Subversion Repositories Kolibri OS

Rev

Rev 5191 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
5191 serge 1
/* SPARC-specific values for a.out files
2
 
6324 serge 3
   Copyright (C) 2001-2015 Free Software Foundation, Inc.
5191 serge 4
 
5
   This program is free software; you can redistribute it and/or modify
6
   it under the terms of the GNU General Public License as published by
7
   the Free Software Foundation; either version 3 of the License, or
8
   (at your option) any later version.
9
 
10
   This program is distributed in the hope that it will be useful,
11
   but WITHOUT ANY WARRANTY; without even the implied warranty of
12
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
   GNU General Public License for more details.
14
 
15
   You should have received a copy of the GNU General Public License
16
   along with this program; if not, write to the Free Software
17
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
18
   MA 02110-1301, USA.  */
19
 
20
/* Some systems, e.g., AIX, may have defined this in header files already
21
   included.  */
22
#undef  TARGET_PAGE_SIZE
23
#define TARGET_PAGE_SIZE	0x2000		/* 8K.  aka NBPG in  */
24
/* Note that some SPARCs have 4K pages, some 8K, some others.  */
25
 
26
#define SEG_SIZE_SPARC	TARGET_PAGE_SIZE
27
#define	SEG_SIZE_SUN3	0x20000		/* Resolution of r/w protection hw */
28
 
29
#define TEXT_START_ADDR	TARGET_PAGE_SIZE	/* Location 0 is not accessible */
30
#define N_HEADER_IN_TEXT(x) 1
31
 
32
/* Non-default definitions of the accessor macros... */
33
 
34
/* Segment size varies on Sun-3 versus Sun-4.  */
35
 
36
#define N_SEGSIZE(x)	(N_MACHTYPE(x) == M_SPARC?	SEG_SIZE_SPARC:	\
37
			 N_MACHTYPE(x) == M_68020?	SEG_SIZE_SUN3:	\
38
			/* Guess? */			TARGET_PAGE_SIZE)
39
 
40
/* Virtual Address of text segment from the a.out file.  For OMAGIC,
41
   (almost always "unlinked .o's" these days), should be zero.
42
   Sun added a kludge so that shared libraries linked ZMAGIC get
43
   an address of zero if a_entry (!!!) is lower than the otherwise
44
   expected text address.  These kludges have gotta go!
45
   For linked files, should reflect reality if we know it.  */
46
 
47
#define N_SHARED_LIB(x) ((x).a_entry < TEXT_START_ADDR \
48
			 && (x).a_text >= EXEC_BYTES_SIZE)
49
 
50
/* This differs from the version in aout64.h (which we override by defining
51
   it here) only for NMAGIC (we return TEXT_START_ADDR+EXEC_BYTES_SIZE;
52
   they return 0).  */
53
 
54
#define N_TXTADDR(x) \
55
    (N_MAGIC(x)==OMAGIC? 0 \
56
     : (N_MAGIC(x) == ZMAGIC && (x).a_entry < TEXT_START_ADDR)? 0 \
57
     : TEXT_START_ADDR+EXEC_BYTES_SIZE)
58
 
59
/* When a file is linked against a shared library on SunOS 4, the
60
   dynamic bit in the exec header is set, and the first symbol in the
61
   symbol table is __DYNAMIC.  Its value is the address of the
62
   following structure.  */
63
 
64
struct external_sun4_dynamic
65
{
66
  /* The version number of the structure.  SunOS 4.1.x creates files
67
     with version number 3, which is what this structure is based on.
68
     According to gdb, version 2 is similar.  I believe that version 2
69
     used a different type of procedure linkage table, and there may
70
     have been other differences.  */
71
  bfd_byte ld_version[4];
72
  /* The virtual address of a 28 byte structure used in debugging.
73
     The contents are filled in at run time by ld.so.  */
74
  bfd_byte ldd[4];
75
  /* The virtual address of another structure with information about
76
     how to relocate the executable at run time.  */
77
  bfd_byte ld[4];
78
};
79
 
80
/* The size of the debugging structure pointed to by the debugger
81
   field of __DYNAMIC.  */
82
#define EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE (24)
83
 
84
/* The structure pointed to by the linker field of __DYNAMIC.  As far
85
   as I can tell, most of the addresses in this structure are offsets
86
   within the file, but some are actually virtual addresses.  */
87
 
88
struct internal_sun4_dynamic_link
89
{
90
  /* Linked list of loaded objects.  This is filled in at runtime by
91
     ld.so and probably by dlopen.  */
92
  unsigned long ld_loaded;
93
 
94
  /* The address of the list of names of shared objects which must be
95
     included at runtime.  Each entry in the list is 16 bytes: the 4
96
     byte address of the string naming the object (e.g., for -lc this
97
     is "c"); 4 bytes of flags--the high bit is whether to search for
98
     the object using the library path; the 2 byte major version
99
     number; the 2 byte minor version number; the 4 byte address of
100
     the next entry in the list (zero if this is the last entry).  The
101
     version numbers seem to only be non-zero when doing library
102
     searching.  */
103
  unsigned long ld_need;
104
 
105
  /* The address of the path to search for the shared objects which
106
     must be included.  This points to a string in PATH format which
107
     is generated from the -L arguments to the linker.  According to
108
     the man page, ld.so implicitly adds ${LD_LIBRARY_PATH} to the
109
     beginning of this string and /lib:/usr/lib:/usr/local/lib to the
110
     end.  The string is terminated by a null byte.  This field is
111
     zero if there is no additional path.  */
112
  unsigned long ld_rules;
113
 
114
  /* The address of the global offset table.  This appears to be a
115
     virtual address, not a file offset.  The first entry in the
116
     global offset table seems to be the virtual address of the
117
     sun4_dynamic structure (the same value as the __DYNAMIC symbol).
118
     The global offset table is used for PIC code to hold the
119
     addresses of variables.  A dynamically linked file which does not
120
     itself contain PIC code has a four byte global offset table.  */
121
  unsigned long ld_got;
122
 
123
  /* The address of the procedure linkage table.  This appears to be a
124
     virtual address, not a file offset.
125
 
126
     On a SPARC, the table is composed of 12 byte entries, each of
127
     which consists of three instructions.  The first entry is
128
         sethi %hi(0),%g1
129
	 jmp %g1
130
	 nop
131
     These instructions are changed by ld.so into a jump directly into
132
     ld.so itself.  Each subsequent entry is
133
         save %sp, -96, %sp
134
	 call 
135
	 
136
     The reloc_number is the number of the reloc to use to resolve
137
     this entry.  The reloc will be a JMP_SLOT reloc against some
138
     symbol that is not defined in this object file but should be
139
     defined in a shared object (if it is not, ld.so will report a
140
     runtime error and exit).  The constant 0x010000000 turns the
141
     reloc number into a sethi of %g0, which does nothing since %g0 is
142
     hardwired to zero.
143
 
144
     When one of these entries is executed, it winds up calling into
145
     ld.so.  ld.so looks at the reloc number, available via the return
146
     address, to determine which entry this is.  It then looks at the
147
     reloc and patches up the entry in the table into a sethi and jmp
148
     to the real address followed by a nop.  This means that the reloc
149
     lookup only has to happen once, and it also means that the
150
     relocation only needs to be done if the function is actually
151
     called.  The relocation is expensive because ld.so must look up
152
     the symbol by name.
153
 
154
     The size of the procedure linkage table is given by the ld_plt_sz
155
     field.  */
156
  unsigned long ld_plt;
157
 
158
  /* The address of the relocs.  These are in the same format as
159
     ordinary relocs.  Symbol index numbers refer to the symbols
160
     pointed to by ld_stab.  I think the only way to determine the
161
     number of relocs is to assume that all the bytes from ld_rel to
162
     ld_hash contain reloc entries.  */
163
  unsigned long ld_rel;
164
 
165
  /* The address of a hash table of symbols.  The hash table has
166
     roughly the same number of entries as there are dynamic symbols;
167
     I think the only way to get the exact size is to assume that
168
     every byte from ld_hash to ld_stab is devoted to the hash table.
169
 
170
     Each entry in the hash table is eight bytes.  The first four
171
     bytes are a symbol index into the dynamic symbols.  The second
172
     four bytes are the index of the next hash table entry in the
173
     bucket.  The ld_buckets field gives the number of buckets, say B.
174
     The first B entries in the hash table each start a bucket which
175
     is chained through the second four bytes of each entry.  A value
176
     of zero ends the chain.
177
 
178
     The hash function is simply
179
         h = 0;
180
         while (*string != '\0')
181
	   h = (h << 1) + *string++;
182
	 h &= 0x7fffffff;
183
 
184
     To look up a symbol, compute the hash value of the name.  Take
185
     the modulos of hash value and the number of buckets.  Start at
186
     that entry in the hash table.  See if the symbol (from the first
187
     four bytes of the hash table entry) has the name you are looking
188
     for.  If not, use the chain field (the second four bytes of the
189
     hash table entry) to move on to the next entry in this bucket.
190
     If the chain field is zero you have reached the end of the
191
     bucket, and the symbol is not in the hash table.  */
192
  unsigned long ld_hash;
193
 
194
  /* The address of the symbol table.  This is a list of
195
     external_nlist structures.  The string indices are relative to
196
     the ld_symbols field.  I think the only way to determine the
197
     number of symbols is to assume that all the bytes between ld_stab
198
     and ld_symbols are external_nlist structures.  */
199
  unsigned long ld_stab;
200
 
201
  /* I don't know what this is for.  It seems to always be zero.  */
202
  unsigned long ld_stab_hash;
203
 
204
  /* The number of buckets in the hash table.  */
205
  unsigned long ld_buckets;
206
 
207
  /* The address of the symbol string table.  The first string in this
208
     string table need not be the empty string.  */
209
  unsigned long ld_symbols;
210
 
211
  /* The size in bytes of the symbol string table.  */
212
  unsigned long ld_symb_size;
213
 
214
  /* The size in bytes of the text segment.  */
215
  unsigned long ld_text;
216
 
217
  /* The size in bytes of the procedure linkage table.  */
218
  unsigned long ld_plt_sz;
219
};
220
 
221
/* The external form of the structure.  */
222
 
223
struct external_sun4_dynamic_link
224
{
225
  bfd_byte ld_loaded[4];
226
  bfd_byte ld_need[4];
227
  bfd_byte ld_rules[4];
228
  bfd_byte ld_got[4];
229
  bfd_byte ld_plt[4];
230
  bfd_byte ld_rel[4];
231
  bfd_byte ld_hash[4];
232
  bfd_byte ld_stab[4];
233
  bfd_byte ld_stab_hash[4];
234
  bfd_byte ld_buckets[4];
235
  bfd_byte ld_symbols[4];
236
  bfd_byte ld_symb_size[4];
237
  bfd_byte ld_text[4];
238
  bfd_byte ld_plt_sz[4];
239
};