
      if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7684
        REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7685
 
7686
      if (!ret)
7687
        return false;
7688
      break;
7689
 
7690
    /* If this is an optimized succeed_n for zero times, make the jump.  */
7691
    case jump:
7692
      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7693
      if (mcnt >= 0)
7694
        p1 += mcnt;
7695
      else
7696
        return false;
7697
      break;
7698
 
7699
    case succeed_n:
7700
      /* Get to the number of times to succeed.  */
7701
      p1 += OFFSET_ADDRESS_SIZE;
7702
      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7703
 
7704
      if (mcnt == 0)
7705
        {
7706
          p1 -= 2 * OFFSET_ADDRESS_SIZE;
7707
          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7708
          p1 += mcnt;
7709
        }
7710
      else
7711
        return false;
7712
      break;
7713
 
7714
    case duplicate:
7715
      if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7716
        return false;
7717
      break;
7718
 
7719
    case set_number_at:
7720
      p1 += 2 * OFFSET_ADDRESS_SIZE;
7721
 
7722
    default:
7723
      /* All other opcodes mean we cannot match the empty string.  */
7724
      return false;
7725
  }
7726
 
7727
  *p = p1;
7728
  return true;
7729
} /* common_op_match_null_string_p */
7730
 
7731
 
7732
/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7733
   bytes; nonzero otherwise.  */
7734
 
7735
static int
7736
PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2, register int len,
7737
                        RE_TRANSLATE_TYPE translate)
7738
{
7739
  register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7740
  register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7741
  while (len)
7742
    {
7743
#ifdef WCHAR
7744
      if (((*p1<=0xff)?translate[*p1++]:*p1++)
7745
	  != ((*p2<=0xff)?translate[*p2++]:*p2++))
7746
	return 1;
7747
#else /* BYTE */
7748
      if (translate[*p1++] != translate[*p2++]) return 1;
7749
#endif /* WCHAR */
7750
      len--;
7751
    }
7752
  return 0;
7753
}
7754
 
7755
 
7756
#else /* not INSIDE_RECURSION */
7757
 
7758
/* Entry points for GNU code.  */
7759
 
7760
/* re_compile_pattern is the GNU regular expression compiler: it
7761
   compiles PATTERN (of length SIZE) and puts the result in BUFP.
7762
   Returns 0 if the pattern was valid, otherwise an error string.
7763
 
7764
   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7765
   are set in BUFP on entry.
7766
 
7767
   We call regex_compile to do the actual compilation.  */
7768
 
7769
const char *
7770
re_compile_pattern (const char *pattern, size_t length,
7771
                    struct re_pattern_buffer *bufp)
7772
{
7773
  reg_errcode_t ret;
7774
 
7775
  /* GNU code is written to assume at least RE_NREGS registers will be set
7776
     (and at least one extra will be -1).  */
7777
  bufp->regs_allocated = REGS_UNALLOCATED;
7778
 
7779
  /* And GNU code determines whether or not to get register information
7780
     by passing null for the REGS argument to re_match, etc., not by
7781
     setting no_sub.  */
7782
  bufp->no_sub = 0;
7783
 
7784
  /* Match anchors at newline.  */
7785
  bufp->newline_anchor = 1;
7786
 
7787
# ifdef MBS_SUPPORT
7788
  if (MB_CUR_MAX != 1)
7789
    ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
7790
  else
7791
# endif
7792
    ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
7793
 
7794
  if (!ret)
7795
    return NULL;
7796
  return gettext (re_error_msgid[(int) ret]);
7797
}
7798
#ifdef _LIBC
7799
weak_alias (__re_compile_pattern, re_compile_pattern)
7800
#endif
7801
 
7802
/* Entry points compatible with 4.2 BSD regex library.  We don't define
7803
   them unless specifically requested.  */
7804
 
7805
#if defined _REGEX_RE_COMP || defined _LIBC
7806
 
7807
/* BSD has one and only one pattern buffer.  */
7808
static struct re_pattern_buffer re_comp_buf;
7809
 
7810
char *
7811
#ifdef _LIBC
7812
/* Make these definitions weak in libc, so POSIX programs can redefine
7813
   these names if they don't use our functions, and still use
7814
   regcomp/regexec below without link errors.  */
7815
weak_function
7816
#endif
7817
re_comp (const char *s)
7818
{
7819
  reg_errcode_t ret;
7820
 
7821
  if (!s)
7822
    {
7823
      if (!re_comp_buf.buffer)
7824
	return (char *) gettext ("No previous regular expression");
7825
      return 0;
7826
    }
7827
 
7828
  if (!re_comp_buf.buffer)
7829
    {
7830
      re_comp_buf.buffer = (unsigned char *) malloc (200);
7831
      if (re_comp_buf.buffer == NULL)
7832
        return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
7833
      re_comp_buf.allocated = 200;
7834
 
7835
      re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
7836
      if (re_comp_buf.fastmap == NULL)
7837
	return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
7838
    }
7839
 
7840
  /* Since `re_exec' always passes NULL for the `regs' argument, we
7841
     don't need to initialize the pattern buffer fields which affect it.  */
7842
 
7843
  /* Match anchors at newlines.  */
7844
  re_comp_buf.newline_anchor = 1;
7845
 
7846
# ifdef MBS_SUPPORT
7847
  if (MB_CUR_MAX != 1)
7848
    ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7849
  else
7850
# endif
7851
    ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7852
 
7853
  if (!ret)
7854
    return NULL;
7855
 
7856
  /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
7857
  return (char *) gettext (re_error_msgid[(int) ret]);
7858
}
7859
 
7860
 
7861
int
7862
#ifdef _LIBC
7863
weak_function
7864
#endif
7865
re_exec (const char *s)
7866
{
7867
  const int len = strlen (s);
7868
  return
7869
 
7870
}
7871
 
7872
#endif /* _REGEX_RE_COMP */
7873
 
7874
/* POSIX.2 functions.  Don't define these for Emacs.  */
7875
 
7876
#ifndef emacs
7877
 
7878
/* regcomp takes a regular expression as a string and compiles it.
7879
 
7880
   PREG is a regex_t *.  We do not expect any fields to be initialized,
7881
   since POSIX says we shouldn't.  Thus, we set
7882
 
7883
     `buffer' to the compiled pattern;
7884
     `used' to the length of the compiled pattern;
7885
     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7886
       REG_EXTENDED bit in CFLAGS is set; otherwise, to
7887
       RE_SYNTAX_POSIX_BASIC;
7888
     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7889
     `fastmap' to an allocated space for the fastmap;
7890
     `fastmap_accurate' to zero;
7891
     `re_nsub' to the number of subexpressions in PATTERN.
7892
 
7893
   PATTERN is the address of the pattern string.
7894
 
7895
   CFLAGS is a series of bits which affect compilation.
7896
 
7897
     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7898
     use POSIX basic syntax.
7899
 
7900
     If REG_NEWLINE is set, then . and [^...] don't match newline.
7901
     Also, regexec will try a match beginning after every newline.
7902
 
7903
     If REG_ICASE is set, then we considers upper- and lowercase
7904
     versions of letters to be equivalent when matching.
7905
 
7906
     If REG_NOSUB is set, then when PREG is passed to regexec, that
7907
     routine will report only success or failure, and nothing about the
7908
     registers.
7909
 
7910
   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
7911
   the return codes and their meanings.)  */
7912
 
7913
int
7914
regcomp (regex_t *preg, const char *pattern, int cflags)
7915
{
7916
  reg_errcode_t ret;
7917
  reg_syntax_t syntax
7918
    = (cflags & REG_EXTENDED) ?
7919
      RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
7920
 
7921
  /* regex_compile will allocate the space for the compiled pattern.  */
7922
  preg->buffer = 0;
7923
  preg->allocated = 0;
7924
  preg->used = 0;
7925
 
7926
  /* Try to allocate space for the fastmap.  */
7927
  preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
7928
 
7929
  if (cflags & REG_ICASE)
7930
    {
7931
      int i;
7932
 
7933
      preg->translate
7934
	= (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
7935
				      * sizeof (*(RE_TRANSLATE_TYPE)0));
7936
      if (preg->translate == NULL)
7937
        return (int) REG_ESPACE;
7938
 
7939
      /* Map uppercase characters to corresponding lowercase ones.  */
7940
      for (i = 0; i < CHAR_SET_SIZE; i++)
7941
        preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
7942
    }
7943
  else
7944
    preg->translate = NULL;
7945
 
7946
  /* If REG_NEWLINE is set, newlines are treated differently.  */
7947
  if (cflags & REG_NEWLINE)
7948
    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
7949
      syntax &= ~RE_DOT_NEWLINE;
7950
      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
7951
      /* It also changes the matching behavior.  */
7952
      preg->newline_anchor = 1;
7953
    }
7954
  else
7955
    preg->newline_anchor = 0;
7956
 
7957
  preg->no_sub = !!(cflags & REG_NOSUB);
7958
 
7959
  /* POSIX says a null character in the pattern terminates it, so we
7960
     can use strlen here in compiling the pattern.  */
7961
# ifdef MBS_SUPPORT
7962
  if (MB_CUR_MAX != 1)
7963
    ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
7964
  else
7965
# endif
7966
    ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
7967
 
7968
  /* POSIX doesn't distinguish between an unmatched open-group and an
7969
     unmatched close-group: both are REG_EPAREN.  */
7970
  if (ret == REG_ERPAREN) ret = REG_EPAREN;
7971
 
7972
  if (ret == REG_NOERROR && preg->fastmap)
7973
    {
7974
      /* Compute the fastmap now, since regexec cannot modify the pattern
7975
	 buffer.  */
7976
      if (re_compile_fastmap (preg) == -2)
7977
	{
7978
	  /* Some error occurred while computing the fastmap, just forget
7979
	     about it.  */
7980
	  free (preg->fastmap);
7981
	  preg->fastmap = NULL;
7982
	}
7983
    }
7984
 
7985
  return (int) ret;
7986
}
7987
#ifdef _LIBC
7988
weak_alias (__regcomp, regcomp)
7989
#endif
7990
 
7991
 
7992
/* regexec searches for a given pattern, specified by PREG, in the
7993
   string STRING.
7994
 
7995
   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
7996
   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
7997
   least NMATCH elements, and we set them to the offsets of the
7998
   corresponding matched substrings.
7999
 
8000
   EFLAGS specifies `execution flags' which affect matching: if
8001
   REG_NOTBOL is set, then ^ does not match at the beginning of the
8002
   string; if REG_NOTEOL is set, then $ does not match at the end.
8003
 
8004
   We return 0 if we find a match and REG_NOMATCH if not.  */
8005
 
8006
int
8007
regexec (const regex_t *preg, const char *string, size_t nmatch,
8008
         regmatch_t pmatch[], int eflags)
8009
{
8010
  int ret;
8011
  struct re_registers regs;
8012
  regex_t private_preg;
8013
  int len = strlen (string);
8014
  boolean want_reg_info = !preg->no_sub && nmatch > 0;
8015
 
8016
  private_preg = *preg;
8017
 
8018
  private_preg.not_bol = !!(eflags & REG_NOTBOL);
8019
  private_preg.not_eol = !!(eflags & REG_NOTEOL);
8020
 
8021
  /* The user has told us exactly how many registers to return
8022
     information about, via `nmatch'.  We have to pass that on to the
8023
     matching routines.  */
8024
  private_preg.regs_allocated = REGS_FIXED;
8025
 
8026
  if (want_reg_info)
8027
    {
8028
      regs.num_regs = nmatch;
8029
      regs.start = TALLOC (nmatch * 2, regoff_t);
8030
      if (regs.start == NULL)
8031
        return (int) REG_NOMATCH;
8032
      regs.end = regs.start + nmatch;
8033
    }
8034
 
8035
  /* Perform the searching operation.  */
8036
  ret = re_search (&private_preg, string, len,
8037
                   /* start: */ 0, /* range: */ len,
8038
                   want_reg_info ? ®s : (struct re_registers *) 0);
8039
 
8040
  /* Copy the register information to the POSIX structure.  */
8041
  if (want_reg_info)
8042
    {
8043
      if (ret >= 0)
8044
        {
8045
          unsigned r;
8046
 
8047
          for (r = 0; r < nmatch; r++)
8048
            {
8049
              pmatch[r].rm_so = regs.start[r];
8050
              pmatch[r].rm_eo = regs.end[r];
8051
            }
8052
        }
8053
 
8054
      /* If we needed the temporary register info, free the space now.  */
8055
      free (regs.start);
8056
    }
8057
 
8058
  /* We want zero return to mean success, unlike `re_search'.  */
8059
  return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8060
}
8061
#ifdef _LIBC
8062
weak_alias (__regexec, regexec)
8063
#endif
8064
 
8065
 
8066
/* Returns a message corresponding to an error code, ERRCODE, returned
8067
   from either regcomp or regexec.   We don't use PREG here.  */
8068
 
8069
size_t
8070
regerror (int errcode, const regex_t *preg ATTRIBUTE_UNUSED,
8071
          char *errbuf, size_t errbuf_size)
8072
{
8073
  const char *msg;
8074
  size_t msg_size;
8075
 
8076
  if (errcode < 0
8077
      || errcode >= (int) (sizeof (re_error_msgid)
8078
			   / sizeof (re_error_msgid[0])))
8079
    /* Only error codes returned by the rest of the code should be passed
8080
       to this routine.  If we are given anything else, or if other regex
8081
       code generates an invalid error code, then the program has a bug.
8082
       Dump core so we can fix it.  */
8083
    abort ();
8084
 
8085
  msg = gettext (re_error_msgid[errcode]);
8086
 
8087
  msg_size = strlen (msg) + 1; /* Includes the null.  */
8088
 
8089
  if (errbuf_size != 0)
8090
    {
8091
      if (msg_size > errbuf_size)
8092
        {
8093
#if defined HAVE_MEMPCPY || defined _LIBC
8094
	  *((char *) mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
8095
#else
6324 serge 8096
          (void) memcpy (errbuf, msg, errbuf_size - 1);
5191 serge 8097
          errbuf[errbuf_size - 1] = 0;
8098
#endif
8099
        }
8100
      else
6324 serge 8101
        (void) memcpy (errbuf, msg, msg_size);
5191 serge 8102
    }
8103
 
8104
  return msg_size;
8105
}
8106
#ifdef _LIBC
8107
weak_alias (__regerror, regerror)
8108
#endif
8109
 
8110
 
8111
/* Free dynamically allocated space used by PREG.  */
8112
 
8113
void
8114
regfree (regex_t *preg)
8115
{
8116
  free (preg->buffer);
8117
  preg->buffer = NULL;
8118
 
8119
  preg->allocated = 0;
8120
  preg->used = 0;
8121
 
8122
  free (preg->fastmap);
8123
  preg->fastmap = NULL;
8124
  preg->fastmap_accurate = 0;
8125
 
8126
  free (preg->translate);
8127
  preg->translate = NULL;
8128
}
8129
#ifdef _LIBC
8130
weak_alias (__regfree, regfree)
8131
#endif
8132
 
8133
#endif /* not emacs  */
8134
 
8135
#endif /* not INSIDE_RECURSION */
8136
 
8137
 
8138
#undef STORE_NUMBER
8139
#undef STORE_NUMBER_AND_INCR
8140
#undef EXTRACT_NUMBER
8141
#undef EXTRACT_NUMBER_AND_INCR
8142
 
8143
#undef DEBUG_PRINT_COMPILED_PATTERN
8144
#undef DEBUG_PRINT_DOUBLE_STRING
8145
 
8146
#undef INIT_FAIL_STACK
8147
#undef RESET_FAIL_STACK
8148
#undef DOUBLE_FAIL_STACK
8149
#undef PUSH_PATTERN_OP
8150
#undef PUSH_FAILURE_POINTER
8151
#undef PUSH_FAILURE_INT
8152
#undef PUSH_FAILURE_ELT
8153
#undef POP_FAILURE_POINTER
8154
#undef POP_FAILURE_INT
8155
#undef POP_FAILURE_ELT
8156
#undef DEBUG_PUSH
8157
#undef DEBUG_POP
8158
#undef PUSH_FAILURE_POINT
8159
#undef POP_FAILURE_POINT
8160
 
8161
#undef REG_UNSET_VALUE
8162
#undef REG_UNSET
8163
 
8164
#undef PATFETCH
8165
#undef PATFETCH_RAW
8166
#undef PATUNFETCH
8167
#undef TRANSLATE
8168
 
8169
#undef INIT_BUF_SIZE
8170
#undef GET_BUFFER_SPACE
8171
#undef BUF_PUSH
8172
#undef BUF_PUSH_2
8173
#undef BUF_PUSH_3
8174
#undef STORE_JUMP
8175
#undef STORE_JUMP2
8176
#undef INSERT_JUMP
8177
#undef INSERT_JUMP2
8178
#undef EXTEND_BUFFER
8179
#undef GET_UNSIGNED_NUMBER
8180
#undef FREE_STACK_RETURN
8181
 
8182
# undef POINTER_TO_OFFSET
8183
# undef MATCHING_IN_FRST_STRING
8184
# undef PREFETCH
8185
# undef AT_STRINGS_BEG
8186
# undef AT_STRINGS_END
8187
# undef WORDCHAR_P
8188
# undef FREE_VAR
8189
# undef FREE_VARIABLES
8190
# undef NO_HIGHEST_ACTIVE_REG
8191
# undef NO_LOWEST_ACTIVE_REG
8192
 
8193
# undef CHAR_T
8194
# undef UCHAR_T
8195
# undef COMPILED_BUFFER_VAR
8196
# undef OFFSET_ADDRESS_SIZE
8197
# undef CHAR_CLASS_SIZE
8198
# undef PREFIX
8199
# undef ARG_PREFIX
8200
# undef PUT_CHAR
8201
# undef BYTE
8202
# undef WCHAR
8203
 
8204
# define DEFINED_ONCE