Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5222 serge 1
/* tc-i386.c -- Assemble code for the Intel 80386
2
   Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
4
   2012
5
   Free Software Foundation, Inc.
6
 
7
   This file is part of GAS, the GNU Assembler.
8
 
9
   GAS is free software; you can redistribute it and/or modify
10
   it under the terms of the GNU General Public License as published by
11
   the Free Software Foundation; either version 3, or (at your option)
12
   any later version.
13
 
14
   GAS is distributed in the hope that it will be useful,
15
   but WITHOUT ANY WARRANTY; without even the implied warranty of
16
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
   GNU General Public License for more details.
18
 
19
   You should have received a copy of the GNU General Public License
20
   along with GAS; see the file COPYING.  If not, write to the Free
21
   Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
22
   02110-1301, USA.  */
23
 
24
/* Intel 80386 machine specific gas.
25
   Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
26
   x86_64 support by Jan Hubicka (jh@suse.cz)
27
   VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
28
   Bugs & suggestions are completely welcome.  This is free software.
29
   Please help us make it better.  */
30
 
31
#include "as.h"
32
#include "safe-ctype.h"
33
#include "subsegs.h"
34
#include "dwarf2dbg.h"
35
#include "dw2gencfi.h"
36
#include "elf/x86-64.h"
37
#include "opcodes/i386-init.h"
38
 
39
#ifndef REGISTER_WARNINGS
40
#define REGISTER_WARNINGS 1
41
#endif
42
 
43
#ifndef INFER_ADDR_PREFIX
44
#define INFER_ADDR_PREFIX 1
45
#endif
46
 
47
#ifndef DEFAULT_ARCH
48
#define DEFAULT_ARCH "i386"
49
#endif
50
 
51
#ifndef INLINE
52
#if __GNUC__ >= 2
53
#define INLINE __inline__
54
#else
55
#define INLINE
56
#endif
57
#endif
58
 
59
/* Prefixes will be emitted in the order defined below.
60
   WAIT_PREFIX must be the first prefix since FWAIT is really is an
61
   instruction, and so must come before any prefixes.
62
   The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
63
   REP_PREFIX/HLE_PREFIX, LOCK_PREFIX.  */
64
#define WAIT_PREFIX	0
65
#define SEG_PREFIX	1
66
#define ADDR_PREFIX	2
67
#define DATA_PREFIX	3
68
#define REP_PREFIX	4
69
#define HLE_PREFIX	REP_PREFIX
70
#define BND_PREFIX	REP_PREFIX
71
#define LOCK_PREFIX	5
72
#define REX_PREFIX	6       /* must come last.  */
73
#define MAX_PREFIXES	7	/* max prefixes per opcode */
74
 
75
/* we define the syntax here (modulo base,index,scale syntax) */
76
#define REGISTER_PREFIX '%'
77
#define IMMEDIATE_PREFIX '$'
78
#define ABSOLUTE_PREFIX '*'
79
 
80
/* these are the instruction mnemonic suffixes in AT&T syntax or
81
   memory operand size in Intel syntax.  */
82
#define WORD_MNEM_SUFFIX  'w'
83
#define BYTE_MNEM_SUFFIX  'b'
84
#define SHORT_MNEM_SUFFIX 's'
85
#define LONG_MNEM_SUFFIX  'l'
86
#define QWORD_MNEM_SUFFIX  'q'
87
#define XMMWORD_MNEM_SUFFIX  'x'
88
#define YMMWORD_MNEM_SUFFIX 'y'
89
#define ZMMWORD_MNEM_SUFFIX 'z'
90
/* Intel Syntax.  Use a non-ascii letter since since it never appears
91
   in instructions.  */
92
#define LONG_DOUBLE_MNEM_SUFFIX '\1'
93
 
94
#define END_OF_INSN '\0'
95
 
96
/*
97
  'templates' is for grouping together 'template' structures for opcodes
98
  of the same name.  This is only used for storing the insns in the grand
99
  ole hash table of insns.
100
  The templates themselves start at START and range up to (but not including)
101
  END.
102
  */
103
typedef struct
104
{
105
  const insn_template *start;
106
  const insn_template *end;
107
}
108
templates;
109
 
110
/* 386 operand encoding bytes:  see 386 book for details of this.  */
111
typedef struct
112
{
113
  unsigned int regmem;	/* codes register or memory operand */
114
  unsigned int reg;	/* codes register operand (or extended opcode) */
115
  unsigned int mode;	/* how to interpret regmem & reg */
116
}
117
modrm_byte;
118
 
119
/* x86-64 extension prefix.  */
120
typedef int rex_byte;
121
 
122
/* 386 opcode byte to code indirect addressing.  */
123
typedef struct
124
{
125
  unsigned base;
126
  unsigned index;
127
  unsigned scale;
128
}
129
sib_byte;
130
 
131
/* x86 arch names, types and features */
132
typedef struct
133
{
134
  const char *name;		/* arch name */
135
  unsigned int len;		/* arch string length */
136
  enum processor_type type;	/* arch type */
137
  i386_cpu_flags flags;		/* cpu feature flags */
138
  unsigned int skip;		/* show_arch should skip this. */
139
  unsigned int negated;		/* turn off indicated flags.  */
140
}
141
arch_entry;
142
 
143
static void update_code_flag (int, int);
144
static void set_code_flag (int);
145
static void set_16bit_gcc_code_flag (int);
146
static void set_intel_syntax (int);
147
static void set_intel_mnemonic (int);
148
static void set_allow_index_reg (int);
149
static void set_check (int);
150
static void set_cpu_arch (int);
151
#ifdef TE_PE
152
static void pe_directive_secrel (int);
153
#endif
154
static void signed_cons (int);
155
static char *output_invalid (int c);
156
static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
157
				    const char *);
158
static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
159
				       const char *);
160
static int i386_att_operand (char *);
161
static int i386_intel_operand (char *, int);
162
static int i386_intel_simplify (expressionS *);
163
static int i386_intel_parse_name (const char *, expressionS *);
164
static const reg_entry *parse_register (char *, char **);
165
static char *parse_insn (char *, char *);
166
static char *parse_operands (char *, const char *);
167
static void swap_operands (void);
168
static void swap_2_operands (int, int);
169
static void optimize_imm (void);
170
static void optimize_disp (void);
171
static const insn_template *match_template (void);
172
static int check_string (void);
173
static int process_suffix (void);
174
static int check_byte_reg (void);
175
static int check_long_reg (void);
176
static int check_qword_reg (void);
177
static int check_word_reg (void);
178
static int finalize_imm (void);
179
static int process_operands (void);
180
static const seg_entry *build_modrm_byte (void);
181
static void output_insn (void);
182
static void output_imm (fragS *, offsetT);
183
static void output_disp (fragS *, offsetT);
184
#ifndef I386COFF
185
static void s_bss (int);
186
#endif
187
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
188
static void handle_large_common (int small ATTRIBUTE_UNUSED);
189
#endif
190
 
191
static const char *default_arch = DEFAULT_ARCH;
192
 
193
/* This struct describes rounding control and SAE in the instruction.  */
194
struct RC_Operation
195
{
196
  enum rc_type
197
    {
198
      rne = 0,
199
      rd,
200
      ru,
201
      rz,
202
      saeonly
203
    } type;
204
  int operand;
205
};
206
 
207
static struct RC_Operation rc_op;
208
 
209
/* The struct describes masking, applied to OPERAND in the instruction.
210
   MASK is a pointer to the corresponding mask register.  ZEROING tells
211
   whether merging or zeroing mask is used.  */
212
struct Mask_Operation
213
{
214
  const reg_entry *mask;
215
  unsigned int zeroing;
216
  /* The operand where this operation is associated.  */
217
  int operand;
218
};
219
 
220
static struct Mask_Operation mask_op;
221
 
222
/* The struct describes broadcasting, applied to OPERAND.  FACTOR is
223
   broadcast factor.  */
224
struct Broadcast_Operation
225
{
226
  /* Type of broadcast: no broadcast, {1to8}, or {1to16}.  */
227
  int type;
228
 
229
  /* Index of broadcasted operand.  */
230
  int operand;
231
};
232
 
233
static struct Broadcast_Operation broadcast_op;
234
 
235
/* VEX prefix.  */
236
typedef struct
237
{
238
  /* VEX prefix is either 2 byte or 3 byte.  EVEX is 4 byte.  */
239
  unsigned char bytes[4];
240
  unsigned int length;
241
  /* Destination or source register specifier.  */
242
  const reg_entry *register_specifier;
243
} vex_prefix;
244
 
245
/* 'md_assemble ()' gathers together information and puts it into a
246
   i386_insn.  */
247
 
248
union i386_op
249
  {
250
    expressionS *disps;
251
    expressionS *imms;
252
    const reg_entry *regs;
253
  };
254
 
255
enum i386_error
256
  {
257
    operand_size_mismatch,
258
    operand_type_mismatch,
259
    register_type_mismatch,
260
    number_of_operands_mismatch,
261
    invalid_instruction_suffix,
262
    bad_imm4,
263
    old_gcc_only,
264
    unsupported_with_intel_mnemonic,
265
    unsupported_syntax,
266
    unsupported,
267
    invalid_vsib_address,
268
    invalid_vector_register_set,
269
    unsupported_vector_index_register,
270
    unsupported_broadcast,
271
    broadcast_not_on_src_operand,
272
    broadcast_needed,
273
    unsupported_masking,
274
    mask_not_on_destination,
275
    no_default_mask,
276
    unsupported_rc_sae,
277
    rc_sae_operand_not_last_imm,
278
    invalid_register_operand,
279
    try_vector_disp8
280
  };
281
 
282
struct _i386_insn
283
  {
284
    /* TM holds the template for the insn were currently assembling.  */
285
    insn_template tm;
286
 
287
    /* SUFFIX holds the instruction size suffix for byte, word, dword
288
       or qword, if given.  */
289
    char suffix;
290
 
291
    /* OPERANDS gives the number of given operands.  */
292
    unsigned int operands;
293
 
294
    /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
295
       of given register, displacement, memory operands and immediate
296
       operands.  */
297
    unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
298
 
299
    /* TYPES [i] is the type (see above #defines) which tells us how to
300
       use OP[i] for the corresponding operand.  */
301
    i386_operand_type types[MAX_OPERANDS];
302
 
303
    /* Displacement expression, immediate expression, or register for each
304
       operand.  */
305
    union i386_op op[MAX_OPERANDS];
306
 
307
    /* Flags for operands.  */
308
    unsigned int flags[MAX_OPERANDS];
309
#define Operand_PCrel 1
310
 
311
    /* Relocation type for operand */
312
    enum bfd_reloc_code_real reloc[MAX_OPERANDS];
313
 
314
    /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
315
       the base index byte below.  */
316
    const reg_entry *base_reg;
317
    const reg_entry *index_reg;
318
    unsigned int log2_scale_factor;
319
 
320
    /* SEG gives the seg_entries of this insn.  They are zero unless
321
       explicit segment overrides are given.  */
322
    const seg_entry *seg[2];
323
 
324
    /* PREFIX holds all the given prefix opcodes (usually null).
325
       PREFIXES is the number of prefix opcodes.  */
326
    unsigned int prefixes;
327
    unsigned char prefix[MAX_PREFIXES];
328
 
329
    /* RM and SIB are the modrm byte and the sib byte where the
330
       addressing modes of this insn are encoded.  */
331
    modrm_byte rm;
332
    rex_byte rex;
333
    rex_byte vrex;
334
    sib_byte sib;
335
    vex_prefix vex;
336
 
337
    /* Masking attributes.  */
338
    struct Mask_Operation *mask;
339
 
340
    /* Rounding control and SAE attributes.  */
341
    struct RC_Operation *rounding;
342
 
343
    /* Broadcasting attributes.  */
344
    struct Broadcast_Operation *broadcast;
345
 
346
    /* Compressed disp8*N attribute.  */
347
    unsigned int memshift;
348
 
349
    /* Swap operand in encoding.  */
350
    unsigned int swap_operand;
351
 
352
    /* Prefer 8bit or 32bit displacement in encoding.  */
353
    enum
354
      {
355
	disp_encoding_default = 0,
356
	disp_encoding_8bit,
357
	disp_encoding_32bit
358
      } disp_encoding;
359
 
360
    /* REP prefix.  */
361
    const char *rep_prefix;
362
 
363
    /* HLE prefix.  */
364
    const char *hle_prefix;
365
 
366
    /* Have BND prefix.  */
367
    const char *bnd_prefix;
368
 
369
    /* Need VREX to support upper 16 registers.  */
370
    int need_vrex;
371
 
372
    /* Error message.  */
373
    enum i386_error error;
374
  };
375
 
376
typedef struct _i386_insn i386_insn;
377
 
378
/* Link RC type with corresponding string, that'll be looked for in
379
   asm.  */
380
struct RC_name
381
{
382
  enum rc_type type;
383
  const char *name;
384
  unsigned int len;
385
};
386
 
387
static const struct RC_name RC_NamesTable[] =
388
{
389
  {  rne, STRING_COMMA_LEN ("rn-sae") },
390
  {  rd,  STRING_COMMA_LEN ("rd-sae") },
391
  {  ru,  STRING_COMMA_LEN ("ru-sae") },
392
  {  rz,  STRING_COMMA_LEN ("rz-sae") },
393
  {  saeonly,  STRING_COMMA_LEN ("sae") },
394
};
395
 
396
/* List of chars besides those in app.c:symbol_chars that can start an
397
   operand.  Used to prevent the scrubber eating vital white-space.  */
398
const char extra_symbol_chars[] = "*%-([{"
399
#ifdef LEX_AT
400
	"@"
401
#endif
402
#ifdef LEX_QM
403
	"?"
404
#endif
405
	;
406
 
407
#if (defined (TE_I386AIX)				\
408
     || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))	\
409
	 && !defined (TE_GNU)				\
410
	 && !defined (TE_LINUX)				\
411
	 && !defined (TE_NACL)				\
412
	 && !defined (TE_NETWARE)			\
413
	 && !defined (TE_FreeBSD)			\
414
	 && !defined (TE_DragonFly)			\
415
	 && !defined (TE_NetBSD)))
416
/* This array holds the chars that always start a comment.  If the
417
   pre-processor is disabled, these aren't very useful.  The option
418
   --divide will remove '/' from this list.  */
419
const char *i386_comment_chars = "#/";
420
#define SVR4_COMMENT_CHARS 1
421
#define PREFIX_SEPARATOR '\\'
422
 
423
#else
424
const char *i386_comment_chars = "#";
425
#define PREFIX_SEPARATOR '/'
426
#endif
427
 
428
/* This array holds the chars that only start a comment at the beginning of
429
   a line.  If the line seems to have the form '# 123 filename'
430
   .line and .file directives will appear in the pre-processed output.
431
   Note that input_file.c hand checks for '#' at the beginning of the
432
   first line of the input file.  This is because the compiler outputs
433
   #NO_APP at the beginning of its output.
434
   Also note that comments started like this one will always work if
435
   '/' isn't otherwise defined.  */
436
const char line_comment_chars[] = "#/";
437
 
438
const char line_separator_chars[] = ";";
439
 
440
/* Chars that can be used to separate mant from exp in floating point
441
   nums.  */
442
const char EXP_CHARS[] = "eE";
443
 
444
/* Chars that mean this number is a floating point constant
445
   As in 0f12.456
446
   or    0d1.2345e12.  */
447
const char FLT_CHARS[] = "fFdDxX";
448
 
449
/* Tables for lexical analysis.  */
450
static char mnemonic_chars[256];
451
static char register_chars[256];
452
static char operand_chars[256];
453
static char identifier_chars[256];
454
static char digit_chars[256];
455
 
456
/* Lexical macros.  */
457
#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
458
#define is_operand_char(x) (operand_chars[(unsigned char) x])
459
#define is_register_char(x) (register_chars[(unsigned char) x])
460
#define is_space_char(x) ((x) == ' ')
461
#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
462
#define is_digit_char(x) (digit_chars[(unsigned char) x])
463
 
464
/* All non-digit non-letter characters that may occur in an operand.  */
465
static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
466
 
467
/* md_assemble() always leaves the strings it's passed unaltered.  To
468
   effect this we maintain a stack of saved characters that we've smashed
469
   with '\0's (indicating end of strings for various sub-fields of the
470
   assembler instruction).  */
471
static char save_stack[32];
472
static char *save_stack_p;
473
#define END_STRING_AND_SAVE(s) \
474
	do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
475
#define RESTORE_END_STRING(s) \
476
	do { *(s) = *--save_stack_p; } while (0)
477
 
478
/* The instruction we're assembling.  */
479
static i386_insn i;
480
 
481
/* Possible templates for current insn.  */
482
static const templates *current_templates;
483
 
484
/* Per instruction expressionS buffers: max displacements & immediates.  */
485
static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
486
static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
487
 
488
/* Current operand we are working on.  */
489
static int this_operand = -1;
490
 
491
/* We support four different modes.  FLAG_CODE variable is used to distinguish
492
   these.  */
493
 
494
enum flag_code {
495
	CODE_32BIT,
496
	CODE_16BIT,
497
	CODE_64BIT };
498
 
499
static enum flag_code flag_code;
500
static unsigned int object_64bit;
501
static unsigned int disallow_64bit_reloc;
502
static int use_rela_relocations = 0;
503
 
504
#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
505
     || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
506
     || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
507
 
508
/* The ELF ABI to use.  */
509
enum x86_elf_abi
510
{
511
  I386_ABI,
512
  X86_64_ABI,
513
  X86_64_X32_ABI
514
};
515
 
516
static enum x86_elf_abi x86_elf_abi = I386_ABI;
517
#endif
518
 
519
/* 1 for intel syntax,
520
 
521
static int intel_syntax = 0;
522
 
523
/* 1 for intel mnemonic,
524
 
525
static int intel_mnemonic = !SYSV386_COMPAT;
526
 
527
/* 1 if support old (<= 2.8.1) versions of gcc.  */
528
static int old_gcc = OLDGCC_COMPAT;
529
 
530
/* 1 if pseudo registers are permitted.  */
531
static int allow_pseudo_reg = 0;
532
 
533
/* 1 if register prefix % not required.  */
534
static int allow_naked_reg = 0;
535
 
536
/* 1 if the assembler should add BND prefix for all control-tranferring
537
   instructions supporting it, even if this prefix wasn't specified
538
   explicitly.  */
539
static int add_bnd_prefix = 0;
540
 
541
/* 1 if pseudo index register, eiz/riz, is allowed .  */
542
static int allow_index_reg = 0;
543
 
544
static enum check_kind
545
  {
546
    check_none = 0,
547
    check_warning,
548
    check_error
549
  }
550
sse_check, operand_check = check_warning;
551
 
552
/* Register prefix used for error message.  */
553
static const char *register_prefix = "%";
554
 
555
/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
556
   leave, push, and pop instructions so that gcc has the same stack
557
   frame as in 32 bit mode.  */
558
static char stackop_size = '\0';
559
 
560
/* Non-zero to optimize code alignment.  */
561
int optimize_align_code = 1;
562
 
563
/* Non-zero to quieten some warnings.  */
564
static int quiet_warnings = 0;
565
 
566
/* CPU name.  */
567
static const char *cpu_arch_name = NULL;
568
static char *cpu_sub_arch_name = NULL;
569
 
570
/* CPU feature flags.  */
571
static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
572
 
573
/* If we have selected a cpu we are generating instructions for.  */
574
static int cpu_arch_tune_set = 0;
575
 
576
/* Cpu we are generating instructions for.  */
577
enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
578
 
579
/* CPU feature flags of cpu we are generating instructions for.  */
580
static i386_cpu_flags cpu_arch_tune_flags;
581
 
582
/* CPU instruction set architecture used.  */
583
enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
584
 
585
/* CPU feature flags of instruction set architecture used.  */
586
i386_cpu_flags cpu_arch_isa_flags;
587
 
588
/* If set, conditional jumps are not automatically promoted to handle
589
   larger than a byte offset.  */
590
static unsigned int no_cond_jump_promotion = 0;
591
 
592
/* Encode SSE instructions with VEX prefix.  */
593
static unsigned int sse2avx;
594
 
595
/* Encode scalar AVX instructions with specific vector length.  */
596
static enum
597
  {
598
    vex128 = 0,
599
    vex256
600
  } avxscalar;
601
 
602
/* Encode scalar EVEX LIG instructions with specific vector length.  */
603
static enum
604
  {
605
    evexl128 = 0,
606
    evexl256,
607
    evexl512
608
  } evexlig;
609
 
610
/* Encode EVEX WIG instructions with specific evex.w.  */
611
static enum
612
  {
613
    evexw0 = 0,
614
    evexw1
615
  } evexwig;
616
 
617
/* Pre-defined "_GLOBAL_OFFSET_TABLE_".  */
618
static symbolS *GOT_symbol;
619
 
620
/* The dwarf2 return column, adjusted for 32 or 64 bit.  */
621
unsigned int x86_dwarf2_return_column;
622
 
623
/* The dwarf2 data alignment, adjusted for 32 or 64 bit.  */
624
int x86_cie_data_alignment;
625
 
626
/* Interface to relax_segment.
627
   There are 3 major relax states for 386 jump insns because the
628
   different types of jumps add different sizes to frags when we're
629
   figuring out what sort of jump to choose to reach a given label.  */
630
 
631
/* Types.  */
632
#define UNCOND_JUMP 0
633
#define COND_JUMP 1
634
#define COND_JUMP86 2
635
 
636
/* Sizes.  */
637
#define CODE16	1
638
#define SMALL	0
639
#define SMALL16 (SMALL | CODE16)
640
#define BIG	2
641
#define BIG16	(BIG | CODE16)
642
 
643
#ifndef INLINE
644
#ifdef __GNUC__
645
#define INLINE __inline__
646
#else
647
#define INLINE
648
#endif
649
#endif
650
 
651
#define ENCODE_RELAX_STATE(type, size) \
652
  ((relax_substateT) (((type) << 2) | (size)))
653
#define TYPE_FROM_RELAX_STATE(s) \
654
  ((s) >> 2)
655
#define DISP_SIZE_FROM_RELAX_STATE(s) \
656
    ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
657
 
658
/* This table is used by relax_frag to promote short jumps to long
659
   ones where necessary.  SMALL (short) jumps may be promoted to BIG
660
   (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long).  We
661
   don't allow a short jump in a 32 bit code segment to be promoted to
662
   a 16 bit offset jump because it's slower (requires data size
663
   prefix), and doesn't work, unless the destination is in the bottom
664
   64k of the code segment (The top 16 bits of eip are zeroed).  */
665
 
666
const relax_typeS md_relax_table[] =
667
{
668
  /* The fields are:
669
     1) most positive reach of this state,
670
     2) most negative reach of this state,
671
     3) how many bytes this mode will have in the variable part of the frag
672
     4) which index into the table to try if we can't fit into this one.  */
673
 
674
  /* UNCOND_JUMP states.  */
675
  {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
676
  {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
677
  /* dword jmp adds 4 bytes to frag:
678
 
679
  {0, 0, 4, 0},
680
  /* word jmp adds 2 byte2 to frag:
681
 
682
  {0, 0, 2, 0},
683
 
684
  /* COND_JUMP states.  */
685
  {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
686
  {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
687
  /* dword conditionals adds 5 bytes to frag:
688
     1 extra opcode byte, 4 displacement bytes.  */
689
  {0, 0, 5, 0},
690
  /* word conditionals add 3 bytes to frag:
691
     1 extra opcode byte, 2 displacement bytes.  */
692
  {0, 0, 3, 0},
693
 
694
  /* COND_JUMP86 states.  */
695
  {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
696
  {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
697
  /* dword conditionals adds 5 bytes to frag:
698
     1 extra opcode byte, 4 displacement bytes.  */
699
  {0, 0, 5, 0},
700
  /* word conditionals add 4 bytes to frag:
701
     1 displacement byte and a 3 byte long branch insn.  */
702
  {0, 0, 4, 0}
703
};
704
 
705
static const arch_entry cpu_arch[] =
706
{
707
  /* Do not replace the first two entries - i386_target_format()
708
     relies on them being there in this order.  */
709
  { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
710
    CPU_GENERIC32_FLAGS, 0, 0 },
711
  { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
712
    CPU_GENERIC64_FLAGS, 0, 0 },
713
  { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
714
    CPU_NONE_FLAGS, 0, 0 },
715
  { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
716
    CPU_I186_FLAGS, 0, 0 },
717
  { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
718
    CPU_I286_FLAGS, 0, 0 },
719
  { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
720
    CPU_I386_FLAGS, 0, 0 },
721
  { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
722
    CPU_I486_FLAGS, 0, 0 },
723
  { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
724
    CPU_I586_FLAGS, 0, 0 },
725
  { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
726
    CPU_I686_FLAGS, 0, 0 },
727
  { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
728
    CPU_I586_FLAGS, 0, 0 },
729
  { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
730
    CPU_PENTIUMPRO_FLAGS, 0, 0 },
731
  { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
732
    CPU_P2_FLAGS, 0, 0 },
733
  { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
734
    CPU_P3_FLAGS, 0, 0 },
735
  { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
736
    CPU_P4_FLAGS, 0, 0 },
737
  { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
738
    CPU_CORE_FLAGS, 0, 0 },
739
  { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
740
    CPU_NOCONA_FLAGS, 0, 0 },
741
  { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
742
    CPU_CORE_FLAGS, 1, 0 },
743
  { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
744
    CPU_CORE_FLAGS, 0, 0 },
745
  { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
746
    CPU_CORE2_FLAGS, 1, 0 },
747
  { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
748
    CPU_CORE2_FLAGS, 0, 0 },
749
  { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
750
    CPU_COREI7_FLAGS, 0, 0 },
751
  { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
752
    CPU_L1OM_FLAGS, 0, 0 },
753
  { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
754
    CPU_K1OM_FLAGS, 0, 0 },
755
  { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
756
    CPU_K6_FLAGS, 0, 0 },
757
  { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
758
    CPU_K6_2_FLAGS, 0, 0 },
759
  { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
760
    CPU_ATHLON_FLAGS, 0, 0 },
761
  { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
762
    CPU_K8_FLAGS, 1, 0 },
763
  { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
764
    CPU_K8_FLAGS, 0, 0 },
765
  { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
766
    CPU_K8_FLAGS, 0, 0 },
767
  { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
768
    CPU_AMDFAM10_FLAGS, 0, 0 },
769
  { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
770
    CPU_BDVER1_FLAGS, 0, 0 },
771
  { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
772
    CPU_BDVER2_FLAGS, 0, 0 },
773
  { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
774
    CPU_BDVER3_FLAGS, 0, 0 },
775
  { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
776
    CPU_BTVER1_FLAGS, 0, 0 },
777
  { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
778
    CPU_BTVER2_FLAGS, 0, 0 },
779
  { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
780
    CPU_8087_FLAGS, 0, 0 },
781
  { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
782
    CPU_287_FLAGS, 0, 0 },
783
  { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
784
    CPU_387_FLAGS, 0, 0 },
785
  { STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN,
786
    CPU_ANY87_FLAGS, 0, 1 },
787
  { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
788
    CPU_MMX_FLAGS, 0, 0 },
789
  { STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN,
790
    CPU_3DNOWA_FLAGS, 0, 1 },
791
  { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
792
    CPU_SSE_FLAGS, 0, 0 },
793
  { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
794
    CPU_SSE2_FLAGS, 0, 0 },
795
  { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
796
    CPU_SSE3_FLAGS, 0, 0 },
797
  { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
798
    CPU_SSSE3_FLAGS, 0, 0 },
799
  { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
800
    CPU_SSE4_1_FLAGS, 0, 0 },
801
  { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
802
    CPU_SSE4_2_FLAGS, 0, 0 },
803
  { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
804
    CPU_SSE4_2_FLAGS, 0, 0 },
805
  { STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN,
806
    CPU_ANY_SSE_FLAGS, 0, 1 },
807
  { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
808
    CPU_AVX_FLAGS, 0, 0 },
809
  { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
810
    CPU_AVX2_FLAGS, 0, 0 },
811
  { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
812
    CPU_AVX512F_FLAGS, 0, 0 },
813
  { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
814
    CPU_AVX512CD_FLAGS, 0, 0 },
815
  { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
816
    CPU_AVX512ER_FLAGS, 0, 0 },
817
  { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
818
    CPU_AVX512PF_FLAGS, 0, 0 },
819
  { STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN,
820
    CPU_ANY_AVX_FLAGS, 0, 1 },
821
  { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
822
    CPU_VMX_FLAGS, 0, 0 },
823
  { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
824
    CPU_VMFUNC_FLAGS, 0, 0 },
825
  { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
826
    CPU_SMX_FLAGS, 0, 0 },
827
  { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
828
    CPU_XSAVE_FLAGS, 0, 0 },
829
  { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
830
    CPU_XSAVEOPT_FLAGS, 0, 0 },
831
  { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
832
    CPU_AES_FLAGS, 0, 0 },
833
  { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
834
    CPU_PCLMUL_FLAGS, 0, 0 },
835
  { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
836
    CPU_PCLMUL_FLAGS, 1, 0 },
837
  { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
838
    CPU_FSGSBASE_FLAGS, 0, 0 },
839
  { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
840
    CPU_RDRND_FLAGS, 0, 0 },
841
  { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
842
    CPU_F16C_FLAGS, 0, 0 },
843
  { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
844
    CPU_BMI2_FLAGS, 0, 0 },
845
  { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
846
    CPU_FMA_FLAGS, 0, 0 },
847
  { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
848
    CPU_FMA4_FLAGS, 0, 0 },
849
  { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
850
    CPU_XOP_FLAGS, 0, 0 },
851
  { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
852
    CPU_LWP_FLAGS, 0, 0 },
853
  { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
854
    CPU_MOVBE_FLAGS, 0, 0 },
855
  { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
856
    CPU_CX16_FLAGS, 0, 0 },
857
  { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
858
    CPU_EPT_FLAGS, 0, 0 },
859
  { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
860
    CPU_LZCNT_FLAGS, 0, 0 },
861
  { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
862
    CPU_HLE_FLAGS, 0, 0 },
863
  { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
864
    CPU_RTM_FLAGS, 0, 0 },
865
  { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
866
    CPU_INVPCID_FLAGS, 0, 0 },
867
  { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
868
    CPU_CLFLUSH_FLAGS, 0, 0 },
869
  { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
870
    CPU_NOP_FLAGS, 0, 0 },
871
  { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
872
    CPU_SYSCALL_FLAGS, 0, 0 },
873
  { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
874
    CPU_RDTSCP_FLAGS, 0, 0 },
875
  { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
876
    CPU_3DNOW_FLAGS, 0, 0 },
877
  { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
878
    CPU_3DNOWA_FLAGS, 0, 0 },
879
  { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
880
    CPU_PADLOCK_FLAGS, 0, 0 },
881
  { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
882
    CPU_SVME_FLAGS, 1, 0 },
883
  { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
884
    CPU_SVME_FLAGS, 0, 0 },
885
  { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
886
    CPU_SSE4A_FLAGS, 0, 0 },
887
  { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
888
    CPU_ABM_FLAGS, 0, 0 },
889
  { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
890
    CPU_BMI_FLAGS, 0, 0 },
891
  { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
892
    CPU_TBM_FLAGS, 0, 0 },
893
  { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
894
    CPU_ADX_FLAGS, 0, 0 },
895
  { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
896
    CPU_RDSEED_FLAGS, 0, 0 },
897
  { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
898
    CPU_PRFCHW_FLAGS, 0, 0 },
899
  { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
900
    CPU_SMAP_FLAGS, 0, 0 },
901
  { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
902
    CPU_MPX_FLAGS, 0, 0 },
903
  { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
904
    CPU_SHA_FLAGS, 0, 0 },
905
};
906
 
907
#ifdef I386COFF
908
/* Like s_lcomm_internal in gas/read.c but the alignment string
909
   is allowed to be optional.  */
910
 
911
static symbolS *
912
pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
913
{
914
  addressT align = 0;
915
 
916
  SKIP_WHITESPACE ();
917
 
918
  if (needs_align
919
      && *input_line_pointer == ',')
920
    {
921
      align = parse_align (needs_align - 1);
922
 
923
      if (align == (addressT) -1)
924
	return NULL;
925
    }
926
  else
927
    {
928
      if (size >= 8)
929
	align = 3;
930
      else if (size >= 4)
931
	align = 2;
932
      else if (size >= 2)
933
	align = 1;
934
      else
935
	align = 0;
936
    }
937
 
938
  bss_alloc (symbolP, size, align);
939
  return symbolP;
940
}
941
 
942
static void
943
pe_lcomm (int needs_align)
944
{
945
  s_comm_internal (needs_align * 2, pe_lcomm_internal);
946
}
947
#endif
948
 
949
const pseudo_typeS md_pseudo_table[] =
950
{
951
#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
952
  {"align", s_align_bytes, 0},
953
#else
954
  {"align", s_align_ptwo, 0},
955
#endif
956
  {"arch", set_cpu_arch, 0},
957
#ifndef I386COFF
958
  {"bss", s_bss, 0},
959
#else
960
  {"lcomm", pe_lcomm, 1},
961
#endif
962
  {"ffloat", float_cons, 'f'},
963
  {"dfloat", float_cons, 'd'},
964
  {"tfloat", float_cons, 'x'},
965
  {"value", cons, 2},
966
  {"slong", signed_cons, 4},
967
  {"noopt", s_ignore, 0},
968
  {"optim", s_ignore, 0},
969
  {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
970
  {"code16", set_code_flag, CODE_16BIT},
971
  {"code32", set_code_flag, CODE_32BIT},
972
  {"code64", set_code_flag, CODE_64BIT},
973
  {"intel_syntax", set_intel_syntax, 1},
974
  {"att_syntax", set_intel_syntax, 0},
975
  {"intel_mnemonic", set_intel_mnemonic, 1},
976
  {"att_mnemonic", set_intel_mnemonic, 0},
977
  {"allow_index_reg", set_allow_index_reg, 1},
978
  {"disallow_index_reg", set_allow_index_reg, 0},
979
  {"sse_check", set_check, 0},
980
  {"operand_check", set_check, 1},
981
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
982
  {"largecomm", handle_large_common, 0},
983
#else
984
  {"file", (void (*) (int)) dwarf2_directive_file, 0},
985
  {"loc", dwarf2_directive_loc, 0},
986
  {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
987
#endif
988
#ifdef TE_PE
989
  {"secrel32", pe_directive_secrel, 0},
990
#endif
991
  {0, 0, 0}
992
};
993
 
994
/* For interface with expression ().  */
995
extern char *input_line_pointer;
996
 
997
/* Hash table for instruction mnemonic lookup.  */
998
static struct hash_control *op_hash;
999
 
1000
/* Hash table for register lookup.  */
1001
static struct hash_control *reg_hash;
1002
 
1003
void
1004
i386_align_code (fragS *fragP, int count)
1005
{
1006
  /* Various efficient no-op patterns for aligning code labels.
1007
     Note: Don't try to assemble the instructions in the comments.
1008
     0L and 0w are not legal.  */
1009
  static const char f32_1[] =
1010
    {0x90};					/* nop			*/
1011
  static const char f32_2[] =
1012
    {0x66,0x90};				/* xchg %ax,%ax */
1013
  static const char f32_3[] =
1014
    {0x8d,0x76,0x00};				/* leal 0(%esi),%esi	*/
1015
  static const char f32_4[] =
1016
    {0x8d,0x74,0x26,0x00};			/* leal 0(%esi,1),%esi	*/
1017
  static const char f32_5[] =
1018
    {0x90,					/* nop			*/
1019
     0x8d,0x74,0x26,0x00};			/* leal 0(%esi,1),%esi	*/
1020
  static const char f32_6[] =
1021
    {0x8d,0xb6,0x00,0x00,0x00,0x00};		/* leal 0L(%esi),%esi	*/
1022
  static const char f32_7[] =
1023
    {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00};	/* leal 0L(%esi,1),%esi */
1024
  static const char f32_8[] =
1025
    {0x90,					/* nop			*/
1026
     0x8d,0xb4,0x26,0x00,0x00,0x00,0x00};	/* leal 0L(%esi,1),%esi */
1027
  static const char f32_9[] =
1028
    {0x89,0xf6,					/* movl %esi,%esi	*/
1029
     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};	/* leal 0L(%edi,1),%edi */
1030
  static const char f32_10[] =
1031
    {0x8d,0x76,0x00,				/* leal 0(%esi),%esi	*/
1032
     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};	/* leal 0L(%edi,1),%edi */
1033
  static const char f32_11[] =
1034
    {0x8d,0x74,0x26,0x00,			/* leal 0(%esi,1),%esi	*/
1035
     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};	/* leal 0L(%edi,1),%edi */
1036
  static const char f32_12[] =
1037
    {0x8d,0xb6,0x00,0x00,0x00,0x00,		/* leal 0L(%esi),%esi	*/
1038
     0x8d,0xbf,0x00,0x00,0x00,0x00};		/* leal 0L(%edi),%edi	*/
1039
  static const char f32_13[] =
1040
    {0x8d,0xb6,0x00,0x00,0x00,0x00,		/* leal 0L(%esi),%esi	*/
1041
     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};	/* leal 0L(%edi,1),%edi */
1042
  static const char f32_14[] =
1043
    {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00,	/* leal 0L(%esi,1),%esi */
1044
     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};	/* leal 0L(%edi,1),%edi */
1045
  static const char f16_3[] =
1046
    {0x8d,0x74,0x00};				/* lea 0(%esi),%esi	*/
1047
  static const char f16_4[] =
1048
    {0x8d,0xb4,0x00,0x00};			/* lea 0w(%si),%si	*/
1049
  static const char f16_5[] =
1050
    {0x90,					/* nop			*/
1051
     0x8d,0xb4,0x00,0x00};			/* lea 0w(%si),%si	*/
1052
  static const char f16_6[] =
1053
    {0x89,0xf6,					/* mov %si,%si		*/
1054
     0x8d,0xbd,0x00,0x00};			/* lea 0w(%di),%di	*/
1055
  static const char f16_7[] =
1056
    {0x8d,0x74,0x00,				/* lea 0(%si),%si	*/
1057
     0x8d,0xbd,0x00,0x00};			/* lea 0w(%di),%di	*/
1058
  static const char f16_8[] =
1059
    {0x8d,0xb4,0x00,0x00,			/* lea 0w(%si),%si	*/
1060
     0x8d,0xbd,0x00,0x00};			/* lea 0w(%di),%di	*/
1061
  static const char jump_31[] =
1062
    {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90,	/* jmp .+31; lotsa nops	*/
1063
     0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1064
     0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1065
     0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1066
  static const char *const f32_patt[] = {
1067
    f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1068
    f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1069
  };
1070
  static const char *const f16_patt[] = {
1071
    f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1072
  };
1073
  /* nopl (%[re]ax) */
1074
  static const char alt_3[] =
1075
    {0x0f,0x1f,0x00};
1076
  /* nopl 0(%[re]ax) */
1077
  static const char alt_4[] =
1078
    {0x0f,0x1f,0x40,0x00};
1079
  /* nopl 0(%[re]ax,%[re]ax,1) */
1080
  static const char alt_5[] =
1081
    {0x0f,0x1f,0x44,0x00,0x00};
1082
  /* nopw 0(%[re]ax,%[re]ax,1) */
1083
  static const char alt_6[] =
1084
    {0x66,0x0f,0x1f,0x44,0x00,0x00};
1085
  /* nopl 0L(%[re]ax) */
1086
  static const char alt_7[] =
1087
    {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1088
  /* nopl 0L(%[re]ax,%[re]ax,1) */
1089
  static const char alt_8[] =
1090
    {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1091
  /* nopw 0L(%[re]ax,%[re]ax,1) */
1092
  static const char alt_9[] =
1093
    {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1094
  /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1095
  static const char alt_10[] =
1096
    {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1097
  /* data16
1098
     nopw %cs:0L(%[re]ax,%[re]ax,1) */
1099
  static const char alt_long_11[] =
1100
    {0x66,
1101
     0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1102
  /* data16
1103
     data16
1104
     nopw %cs:0L(%[re]ax,%[re]ax,1) */
1105
  static const char alt_long_12[] =
1106
    {0x66,
1107
     0x66,
1108
     0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1109
  /* data16
1110
     data16
1111
     data16
1112
     nopw %cs:0L(%[re]ax,%[re]ax,1) */
1113
  static const char alt_long_13[] =
1114
    {0x66,
1115
     0x66,
1116
     0x66,
1117
     0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1118
  /* data16
1119
     data16
1120
     data16
1121
     data16
1122
     nopw %cs:0L(%[re]ax,%[re]ax,1) */
1123
  static const char alt_long_14[] =
1124
    {0x66,
1125
     0x66,
1126
     0x66,
1127
     0x66,
1128
     0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1129
  /* data16
1130
     data16
1131
     data16
1132
     data16
1133
     data16
1134
     nopw %cs:0L(%[re]ax,%[re]ax,1) */
1135
  static const char alt_long_15[] =
1136
    {0x66,
1137
     0x66,
1138
     0x66,
1139
     0x66,
1140
     0x66,
1141
     0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1142
  /* nopl 0(%[re]ax,%[re]ax,1)
1143
     nopw 0(%[re]ax,%[re]ax,1) */
1144
  static const char alt_short_11[] =
1145
    {0x0f,0x1f,0x44,0x00,0x00,
1146
     0x66,0x0f,0x1f,0x44,0x00,0x00};
1147
  /* nopw 0(%[re]ax,%[re]ax,1)
1148
     nopw 0(%[re]ax,%[re]ax,1) */
1149
  static const char alt_short_12[] =
1150
    {0x66,0x0f,0x1f,0x44,0x00,0x00,
1151
     0x66,0x0f,0x1f,0x44,0x00,0x00};
1152
  /* nopw 0(%[re]ax,%[re]ax,1)
1153
     nopl 0L(%[re]ax) */
1154
  static const char alt_short_13[] =
1155
    {0x66,0x0f,0x1f,0x44,0x00,0x00,
1156
     0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1157
  /* nopl 0L(%[re]ax)
1158
     nopl 0L(%[re]ax) */
1159
  static const char alt_short_14[] =
1160
    {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1161
     0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1162
  /* nopl 0L(%[re]ax)
1163
     nopl 0L(%[re]ax,%[re]ax,1) */
1164
  static const char alt_short_15[] =
1165
    {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1166
     0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1167
  static const char *const alt_short_patt[] = {
1168
    f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1169
    alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
1170
    alt_short_14, alt_short_15
1171
  };
1172
  static const char *const alt_long_patt[] = {
1173
    f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1174
    alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
1175
    alt_long_14, alt_long_15
1176
  };
1177
 
1178
  /* Only align for at least a positive non-zero boundary. */
1179
  if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1180
    return;
1181
 
1182
  /* We need to decide which NOP sequence to use for 32bit and
1183
     64bit. When -mtune= is used:
1184
 
1185
     1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1186
     PROCESSOR_GENERIC32, f32_patt will be used.
1187
     2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
1188
     PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
1189
     PROCESSOR_GENERIC64, alt_long_patt will be used.
1190
     3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
1191
     PROCESSOR_AMDFAM10, PROCESSOR_BD and PROCESSOR_BT, alt_short_patt
1192
     will be used.
1193
 
1194
     When -mtune= isn't used, alt_long_patt will be used if
1195
     cpu_arch_isa_flags has CpuNop.  Otherwise, f32_patt will
1196
     be used.
1197
 
1198
     When -march= or .arch is used, we can't use anything beyond
1199
     cpu_arch_isa_flags.   */
1200
 
1201
  if (flag_code == CODE_16BIT)
1202
    {
1203
      if (count > 8)
1204
	{
1205
	  memcpy (fragP->fr_literal + fragP->fr_fix,
1206
		  jump_31, count);
1207
	  /* Adjust jump offset.  */
1208
	  fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1209
	}
1210
      else
1211
	memcpy (fragP->fr_literal + fragP->fr_fix,
1212
		f16_patt[count - 1], count);
1213
    }
1214
  else
1215
    {
1216
      const char *const *patt = NULL;
1217
 
1218
      if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1219
	{
1220
	  /* PROCESSOR_UNKNOWN means that all ISAs may be used.  */
1221
	  switch (cpu_arch_tune)
1222
	    {
1223
	    case PROCESSOR_UNKNOWN:
1224
	      /* We use cpu_arch_isa_flags to check if we SHOULD
1225
		 optimize with nops.  */
1226
	      if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1227
		patt = alt_long_patt;
1228
	      else
1229
		patt = f32_patt;
1230
	      break;
1231
	    case PROCESSOR_PENTIUM4:
1232
	    case PROCESSOR_NOCONA:
1233
	    case PROCESSOR_CORE:
1234
	    case PROCESSOR_CORE2:
1235
	    case PROCESSOR_COREI7:
1236
	    case PROCESSOR_L1OM:
1237
	    case PROCESSOR_K1OM:
1238
	    case PROCESSOR_GENERIC64:
1239
	      patt = alt_long_patt;
1240
	      break;
1241
	    case PROCESSOR_K6:
1242
	    case PROCESSOR_ATHLON:
1243
	    case PROCESSOR_K8:
1244
	    case PROCESSOR_AMDFAM10:
1245
	    case PROCESSOR_BD:
1246
	    case PROCESSOR_BT:
1247
	      patt = alt_short_patt;
1248
	      break;
1249
	    case PROCESSOR_I386:
1250
	    case PROCESSOR_I486:
1251
	    case PROCESSOR_PENTIUM:
1252
	    case PROCESSOR_PENTIUMPRO:
1253
	    case PROCESSOR_GENERIC32:
1254
	      patt = f32_patt;
1255
	      break;
1256
	    }
1257
	}
1258
      else
1259
	{
1260
	  switch (fragP->tc_frag_data.tune)
1261
	    {
1262
	    case PROCESSOR_UNKNOWN:
1263
	      /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1264
		 PROCESSOR_UNKNOWN.  */
1265
	      abort ();
1266
	      break;
1267
 
1268
	    case PROCESSOR_I386:
1269
	    case PROCESSOR_I486:
1270
	    case PROCESSOR_PENTIUM:
1271
	    case PROCESSOR_K6:
1272
	    case PROCESSOR_ATHLON:
1273
	    case PROCESSOR_K8:
1274
	    case PROCESSOR_AMDFAM10:
1275
	    case PROCESSOR_BD:
1276
	    case PROCESSOR_BT:
1277
	    case PROCESSOR_GENERIC32:
1278
	      /* We use cpu_arch_isa_flags to check if we CAN optimize
1279
		 with nops.  */
1280
	      if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1281
		patt = alt_short_patt;
1282
	      else
1283
		patt = f32_patt;
1284
	      break;
1285
	    case PROCESSOR_PENTIUMPRO:
1286
	    case PROCESSOR_PENTIUM4:
1287
	    case PROCESSOR_NOCONA:
1288
	    case PROCESSOR_CORE:
1289
	    case PROCESSOR_CORE2:
1290
	    case PROCESSOR_COREI7:
1291
	    case PROCESSOR_L1OM:
1292
	    case PROCESSOR_K1OM:
1293
	      if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1294
		patt = alt_long_patt;
1295
	      else
1296
		patt = f32_patt;
1297
	      break;
1298
	    case PROCESSOR_GENERIC64:
1299
	      patt = alt_long_patt;
1300
	      break;
1301
	    }
1302
	}
1303
 
1304
      if (patt == f32_patt)
1305
	{
1306
	  /* If the padding is less than 15 bytes, we use the normal
1307
	     ones.  Otherwise, we use a jump instruction and adjust
1308
	     its offset.   */
1309
	  int limit;
1310
 
1311
	  /* For 64bit, the limit is 3 bytes.  */
1312
	  if (flag_code == CODE_64BIT
1313
	      && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1314
	    limit = 3;
1315
	  else
1316
	    limit = 15;
1317
	  if (count < limit)
1318
	    memcpy (fragP->fr_literal + fragP->fr_fix,
1319
		    patt[count - 1], count);
1320
	  else
1321
	    {
1322
	      memcpy (fragP->fr_literal + fragP->fr_fix,
1323
		      jump_31, count);
1324
	      /* Adjust jump offset.  */
1325
	      fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1326
	    }
1327
	}
1328
      else
1329
	{
1330
	  /* Maximum length of an instruction is 15 byte.  If the
1331
	     padding is greater than 15 bytes and we don't use jump,
1332
	     we have to break it into smaller pieces.  */
1333
	  int padding = count;
1334
	  while (padding > 15)
1335
	    {
1336
	      padding -= 15;
1337
	      memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1338
		      patt [14], 15);
1339
	    }
1340
 
1341
	  if (padding)
1342
	    memcpy (fragP->fr_literal + fragP->fr_fix,
1343
		    patt [padding - 1], padding);
1344
	}
1345
    }
1346
  fragP->fr_var = count;
1347
}
1348
 
1349
static INLINE int
1350
operand_type_all_zero (const union i386_operand_type *x)
1351
{
1352
  switch (ARRAY_SIZE(x->array))
1353
    {
1354
    case 3:
1355
      if (x->array[2])
1356
	return 0;
1357
    case 2:
1358
      if (x->array[1])
1359
	return 0;
1360
    case 1:
1361
      return !x->array[0];
1362
    default:
1363
      abort ();
1364
    }
1365
}
1366
 
1367
static INLINE void
1368
operand_type_set (union i386_operand_type *x, unsigned int v)
1369
{
1370
  switch (ARRAY_SIZE(x->array))
1371
    {
1372
    case 3:
1373
      x->array[2] = v;
1374
    case 2:
1375
      x->array[1] = v;
1376
    case 1:
1377
      x->array[0] = v;
1378
      break;
1379
    default:
1380
      abort ();
1381
    }
1382
}
1383
 
1384
static INLINE int
1385
operand_type_equal (const union i386_operand_type *x,
1386
		    const union i386_operand_type *y)
1387
{
1388
  switch (ARRAY_SIZE(x->array))
1389
    {
1390
    case 3:
1391
      if (x->array[2] != y->array[2])
1392
	return 0;
1393
    case 2:
1394
      if (x->array[1] != y->array[1])
1395
	return 0;
1396
    case 1:
1397
      return x->array[0] == y->array[0];
1398
      break;
1399
    default:
1400
      abort ();
1401
    }
1402
}
1403
 
1404
static INLINE int
1405
cpu_flags_all_zero (const union i386_cpu_flags *x)
1406
{
1407
  switch (ARRAY_SIZE(x->array))
1408
    {
1409
    case 3:
1410
      if (x->array[2])
1411
	return 0;
1412
    case 2:
1413
      if (x->array[1])
1414
	return 0;
1415
    case 1:
1416
      return !x->array[0];
1417
    default:
1418
      abort ();
1419
    }
1420
}
1421
 
1422
static INLINE void
1423
cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
1424
{
1425
  switch (ARRAY_SIZE(x->array))
1426
    {
1427
    case 3:
1428
      x->array[2] = v;
1429
    case 2:
1430
      x->array[1] = v;
1431
    case 1:
1432
      x->array[0] = v;
1433
      break;
1434
    default:
1435
      abort ();
1436
    }
1437
}
1438
 
1439
static INLINE int
1440
cpu_flags_equal (const union i386_cpu_flags *x,
1441
		 const union i386_cpu_flags *y)
1442
{
1443
  switch (ARRAY_SIZE(x->array))
1444
    {
1445
    case 3:
1446
      if (x->array[2] != y->array[2])
1447
	return 0;
1448
    case 2:
1449
      if (x->array[1] != y->array[1])
1450
	return 0;
1451
    case 1:
1452
      return x->array[0] == y->array[0];
1453
      break;
1454
    default:
1455
      abort ();
1456
    }
1457
}
1458
 
1459
static INLINE int
1460
cpu_flags_check_cpu64 (i386_cpu_flags f)
1461
{
1462
  return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1463
	   || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1464
}
1465
 
1466
static INLINE i386_cpu_flags
1467
cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1468
{
1469
  switch (ARRAY_SIZE (x.array))
1470
    {
1471
    case 3:
1472
      x.array [2] &= y.array [2];
1473
    case 2:
1474
      x.array [1] &= y.array [1];
1475
    case 1:
1476
      x.array [0] &= y.array [0];
1477
      break;
1478
    default:
1479
      abort ();
1480
    }
1481
  return x;
1482
}
1483
 
1484
static INLINE i386_cpu_flags
1485
cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1486
{
1487
  switch (ARRAY_SIZE (x.array))
1488
    {
1489
    case 3:
1490
      x.array [2] |= y.array [2];
1491
    case 2:
1492
      x.array [1] |= y.array [1];
1493
    case 1:
1494
      x.array [0] |= y.array [0];
1495
      break;
1496
    default:
1497
      abort ();
1498
    }
1499
  return x;
1500
}
1501
 
1502
static INLINE i386_cpu_flags
1503
cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1504
{
1505
  switch (ARRAY_SIZE (x.array))
1506
    {
1507
    case 3:
1508
      x.array [2] &= ~y.array [2];
1509
    case 2:
1510
      x.array [1] &= ~y.array [1];
1511
    case 1:
1512
      x.array [0] &= ~y.array [0];
1513
      break;
1514
    default:
1515
      abort ();
1516
    }
1517
  return x;
1518
}
1519
 
1520
#define CPU_FLAGS_ARCH_MATCH		0x1
1521
#define CPU_FLAGS_64BIT_MATCH		0x2
1522
#define CPU_FLAGS_AES_MATCH		0x4
1523
#define CPU_FLAGS_PCLMUL_MATCH		0x8
1524
#define CPU_FLAGS_AVX_MATCH	       0x10
1525
 
1526
#define CPU_FLAGS_32BIT_MATCH \
1527
  (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1528
   | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1529
#define CPU_FLAGS_PERFECT_MATCH \
1530
  (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1531
 
1532
/* Return CPU flags match bits. */
1533
 
1534
static int
1535
cpu_flags_match (const insn_template *t)
1536
{
1537
  i386_cpu_flags x = t->cpu_flags;
1538
  int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1539
 
1540
  x.bitfield.cpu64 = 0;
1541
  x.bitfield.cpuno64 = 0;
1542
 
1543
  if (cpu_flags_all_zero (&x))
1544
    {
1545
      /* This instruction is available on all archs.  */
1546
      match |= CPU_FLAGS_32BIT_MATCH;
1547
    }
1548
  else
1549
    {
1550
      /* This instruction is available only on some archs.  */
1551
      i386_cpu_flags cpu = cpu_arch_flags;
1552
 
1553
      cpu.bitfield.cpu64 = 0;
1554
      cpu.bitfield.cpuno64 = 0;
1555
      cpu = cpu_flags_and (x, cpu);
1556
      if (!cpu_flags_all_zero (&cpu))
1557
	{
1558
	  if (x.bitfield.cpuavx)
1559
	    {
1560
	      /* We only need to check AES/PCLMUL/SSE2AVX with AVX.  */
1561
	      if (cpu.bitfield.cpuavx)
1562
		{
1563
		  /* Check SSE2AVX.  */
1564
		  if (!t->opcode_modifier.sse2avx|| sse2avx)
1565
		    {
1566
		      match |= (CPU_FLAGS_ARCH_MATCH
1567
				| CPU_FLAGS_AVX_MATCH);
1568
		      /* Check AES.  */
1569
		      if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1570
			match |= CPU_FLAGS_AES_MATCH;
1571
		      /* Check PCLMUL.  */
1572
		      if (!x.bitfield.cpupclmul
1573
			  || cpu.bitfield.cpupclmul)
1574
			match |= CPU_FLAGS_PCLMUL_MATCH;
1575
		    }
1576
		}
1577
	      else
1578
		match |= CPU_FLAGS_ARCH_MATCH;
1579
	    }
1580
	  else
1581
	    match |= CPU_FLAGS_32BIT_MATCH;
1582
	}
1583
    }
1584
  return match;
1585
}
1586
 
1587
static INLINE i386_operand_type
1588
operand_type_and (i386_operand_type x, i386_operand_type y)
1589
{
1590
  switch (ARRAY_SIZE (x.array))
1591
    {
1592
    case 3:
1593
      x.array [2] &= y.array [2];
1594
    case 2:
1595
      x.array [1] &= y.array [1];
1596
    case 1:
1597
      x.array [0] &= y.array [0];
1598
      break;
1599
    default:
1600
      abort ();
1601
    }
1602
  return x;
1603
}
1604
 
1605
static INLINE i386_operand_type
1606
operand_type_or (i386_operand_type x, i386_operand_type y)
1607
{
1608
  switch (ARRAY_SIZE (x.array))
1609
    {
1610
    case 3:
1611
      x.array [2] |= y.array [2];
1612
    case 2:
1613
      x.array [1] |= y.array [1];
1614
    case 1:
1615
      x.array [0] |= y.array [0];
1616
      break;
1617
    default:
1618
      abort ();
1619
    }
1620
  return x;
1621
}
1622
 
1623
static INLINE i386_operand_type
1624
operand_type_xor (i386_operand_type x, i386_operand_type y)
1625
{
1626
  switch (ARRAY_SIZE (x.array))
1627
    {
1628
    case 3:
1629
      x.array [2] ^= y.array [2];
1630
    case 2:
1631
      x.array [1] ^= y.array [1];
1632
    case 1:
1633
      x.array [0] ^= y.array [0];
1634
      break;
1635
    default:
1636
      abort ();
1637
    }
1638
  return x;
1639
}
1640
 
1641
static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1642
static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1643
static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1644
static const i386_operand_type inoutportreg
1645
  = OPERAND_TYPE_INOUTPORTREG;
1646
static const i386_operand_type reg16_inoutportreg
1647
  = OPERAND_TYPE_REG16_INOUTPORTREG;
1648
static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1649
static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1650
static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1651
static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1652
static const i386_operand_type anydisp
1653
  = OPERAND_TYPE_ANYDISP;
1654
static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1655
static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1656
static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1657
static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1658
static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1659
static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1660
static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1661
static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1662
static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1663
static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1664
static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1665
static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1666
static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1667
static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1668
static const i386_operand_type regbnd = OPERAND_TYPE_REGBND;
1669
static const i386_operand_type vec_disp8 = OPERAND_TYPE_VEC_DISP8;
1670
 
1671
enum operand_type
1672
{
1673
  reg,
1674
  imm,
1675
  disp,
1676
  anymem
1677
};
1678
 
1679
static INLINE int
1680
operand_type_check (i386_operand_type t, enum operand_type c)
1681
{
1682
  switch (c)
1683
    {
1684
    case reg:
1685
      return (t.bitfield.reg8
1686
	      || t.bitfield.reg16
1687
	      || t.bitfield.reg32
1688
	      || t.bitfield.reg64);
1689
 
1690
    case imm:
1691
      return (t.bitfield.imm8
1692
	      || t.bitfield.imm8s
1693
	      || t.bitfield.imm16
1694
	      || t.bitfield.imm32
1695
	      || t.bitfield.imm32s
1696
	      || t.bitfield.imm64);
1697
 
1698
    case disp:
1699
      return (t.bitfield.disp8
1700
	      || t.bitfield.disp16
1701
	      || t.bitfield.disp32
1702
	      || t.bitfield.disp32s
1703
	      || t.bitfield.disp64);
1704
 
1705
    case anymem:
1706
      return (t.bitfield.disp8
1707
	      || t.bitfield.disp16
1708
	      || t.bitfield.disp32
1709
	      || t.bitfield.disp32s
1710
	      || t.bitfield.disp64
1711
	      || t.bitfield.baseindex);
1712
 
1713
    default:
1714
      abort ();
1715
    }
1716
 
1717
  return 0;
1718
}
1719
 
1720
/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1721
   operand J for instruction template T.  */
1722
 
1723
static INLINE int
1724
match_reg_size (const insn_template *t, unsigned int j)
1725
{
1726
  return !((i.types[j].bitfield.byte
1727
	    && !t->operand_types[j].bitfield.byte)
1728
	   || (i.types[j].bitfield.word
1729
	       && !t->operand_types[j].bitfield.word)
1730
	   || (i.types[j].bitfield.dword
1731
	       && !t->operand_types[j].bitfield.dword)
1732
	   || (i.types[j].bitfield.qword
1733
	       && !t->operand_types[j].bitfield.qword));
1734
}
1735
 
1736
/* Return 1 if there is no conflict in any size on operand J for
1737
   instruction template T.  */
1738
 
1739
static INLINE int
1740
match_mem_size (const insn_template *t, unsigned int j)
1741
{
1742
  return (match_reg_size (t, j)
1743
	  && !((i.types[j].bitfield.unspecified
1744
		&& !t->operand_types[j].bitfield.unspecified)
1745
	       || (i.types[j].bitfield.fword
1746
		   && !t->operand_types[j].bitfield.fword)
1747
	       || (i.types[j].bitfield.tbyte
1748
		   && !t->operand_types[j].bitfield.tbyte)
1749
	       || (i.types[j].bitfield.xmmword
1750
		   && !t->operand_types[j].bitfield.xmmword)
1751
	       || (i.types[j].bitfield.ymmword
1752
		   && !t->operand_types[j].bitfield.ymmword)
1753
	       || (i.types[j].bitfield.zmmword
1754
		   && !t->operand_types[j].bitfield.zmmword)));
1755
}
1756
 
1757
/* Return 1 if there is no size conflict on any operands for
1758
   instruction template T.  */
1759
 
1760
static INLINE int
1761
operand_size_match (const insn_template *t)
1762
{
1763
  unsigned int j;
1764
  int match = 1;
1765
 
1766
  /* Don't check jump instructions.  */
1767
  if (t->opcode_modifier.jump
1768
      || t->opcode_modifier.jumpbyte
1769
      || t->opcode_modifier.jumpdword
1770
      || t->opcode_modifier.jumpintersegment)
1771
    return match;
1772
 
1773
  /* Check memory and accumulator operand size.  */
1774
  for (j = 0; j < i.operands; j++)
1775
    {
1776
      if (t->operand_types[j].bitfield.anysize)
1777
	continue;
1778
 
1779
      if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1780
	{
1781
	  match = 0;
1782
	  break;
1783
	}
1784
 
1785
      if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1786
	{
1787
	  match = 0;
1788
	  break;
1789
	}
1790
    }
1791
 
1792
  if (match)
1793
    return match;
1794
  else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1795
    {
1796
mismatch:
1797
      i.error = operand_size_mismatch;
1798
      return 0;
1799
    }
1800
 
1801
  /* Check reverse.  */
1802
  gas_assert (i.operands == 2);
1803
 
1804
  match = 1;
1805
  for (j = 0; j < 2; j++)
1806
    {
1807
      if (t->operand_types[j].bitfield.acc
1808
	  && !match_reg_size (t, j ? 0 : 1))
1809
	goto mismatch;
1810
 
1811
      if (i.types[j].bitfield.mem
1812
	  && !match_mem_size (t, j ? 0 : 1))
1813
	goto mismatch;
1814
    }
1815
 
1816
  return match;
1817
}
1818
 
1819
static INLINE int
1820
operand_type_match (i386_operand_type overlap,
1821
		    i386_operand_type given)
1822
{
1823
  i386_operand_type temp = overlap;
1824
 
1825
  temp.bitfield.jumpabsolute = 0;
1826
  temp.bitfield.unspecified = 0;
1827
  temp.bitfield.byte = 0;
1828
  temp.bitfield.word = 0;
1829
  temp.bitfield.dword = 0;
1830
  temp.bitfield.fword = 0;
1831
  temp.bitfield.qword = 0;
1832
  temp.bitfield.tbyte = 0;
1833
  temp.bitfield.xmmword = 0;
1834
  temp.bitfield.ymmword = 0;
1835
  temp.bitfield.zmmword = 0;
1836
  if (operand_type_all_zero (&temp))
1837
    goto mismatch;
1838
 
1839
  if (given.bitfield.baseindex == overlap.bitfield.baseindex
1840
      && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1841
    return 1;
1842
 
1843
mismatch:
1844
  i.error = operand_type_mismatch;
1845
  return 0;
1846
}
1847
 
1848
/* If given types g0 and g1 are registers they must be of the same type
1849
   unless the expected operand type register overlap is null.
1850
   Note that Acc in a template matches every size of reg.  */
1851
 
1852
static INLINE int
1853
operand_type_register_match (i386_operand_type m0,
1854
			     i386_operand_type g0,
1855
			     i386_operand_type t0,
1856
			     i386_operand_type m1,
1857
			     i386_operand_type g1,
1858
			     i386_operand_type t1)
1859
{
1860
  if (!operand_type_check (g0, reg))
1861
    return 1;
1862
 
1863
  if (!operand_type_check (g1, reg))
1864
    return 1;
1865
 
1866
  if (g0.bitfield.reg8 == g1.bitfield.reg8
1867
      && g0.bitfield.reg16 == g1.bitfield.reg16
1868
      && g0.bitfield.reg32 == g1.bitfield.reg32
1869
      && g0.bitfield.reg64 == g1.bitfield.reg64)
1870
    return 1;
1871
 
1872
  if (m0.bitfield.acc)
1873
    {
1874
      t0.bitfield.reg8 = 1;
1875
      t0.bitfield.reg16 = 1;
1876
      t0.bitfield.reg32 = 1;
1877
      t0.bitfield.reg64 = 1;
1878
    }
1879
 
1880
  if (m1.bitfield.acc)
1881
    {
1882
      t1.bitfield.reg8 = 1;
1883
      t1.bitfield.reg16 = 1;
1884
      t1.bitfield.reg32 = 1;
1885
      t1.bitfield.reg64 = 1;
1886
    }
1887
 
1888
  if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1889
      && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1890
      && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1891
      && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1892
    return 1;
1893
 
1894
  i.error = register_type_mismatch;
1895
 
1896
  return 0;
1897
}
1898
 
1899
static INLINE unsigned int
1900
register_number (const reg_entry *r)
1901
{
1902
  unsigned int nr = r->reg_num;
1903
 
1904
  if (r->reg_flags & RegRex)
1905
    nr += 8;
1906
 
1907
  return nr;
1908
}
1909
 
1910
static INLINE unsigned int
1911
mode_from_disp_size (i386_operand_type t)
1912
{
1913
  if (t.bitfield.disp8 || t.bitfield.vec_disp8)
1914
    return 1;
1915
  else if (t.bitfield.disp16
1916
	   || t.bitfield.disp32
1917
	   || t.bitfield.disp32s)
1918
    return 2;
1919
  else
1920
    return 0;
1921
}
1922
 
1923
static INLINE int
1924
fits_in_signed_byte (offsetT num)
1925
{
1926
  return (num >= -128) && (num <= 127);
1927
}
1928
 
1929
static INLINE int
1930
fits_in_unsigned_byte (offsetT num)
1931
{
1932
  return (num & 0xff) == num;
1933
}
1934
 
1935
static INLINE int
1936
fits_in_unsigned_word (offsetT num)
1937
{
1938
  return (num & 0xffff) == num;
1939
}
1940
 
1941
static INLINE int
1942
fits_in_signed_word (offsetT num)
1943
{
1944
  return (-32768 <= num) && (num <= 32767);
1945
}
1946
 
1947
static INLINE int
1948
fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
1949
{
1950
#ifndef BFD64
1951
  return 1;
1952
#else
1953
  return (!(((offsetT) -1 << 31) & num)
1954
	  || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
1955
#endif
1956
}				/* fits_in_signed_long() */
1957
 
1958
static INLINE int
1959
fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
1960
{
1961
#ifndef BFD64
1962
  return 1;
1963
#else
1964
  return (num & (((offsetT) 2 << 31) - 1)) == num;
1965
#endif
1966
}				/* fits_in_unsigned_long() */
1967
 
1968
static INLINE int
1969
fits_in_vec_disp8 (offsetT num)
1970
{
1971
  int shift = i.memshift;
1972
  unsigned int mask;
1973
 
1974
  if (shift == -1)
1975
    abort ();
1976
 
1977
  mask = (1 << shift) - 1;
1978
 
1979
  /* Return 0 if NUM isn't properly aligned.  */
1980
  if ((num & mask))
1981
    return 0;
1982
 
1983
  /* Check if NUM will fit in 8bit after shift.  */
1984
  return fits_in_signed_byte (num >> shift);
1985
}
1986
 
1987
static INLINE int
1988
fits_in_imm4 (offsetT num)
1989
{
1990
  return (num & 0xf) == num;
1991
}
1992
 
1993
static i386_operand_type
1994
smallest_imm_type (offsetT num)
1995
{
1996
  i386_operand_type t;
1997
 
1998
  operand_type_set (&t, 0);
1999
  t.bitfield.imm64 = 1;
2000
 
2001
  if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2002
    {
2003
      /* This code is disabled on the 486 because all the Imm1 forms
2004
	 in the opcode table are slower on the i486.  They're the
2005
	 versions with the implicitly specified single-position
2006
	 displacement, which has another syntax if you really want to
2007
	 use that form.  */
2008
      t.bitfield.imm1 = 1;
2009
      t.bitfield.imm8 = 1;
2010
      t.bitfield.imm8s = 1;
2011
      t.bitfield.imm16 = 1;
2012
      t.bitfield.imm32 = 1;
2013
      t.bitfield.imm32s = 1;
2014
    }
2015
  else if (fits_in_signed_byte (num))
2016
    {
2017
      t.bitfield.imm8 = 1;
2018
      t.bitfield.imm8s = 1;
2019
      t.bitfield.imm16 = 1;
2020
      t.bitfield.imm32 = 1;
2021
      t.bitfield.imm32s = 1;
2022
    }
2023
  else if (fits_in_unsigned_byte (num))
2024
    {
2025
      t.bitfield.imm8 = 1;
2026
      t.bitfield.imm16 = 1;
2027
      t.bitfield.imm32 = 1;
2028
      t.bitfield.imm32s = 1;
2029
    }
2030
  else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2031
    {
2032
      t.bitfield.imm16 = 1;
2033
      t.bitfield.imm32 = 1;
2034
      t.bitfield.imm32s = 1;
2035
    }
2036
  else if (fits_in_signed_long (num))
2037
    {
2038
      t.bitfield.imm32 = 1;
2039
      t.bitfield.imm32s = 1;
2040
    }
2041
  else if (fits_in_unsigned_long (num))
2042
    t.bitfield.imm32 = 1;
2043
 
2044
  return t;
2045
}
2046
 
2047
static offsetT
2048
offset_in_range (offsetT val, int size)
2049
{
2050
  addressT mask;
2051
 
2052
  switch (size)
2053
    {
2054
    case 1: mask = ((addressT) 1 <<  8) - 1; break;
2055
    case 2: mask = ((addressT) 1 << 16) - 1; break;
2056
    case 4: mask = ((addressT) 2 << 31) - 1; break;
2057
#ifdef BFD64
2058
    case 8: mask = ((addressT) 2 << 63) - 1; break;
2059
#endif
2060
    default: abort ();
2061
    }
2062
 
2063
#ifdef BFD64
2064
  /* If BFD64, sign extend val for 32bit address mode.  */
2065
  if (flag_code != CODE_64BIT
2066
      || i.prefix[ADDR_PREFIX])
2067
    if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2068
      val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2069
#endif
2070
 
2071
  if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2072
    {
2073
      char buf1[40], buf2[40];
2074
 
2075
      sprint_value (buf1, val);
2076
      sprint_value (buf2, val & mask);
2077
      as_warn (_("%s shortened to %s"), buf1, buf2);
2078
    }
2079
  return val & mask;
2080
}
2081
 
2082
enum PREFIX_GROUP
2083
{
2084
  PREFIX_EXIST = 0,
2085
  PREFIX_LOCK,
2086
  PREFIX_REP,
2087
  PREFIX_OTHER
2088
};
2089
 
2090
/* Returns
2091
   a. PREFIX_EXIST if attempting to add a prefix where one from the
2092
   same class already exists.
2093
   b. PREFIX_LOCK if lock prefix is added.
2094
   c. PREFIX_REP if rep/repne prefix is added.
2095
   d. PREFIX_OTHER if other prefix is added.
2096
 */
2097
 
2098
static enum PREFIX_GROUP
2099
add_prefix (unsigned int prefix)
2100
{
2101
  enum PREFIX_GROUP ret = PREFIX_OTHER;
2102
  unsigned int q;
2103
 
2104
  if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2105
      && flag_code == CODE_64BIT)
2106
    {
2107
      if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2108
	  || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2109
	      && (prefix & (REX_R | REX_X | REX_B))))
2110
	ret = PREFIX_EXIST;
2111
      q = REX_PREFIX;
2112
    }
2113
  else
2114
    {
2115
      switch (prefix)
2116
	{
2117
	default:
2118
	  abort ();
2119
 
2120
	case CS_PREFIX_OPCODE:
2121
	case DS_PREFIX_OPCODE:
2122
	case ES_PREFIX_OPCODE:
2123
	case FS_PREFIX_OPCODE:
2124
	case GS_PREFIX_OPCODE:
2125
	case SS_PREFIX_OPCODE:
2126
	  q = SEG_PREFIX;
2127
	  break;
2128
 
2129
	case REPNE_PREFIX_OPCODE:
2130
	case REPE_PREFIX_OPCODE:
2131
	  q = REP_PREFIX;
2132
	  ret = PREFIX_REP;
2133
	  break;
2134
 
2135
	case LOCK_PREFIX_OPCODE:
2136
	  q = LOCK_PREFIX;
2137
	  ret = PREFIX_LOCK;
2138
	  break;
2139
 
2140
	case FWAIT_OPCODE:
2141
	  q = WAIT_PREFIX;
2142
	  break;
2143
 
2144
	case ADDR_PREFIX_OPCODE:
2145
	  q = ADDR_PREFIX;
2146
	  break;
2147
 
2148
	case DATA_PREFIX_OPCODE:
2149
	  q = DATA_PREFIX;
2150
	  break;
2151
	}
2152
      if (i.prefix[q] != 0)
2153
	ret = PREFIX_EXIST;
2154
    }
2155
 
2156
  if (ret)
2157
    {
2158
      if (!i.prefix[q])
2159
	++i.prefixes;
2160
      i.prefix[q] |= prefix;
2161
    }
2162
  else
2163
    as_bad (_("same type of prefix used twice"));
2164
 
2165
  return ret;
2166
}
2167
 
2168
static void
2169
update_code_flag (int value, int check)
2170
{
2171
  PRINTF_LIKE ((*as_error));
2172
 
2173
  flag_code = (enum flag_code) value;
2174
  if (flag_code == CODE_64BIT)
2175
    {
2176
      cpu_arch_flags.bitfield.cpu64 = 1;
2177
      cpu_arch_flags.bitfield.cpuno64 = 0;
2178
    }
2179
  else
2180
    {
2181
      cpu_arch_flags.bitfield.cpu64 = 0;
2182
      cpu_arch_flags.bitfield.cpuno64 = 1;
2183
    }
2184
  if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2185
    {
2186
      if (check)
2187
	as_error = as_fatal;
2188
      else
2189
	as_error = as_bad;
2190
      (*as_error) (_("64bit mode not supported on `%s'."),
2191
		   cpu_arch_name ? cpu_arch_name : default_arch);
2192
    }
2193
  if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2194
    {
2195
      if (check)
2196
	as_error = as_fatal;
2197
      else
2198
	as_error = as_bad;
2199
      (*as_error) (_("32bit mode not supported on `%s'."),
2200
		   cpu_arch_name ? cpu_arch_name : default_arch);
2201
    }
2202
  stackop_size = '\0';
2203
}
2204
 
2205
static void
2206
set_code_flag (int value)
2207
{
2208
  update_code_flag (value, 0);
2209
}
2210
 
2211
static void
2212
set_16bit_gcc_code_flag (int new_code_flag)
2213
{
2214
  flag_code = (enum flag_code) new_code_flag;
2215
  if (flag_code != CODE_16BIT)
2216
    abort ();
2217
  cpu_arch_flags.bitfield.cpu64 = 0;
2218
  cpu_arch_flags.bitfield.cpuno64 = 1;
2219
  stackop_size = LONG_MNEM_SUFFIX;
2220
}
2221
 
2222
static void
2223
set_intel_syntax (int syntax_flag)
2224
{
2225
  /* Find out if register prefixing is specified.  */
2226
  int ask_naked_reg = 0;
2227
 
2228
  SKIP_WHITESPACE ();
2229
  if (!is_end_of_line[(unsigned char) *input_line_pointer])
2230
    {
2231
      char *string = input_line_pointer;
2232
      int e = get_symbol_end ();
2233
 
2234
      if (strcmp (string, "prefix") == 0)
2235
	ask_naked_reg = 1;
2236
      else if (strcmp (string, "noprefix") == 0)
2237
	ask_naked_reg = -1;
2238
      else
2239
	as_bad (_("bad argument to syntax directive."));
2240
      *input_line_pointer = e;
2241
    }
2242
  demand_empty_rest_of_line ();
2243
 
2244
  intel_syntax = syntax_flag;
2245
 
2246
  if (ask_naked_reg == 0)
2247
    allow_naked_reg = (intel_syntax
2248
		       && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2249
  else
2250
    allow_naked_reg = (ask_naked_reg < 0);
2251
 
2252
  expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2253
 
2254
  identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2255
  identifier_chars['$'] = intel_syntax ? '$' : 0;
2256
  register_prefix = allow_naked_reg ? "" : "%";
2257
}
2258
 
2259
static void
2260
set_intel_mnemonic (int mnemonic_flag)
2261
{
2262
  intel_mnemonic = mnemonic_flag;
2263
}
2264
 
2265
static void
2266
set_allow_index_reg (int flag)
2267
{
2268
  allow_index_reg = flag;
2269
}
2270
 
2271
static void
2272
set_check (int what)
2273
{
2274
  enum check_kind *kind;
2275
  const char *str;
2276
 
2277
  if (what)
2278
    {
2279
      kind = &operand_check;
2280
      str = "operand";
2281
    }
2282
  else
2283
    {
2284
      kind = &sse_check;
2285
      str = "sse";
2286
    }
2287
 
2288
  SKIP_WHITESPACE ();
2289
 
2290
  if (!is_end_of_line[(unsigned char) *input_line_pointer])
2291
    {
2292
      char *string = input_line_pointer;
2293
      int e = get_symbol_end ();
2294
 
2295
      if (strcmp (string, "none") == 0)
2296
	*kind = check_none;
2297
      else if (strcmp (string, "warning") == 0)
2298
	*kind = check_warning;
2299
      else if (strcmp (string, "error") == 0)
2300
	*kind = check_error;
2301
      else
2302
	as_bad (_("bad argument to %s_check directive."), str);
2303
      *input_line_pointer = e;
2304
    }
2305
  else
2306
    as_bad (_("missing argument for %s_check directive"), str);
2307
 
2308
  demand_empty_rest_of_line ();
2309
}
2310
 
2311
static void
2312
check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2313
			   i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2314
{
2315
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2316
  static const char *arch;
2317
 
2318
  /* Intel LIOM is only supported on ELF.  */
2319
  if (!IS_ELF)
2320
    return;
2321
 
2322
  if (!arch)
2323
    {
2324
      /* Use cpu_arch_name if it is set in md_parse_option.  Otherwise
2325
	 use default_arch.  */
2326
      arch = cpu_arch_name;
2327
      if (!arch)
2328
	arch = default_arch;
2329
    }
2330
 
2331
  /* If we are targeting Intel L1OM, we must enable it.  */
2332
  if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2333
      || new_flag.bitfield.cpul1om)
2334
    return;
2335
 
2336
  /* If we are targeting Intel K1OM, we must enable it.  */
2337
  if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2338
      || new_flag.bitfield.cpuk1om)
2339
    return;
2340
 
2341
  as_bad (_("`%s' is not supported on `%s'"), name, arch);
2342
#endif
2343
}
2344
 
2345
static void
2346
set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2347
{
2348
  SKIP_WHITESPACE ();
2349
 
2350
  if (!is_end_of_line[(unsigned char) *input_line_pointer])
2351
    {
2352
      char *string = input_line_pointer;
2353
      int e = get_symbol_end ();
2354
      unsigned int j;
2355
      i386_cpu_flags flags;
2356
 
2357
      for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2358
	{
2359
	  if (strcmp (string, cpu_arch[j].name) == 0)
2360
	    {
2361
	      check_cpu_arch_compatible (string, cpu_arch[j].flags);
2362
 
2363
	      if (*string != '.')
2364
		{
2365
		  cpu_arch_name = cpu_arch[j].name;
2366
		  cpu_sub_arch_name = NULL;
2367
		  cpu_arch_flags = cpu_arch[j].flags;
2368
		  if (flag_code == CODE_64BIT)
2369
		    {
2370
		      cpu_arch_flags.bitfield.cpu64 = 1;
2371
		      cpu_arch_flags.bitfield.cpuno64 = 0;
2372
		    }
2373
		  else
2374
		    {
2375
		      cpu_arch_flags.bitfield.cpu64 = 0;
2376
		      cpu_arch_flags.bitfield.cpuno64 = 1;
2377
		    }
2378
		  cpu_arch_isa = cpu_arch[j].type;
2379
		  cpu_arch_isa_flags = cpu_arch[j].flags;
2380
		  if (!cpu_arch_tune_set)
2381
		    {
2382
		      cpu_arch_tune = cpu_arch_isa;
2383
		      cpu_arch_tune_flags = cpu_arch_isa_flags;
2384
		    }
2385
		  break;
2386
		}
2387
 
2388
	      if (!cpu_arch[j].negated)
2389
		flags = cpu_flags_or (cpu_arch_flags,
2390
				      cpu_arch[j].flags);
2391
	      else
2392
		flags = cpu_flags_and_not (cpu_arch_flags,
2393
					   cpu_arch[j].flags);
2394
	      if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2395
		{
2396
		  if (cpu_sub_arch_name)
2397
		    {
2398
		      char *name = cpu_sub_arch_name;
2399
		      cpu_sub_arch_name = concat (name,
2400
						  cpu_arch[j].name,
2401
						  (const char *) NULL);
2402
		      free (name);
2403
		    }
2404
		  else
2405
		    cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2406
		  cpu_arch_flags = flags;
2407
		  cpu_arch_isa_flags = flags;
2408
		}
2409
	      *input_line_pointer = e;
2410
	      demand_empty_rest_of_line ();
2411
	      return;
2412
	    }
2413
	}
2414
      if (j >= ARRAY_SIZE (cpu_arch))
2415
	as_bad (_("no such architecture: `%s'"), string);
2416
 
2417
      *input_line_pointer = e;
2418
    }
2419
  else
2420
    as_bad (_("missing cpu architecture"));
2421
 
2422
  no_cond_jump_promotion = 0;
2423
  if (*input_line_pointer == ','
2424
      && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2425
    {
2426
      char *string = ++input_line_pointer;
2427
      int e = get_symbol_end ();
2428
 
2429
      if (strcmp (string, "nojumps") == 0)
2430
	no_cond_jump_promotion = 1;
2431
      else if (strcmp (string, "jumps") == 0)
2432
	;
2433
      else
2434
	as_bad (_("no such architecture modifier: `%s'"), string);
2435
 
2436
      *input_line_pointer = e;
2437
    }
2438
 
2439
  demand_empty_rest_of_line ();
2440
}
2441
 
2442
enum bfd_architecture
2443
i386_arch (void)
2444
{
2445
  if (cpu_arch_isa == PROCESSOR_L1OM)
2446
    {
2447
      if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2448
	  || flag_code != CODE_64BIT)
2449
	as_fatal (_("Intel L1OM is 64bit ELF only"));
2450
      return bfd_arch_l1om;
2451
    }
2452
  else if (cpu_arch_isa == PROCESSOR_K1OM)
2453
    {
2454
      if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2455
	  || flag_code != CODE_64BIT)
2456
	as_fatal (_("Intel K1OM is 64bit ELF only"));
2457
      return bfd_arch_k1om;
2458
    }
2459
  else
2460
    return bfd_arch_i386;
2461
}
2462
 
2463
unsigned long
2464
i386_mach (void)
2465
{
2466
  if (!strncmp (default_arch, "x86_64", 6))
2467
    {
2468
      if (cpu_arch_isa == PROCESSOR_L1OM)
2469
	{
2470
	  if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2471
	      || default_arch[6] != '\0')
2472
	    as_fatal (_("Intel L1OM is 64bit ELF only"));
2473
	  return bfd_mach_l1om;
2474
	}
2475
      else if (cpu_arch_isa == PROCESSOR_K1OM)
2476
	{
2477
	  if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2478
	      || default_arch[6] != '\0')
2479
	    as_fatal (_("Intel K1OM is 64bit ELF only"));
2480
	  return bfd_mach_k1om;
2481
	}
2482
      else if (default_arch[6] == '\0')
2483
	return bfd_mach_x86_64;
2484
      else
2485
	return bfd_mach_x64_32;
2486
    }
2487
  else if (!strcmp (default_arch, "i386"))
2488
    return bfd_mach_i386_i386;
2489
  else
2490
    as_fatal (_("unknown architecture"));
2491
}
2492
 
2493
void
2494
md_begin (void)
2495
{
2496
  const char *hash_err;
2497
 
2498
  /* Initialize op_hash hash table.  */
2499
  op_hash = hash_new ();
2500
 
2501
  {
2502
    const insn_template *optab;
2503
    templates *core_optab;
2504
 
2505
    /* Setup for loop.  */
2506
    optab = i386_optab;
2507
    core_optab = (templates *) xmalloc (sizeof (templates));
2508
    core_optab->start = optab;
2509
 
2510
    while (1)
2511
      {
2512
	++optab;
2513
	if (optab->name == NULL
2514
	    || strcmp (optab->name, (optab - 1)->name) != 0)
2515
	  {
2516
	    /* different name --> ship out current template list;
2517
	       add to hash table; & begin anew.  */
2518
	    core_optab->end = optab;
2519
	    hash_err = hash_insert (op_hash,
2520
				    (optab - 1)->name,
2521
				    (void *) core_optab);
2522
	    if (hash_err)
2523
	      {
2524
		as_fatal (_("can't hash %s: %s"),
2525
			  (optab - 1)->name,
2526
			  hash_err);
2527
	      }
2528
	    if (optab->name == NULL)
2529
	      break;
2530
	    core_optab = (templates *) xmalloc (sizeof (templates));
2531
	    core_optab->start = optab;
2532
	  }
2533
      }
2534
  }
2535
 
2536
  /* Initialize reg_hash hash table.  */
2537
  reg_hash = hash_new ();
2538
  {
2539
    const reg_entry *regtab;
2540
    unsigned int regtab_size = i386_regtab_size;
2541
 
2542
    for (regtab = i386_regtab; regtab_size--; regtab++)
2543
      {
2544
	hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2545
	if (hash_err)
2546
	  as_fatal (_("can't hash %s: %s"),
2547
		    regtab->reg_name,
2548
		    hash_err);
2549
      }
2550
  }
2551
 
2552
  /* Fill in lexical tables:  mnemonic_chars, operand_chars.  */
2553
  {
2554
    int c;
2555
    char *p;
2556
 
2557
    for (c = 0; c < 256; c++)
2558
      {
2559
	if (ISDIGIT (c))
2560
	  {
2561
	    digit_chars[c] = c;
2562
	    mnemonic_chars[c] = c;
2563
	    register_chars[c] = c;
2564
	    operand_chars[c] = c;
2565
	  }
2566
	else if (ISLOWER (c))
2567
	  {
2568
	    mnemonic_chars[c] = c;
2569
	    register_chars[c] = c;
2570
	    operand_chars[c] = c;
2571
	  }
2572
	else if (ISUPPER (c))
2573
	  {
2574
	    mnemonic_chars[c] = TOLOWER (c);
2575
	    register_chars[c] = mnemonic_chars[c];
2576
	    operand_chars[c] = c;
2577
	  }
2578
	else if (c == '{' || c == '}')
2579
	  operand_chars[c] = c;
2580
 
2581
	if (ISALPHA (c) || ISDIGIT (c))
2582
	  identifier_chars[c] = c;
2583
	else if (c >= 128)
2584
	  {
2585
	    identifier_chars[c] = c;
2586
	    operand_chars[c] = c;
2587
	  }
2588
      }
2589
 
2590
#ifdef LEX_AT
2591
    identifier_chars['@'] = '@';
2592
#endif
2593
#ifdef LEX_QM
2594
    identifier_chars['?'] = '?';
2595
    operand_chars['?'] = '?';
2596
#endif
2597
    digit_chars['-'] = '-';
2598
    mnemonic_chars['_'] = '_';
2599
    mnemonic_chars['-'] = '-';
2600
    mnemonic_chars['.'] = '.';
2601
    identifier_chars['_'] = '_';
2602
    identifier_chars['.'] = '.';
2603
 
2604
    for (p = operand_special_chars; *p != '\0'; p++)
2605
      operand_chars[(unsigned char) *p] = *p;
2606
  }
2607
 
2608
  if (flag_code == CODE_64BIT)
2609
    {
2610
#if defined (OBJ_COFF) && defined (TE_PE)
2611
      x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2612
				  ? 32 : 16);
2613
#else
2614
      x86_dwarf2_return_column = 16;
2615
#endif
2616
      x86_cie_data_alignment = -8;
2617
    }
2618
  else
2619
    {
2620
      x86_dwarf2_return_column = 8;
2621
      x86_cie_data_alignment = -4;
2622
    }
2623
}
2624
 
2625
void
2626
i386_print_statistics (FILE *file)
2627
{
2628
  hash_print_statistics (file, "i386 opcode", op_hash);
2629
  hash_print_statistics (file, "i386 register", reg_hash);
2630
}
2631
 
2632
#ifdef DEBUG386
2633
 
2634
/* Debugging routines for md_assemble.  */
2635
static void pte (insn_template *);
2636
static void pt (i386_operand_type);
2637
static void pe (expressionS *);
2638
static void ps (symbolS *);
2639
 
2640
static void
2641
pi (char *line, i386_insn *x)
2642
{
2643
  unsigned int j;
2644
 
2645
  fprintf (stdout, "%s: template ", line);
2646
  pte (&x->tm);
2647
  fprintf (stdout, "  address: base %s  index %s  scale %x\n",
2648
	   x->base_reg ? x->base_reg->reg_name : "none",
2649
	   x->index_reg ? x->index_reg->reg_name : "none",
2650
	   x->log2_scale_factor);
2651
  fprintf (stdout, "  modrm:  mode %x  reg %x  reg/mem %x\n",
2652
	   x->rm.mode, x->rm.reg, x->rm.regmem);
2653
  fprintf (stdout, "  sib:  base %x  index %x  scale %x\n",
2654
	   x->sib.base, x->sib.index, x->sib.scale);
2655
  fprintf (stdout, "  rex: 64bit %x  extX %x  extY %x  extZ %x\n",
2656
	   (x->rex & REX_W) != 0,
2657
	   (x->rex & REX_R) != 0,
2658
	   (x->rex & REX_X) != 0,
2659
	   (x->rex & REX_B) != 0);
2660
  for (j = 0; j < x->operands; j++)
2661
    {
2662
      fprintf (stdout, "    #%d:  ", j + 1);
2663
      pt (x->types[j]);
2664
      fprintf (stdout, "\n");
2665
      if (x->types[j].bitfield.reg8
2666
	  || x->types[j].bitfield.reg16
2667
	  || x->types[j].bitfield.reg32
2668
	  || x->types[j].bitfield.reg64
2669
	  || x->types[j].bitfield.regmmx
2670
	  || x->types[j].bitfield.regxmm
2671
	  || x->types[j].bitfield.regymm
2672
	  || x->types[j].bitfield.regzmm
2673
	  || x->types[j].bitfield.sreg2
2674
	  || x->types[j].bitfield.sreg3
2675
	  || x->types[j].bitfield.control
2676
	  || x->types[j].bitfield.debug
2677
	  || x->types[j].bitfield.test)
2678
	fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2679
      if (operand_type_check (x->types[j], imm))
2680
	pe (x->op[j].imms);
2681
      if (operand_type_check (x->types[j], disp))
2682
	pe (x->op[j].disps);
2683
    }
2684
}
2685
 
2686
static void
2687
pte (insn_template *t)
2688
{
2689
  unsigned int j;
2690
  fprintf (stdout, " %d operands ", t->operands);
2691
  fprintf (stdout, "opcode %x ", t->base_opcode);
2692
  if (t->extension_opcode != None)
2693
    fprintf (stdout, "ext %x ", t->extension_opcode);
2694
  if (t->opcode_modifier.d)
2695
    fprintf (stdout, "D");
2696
  if (t->opcode_modifier.w)
2697
    fprintf (stdout, "W");
2698
  fprintf (stdout, "\n");
2699
  for (j = 0; j < t->operands; j++)
2700
    {
2701
      fprintf (stdout, "    #%d type ", j + 1);
2702
      pt (t->operand_types[j]);
2703
      fprintf (stdout, "\n");
2704
    }
2705
}
2706
 
2707
static void
2708
pe (expressionS *e)
2709
{
2710
  fprintf (stdout, "    operation     %d\n", e->X_op);
2711
  fprintf (stdout, "    add_number    %ld (%lx)\n",
2712
	   (long) e->X_add_number, (long) e->X_add_number);
2713
  if (e->X_add_symbol)
2714
    {
2715
      fprintf (stdout, "    add_symbol    ");
2716
      ps (e->X_add_symbol);
2717
      fprintf (stdout, "\n");
2718
    }
2719
  if (e->X_op_symbol)
2720
    {
2721
      fprintf (stdout, "    op_symbol    ");
2722
      ps (e->X_op_symbol);
2723
      fprintf (stdout, "\n");
2724
    }
2725
}
2726
 
2727
static void
2728
ps (symbolS *s)
2729
{
2730
  fprintf (stdout, "%s type %s%s",
2731
	   S_GET_NAME (s),
2732
	   S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2733
	   segment_name (S_GET_SEGMENT (s)));
2734
}
2735
 
2736
static struct type_name
2737
  {
2738
    i386_operand_type mask;
2739
    const char *name;
2740
  }
2741
const type_names[] =
2742
{
2743
  { OPERAND_TYPE_REG8, "r8" },
2744
  { OPERAND_TYPE_REG16, "r16" },
2745
  { OPERAND_TYPE_REG32, "r32" },
2746
  { OPERAND_TYPE_REG64, "r64" },
2747
  { OPERAND_TYPE_IMM8, "i8" },
2748
  { OPERAND_TYPE_IMM8, "i8s" },
2749
  { OPERAND_TYPE_IMM16, "i16" },
2750
  { OPERAND_TYPE_IMM32, "i32" },
2751
  { OPERAND_TYPE_IMM32S, "i32s" },
2752
  { OPERAND_TYPE_IMM64, "i64" },
2753
  { OPERAND_TYPE_IMM1, "i1" },
2754
  { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2755
  { OPERAND_TYPE_DISP8, "d8" },
2756
  { OPERAND_TYPE_DISP16, "d16" },
2757
  { OPERAND_TYPE_DISP32, "d32" },
2758
  { OPERAND_TYPE_DISP32S, "d32s" },
2759
  { OPERAND_TYPE_DISP64, "d64" },
2760
  { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2761
  { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2762
  { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2763
  { OPERAND_TYPE_CONTROL, "control reg" },
2764
  { OPERAND_TYPE_TEST, "test reg" },
2765
  { OPERAND_TYPE_DEBUG, "debug reg" },
2766
  { OPERAND_TYPE_FLOATREG, "FReg" },
2767
  { OPERAND_TYPE_FLOATACC, "FAcc" },
2768
  { OPERAND_TYPE_SREG2, "SReg2" },
2769
  { OPERAND_TYPE_SREG3, "SReg3" },
2770
  { OPERAND_TYPE_ACC, "Acc" },
2771
  { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2772
  { OPERAND_TYPE_REGMMX, "rMMX" },
2773
  { OPERAND_TYPE_REGXMM, "rXMM" },
2774
  { OPERAND_TYPE_REGYMM, "rYMM" },
2775
  { OPERAND_TYPE_REGZMM, "rZMM" },
2776
  { OPERAND_TYPE_REGMASK, "Mask reg" },
2777
  { OPERAND_TYPE_ESSEG, "es" },
2778
};
2779
 
2780
static void
2781
pt (i386_operand_type t)
2782
{
2783
  unsigned int j;
2784
  i386_operand_type a;
2785
 
2786
  for (j = 0; j < ARRAY_SIZE (type_names); j++)
2787
    {
2788
      a = operand_type_and (t, type_names[j].mask);
2789
      if (!operand_type_all_zero (&a))
2790
	fprintf (stdout, "%s, ",  type_names[j].name);
2791
    }
2792
  fflush (stdout);
2793
}
2794
 
2795
#endif /* DEBUG386 */
2796
 
2797
static bfd_reloc_code_real_type
2798
reloc (unsigned int size,
2799
       int pcrel,
2800
       int sign,
2801
       int bnd_prefix,
2802
       bfd_reloc_code_real_type other)
2803
{
2804
  if (other != NO_RELOC)
2805
    {
2806
      reloc_howto_type *rel;
2807
 
2808
      if (size == 8)
2809
	switch (other)
2810
	  {
2811
	  case BFD_RELOC_X86_64_GOT32:
2812
	    return BFD_RELOC_X86_64_GOT64;
2813
	    break;
2814
	  case BFD_RELOC_X86_64_PLTOFF64:
2815
	    return BFD_RELOC_X86_64_PLTOFF64;
2816
	    break;
2817
	  case BFD_RELOC_X86_64_GOTPC32:
2818
	    other = BFD_RELOC_X86_64_GOTPC64;
2819
	    break;
2820
	  case BFD_RELOC_X86_64_GOTPCREL:
2821
	    other = BFD_RELOC_X86_64_GOTPCREL64;
2822
	    break;
2823
	  case BFD_RELOC_X86_64_TPOFF32:
2824
	    other = BFD_RELOC_X86_64_TPOFF64;
2825
	    break;
2826
	  case BFD_RELOC_X86_64_DTPOFF32:
2827
	    other = BFD_RELOC_X86_64_DTPOFF64;
2828
	    break;
2829
	  default:
2830
	    break;
2831
	  }
2832
 
2833
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2834
      if (other == BFD_RELOC_SIZE32)
2835
	{
2836
	  if (size == 8)
2837
	    return BFD_RELOC_SIZE64;
2838
	  if (pcrel)
2839
	    as_bad (_("there are no pc-relative size relocations"));
2840
	}
2841
#endif
2842
 
2843
      /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless.  */
2844
      if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
2845
	sign = -1;
2846
 
2847
      rel = bfd_reloc_type_lookup (stdoutput, other);
2848
      if (!rel)
2849
	as_bad (_("unknown relocation (%u)"), other);
2850
      else if (size != bfd_get_reloc_size (rel))
2851
	as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2852
		bfd_get_reloc_size (rel),
2853
		size);
2854
      else if (pcrel && !rel->pc_relative)
2855
	as_bad (_("non-pc-relative relocation for pc-relative field"));
2856
      else if ((rel->complain_on_overflow == complain_overflow_signed
2857
		&& !sign)
2858
	       || (rel->complain_on_overflow == complain_overflow_unsigned
2859
		   && sign > 0))
2860
	as_bad (_("relocated field and relocation type differ in signedness"));
2861
      else
2862
	return other;
2863
      return NO_RELOC;
2864
    }
2865
 
2866
  if (pcrel)
2867
    {
2868
      if (!sign)
2869
	as_bad (_("there are no unsigned pc-relative relocations"));
2870
      switch (size)
2871
	{
2872
	case 1: return BFD_RELOC_8_PCREL;
2873
	case 2: return BFD_RELOC_16_PCREL;
2874
	case 4: return (bnd_prefix && object_64bit
2875
			? BFD_RELOC_X86_64_PC32_BND
2876
			: BFD_RELOC_32_PCREL);
2877
	case 8: return BFD_RELOC_64_PCREL;
2878
	}
2879
      as_bad (_("cannot do %u byte pc-relative relocation"), size);
2880
    }
2881
  else
2882
    {
2883
      if (sign > 0)
2884
	switch (size)
2885
	  {
2886
	  case 4: return BFD_RELOC_X86_64_32S;
2887
	  }
2888
      else
2889
	switch (size)
2890
	  {
2891
	  case 1: return BFD_RELOC_8;
2892
	  case 2: return BFD_RELOC_16;
2893
	  case 4: return BFD_RELOC_32;
2894
	  case 8: return BFD_RELOC_64;
2895
	  }
2896
      as_bad (_("cannot do %s %u byte relocation"),
2897
	      sign > 0 ? "signed" : "unsigned", size);
2898
    }
2899
 
2900
  return NO_RELOC;
2901
}
2902
 
2903
/* Here we decide which fixups can be adjusted to make them relative to
2904
   the beginning of the section instead of the symbol.  Basically we need
2905
   to make sure that the dynamic relocations are done correctly, so in
2906
   some cases we force the original symbol to be used.  */
2907
 
2908
int
2909
tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2910
{
2911
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2912
  if (!IS_ELF)
2913
    return 1;
2914
 
2915
  /* Don't adjust pc-relative references to merge sections in 64-bit
2916
     mode.  */
2917
  if (use_rela_relocations
2918
      && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2919
      && fixP->fx_pcrel)
2920
    return 0;
2921
 
2922
  /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2923
     and changed later by validate_fix.  */
2924
  if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2925
      && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2926
    return 0;
2927
 
2928
  /* Adjust_reloc_syms doesn't know about the GOT.  Need to keep symbol
2929
     for size relocations.  */
2930
  if (fixP->fx_r_type == BFD_RELOC_SIZE32
2931
      || fixP->fx_r_type == BFD_RELOC_SIZE64
2932
      || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2933
      || fixP->fx_r_type == BFD_RELOC_386_PLT32
2934
      || fixP->fx_r_type == BFD_RELOC_386_GOT32
2935
      || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2936
      || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2937
      || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2938
      || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2939
      || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2940
      || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2941
      || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2942
      || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2943
      || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2944
      || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2945
      || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2946
      || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2947
      || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2948
      || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2949
      || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2950
      || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2951
      || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2952
      || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2953
      || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2954
      || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2955
      || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2956
      || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2957
      || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2958
      || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2959
      || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2960
    return 0;
2961
#endif
2962
  return 1;
2963
}
2964
 
2965
static int
2966
intel_float_operand (const char *mnemonic)
2967
{
2968
  /* Note that the value returned is meaningful only for opcodes with (memory)
2969
     operands, hence the code here is free to improperly handle opcodes that
2970
     have no operands (for better performance and smaller code). */
2971
 
2972
  if (mnemonic[0] != 'f')
2973
    return 0; /* non-math */
2974
 
2975
  switch (mnemonic[1])
2976
    {
2977
    /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2978
       the fs segment override prefix not currently handled because no
2979
       call path can make opcodes without operands get here */
2980
    case 'i':
2981
      return 2 /* integer op */;
2982
    case 'l':
2983
      if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2984
	return 3; /* fldcw/fldenv */
2985
      break;
2986
    case 'n':
2987
      if (mnemonic[2] != 'o' /* fnop */)
2988
	return 3; /* non-waiting control op */
2989
      break;
2990
    case 'r':
2991
      if (mnemonic[2] == 's')
2992
	return 3; /* frstor/frstpm */
2993
      break;
2994
    case 's':
2995
      if (mnemonic[2] == 'a')
2996
	return 3; /* fsave */
2997
      if (mnemonic[2] == 't')
2998
	{
2999
	  switch (mnemonic[3])
3000
	    {
3001
	    case 'c': /* fstcw */
3002
	    case 'd': /* fstdw */
3003
	    case 'e': /* fstenv */
3004
	    case 's': /* fsts[gw] */
3005
	      return 3;
3006
	    }
3007
	}
3008
      break;
3009
    case 'x':
3010
      if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3011
	return 0; /* fxsave/fxrstor are not really math ops */
3012
      break;
3013
    }
3014
 
3015
  return 1;
3016
}
3017
 
3018
/* Build the VEX prefix.  */
3019
 
3020
static void
3021
build_vex_prefix (const insn_template *t)
3022
{
3023
  unsigned int register_specifier;
3024
  unsigned int implied_prefix;
3025
  unsigned int vector_length;
3026
 
3027
  /* Check register specifier.  */
3028
  if (i.vex.register_specifier)
3029
    {
3030
      register_specifier =
3031
	~register_number (i.vex.register_specifier) & 0xf;
3032
      gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3033
    }
3034
  else
3035
    register_specifier = 0xf;
3036
 
3037
  /* Use 2-byte VEX prefix by swappping destination and source
3038
     operand.  */
3039
  if (!i.swap_operand
3040
      && i.operands == i.reg_operands
3041
      && i.tm.opcode_modifier.vexopcode == VEX0F
3042
      && i.tm.opcode_modifier.s
3043
      && i.rex == REX_B)
3044
    {
3045
      unsigned int xchg = i.operands - 1;
3046
      union i386_op temp_op;
3047
      i386_operand_type temp_type;
3048
 
3049
      temp_type = i.types[xchg];
3050
      i.types[xchg] = i.types[0];
3051
      i.types[0] = temp_type;
3052
      temp_op = i.op[xchg];
3053
      i.op[xchg] = i.op[0];
3054
      i.op[0] = temp_op;
3055
 
3056
      gas_assert (i.rm.mode == 3);
3057
 
3058
      i.rex = REX_R;
3059
      xchg = i.rm.regmem;
3060
      i.rm.regmem = i.rm.reg;
3061
      i.rm.reg = xchg;
3062
 
3063
      /* Use the next insn.  */
3064
      i.tm = t[1];
3065
    }
3066
 
3067
  if (i.tm.opcode_modifier.vex == VEXScalar)
3068
    vector_length = avxscalar;
3069
  else
3070
    vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3071
 
3072
  switch ((i.tm.base_opcode >> 8) & 0xff)
3073
    {
3074
    case 0:
3075
      implied_prefix = 0;
3076
      break;
3077
    case DATA_PREFIX_OPCODE:
3078
      implied_prefix = 1;
3079
      break;
3080
    case REPE_PREFIX_OPCODE:
3081
      implied_prefix = 2;
3082
      break;
3083
    case REPNE_PREFIX_OPCODE:
3084
      implied_prefix = 3;
3085
      break;
3086
    default:
3087
      abort ();
3088
    }
3089
 
3090
  /* Use 2-byte VEX prefix if possible.  */
3091
  if (i.tm.opcode_modifier.vexopcode == VEX0F
3092
      && i.tm.opcode_modifier.vexw != VEXW1
3093
      && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3094
    {
3095
      /* 2-byte VEX prefix.  */
3096
      unsigned int r;
3097
 
3098
      i.vex.length = 2;
3099
      i.vex.bytes[0] = 0xc5;
3100
 
3101
      /* Check the REX.R bit.  */
3102
      r = (i.rex & REX_R) ? 0 : 1;
3103
      i.vex.bytes[1] = (r << 7
3104
			| register_specifier << 3
3105
			| vector_length << 2
3106
			| implied_prefix);
3107
    }
3108
  else
3109
    {
3110
      /* 3-byte VEX prefix.  */
3111
      unsigned int m, w;
3112
 
3113
      i.vex.length = 3;
3114
 
3115
      switch (i.tm.opcode_modifier.vexopcode)
3116
	{
3117
	case VEX0F:
3118
	  m = 0x1;
3119
	  i.vex.bytes[0] = 0xc4;
3120
	  break;
3121
	case VEX0F38:
3122
	  m = 0x2;
3123
	  i.vex.bytes[0] = 0xc4;
3124
	  break;
3125
	case VEX0F3A:
3126
	  m = 0x3;
3127
	  i.vex.bytes[0] = 0xc4;
3128
	  break;
3129
	case XOP08:
3130
	  m = 0x8;
3131
	  i.vex.bytes[0] = 0x8f;
3132
	  break;
3133
	case XOP09:
3134
	  m = 0x9;
3135
	  i.vex.bytes[0] = 0x8f;
3136
	  break;
3137
	case XOP0A:
3138
	  m = 0xa;
3139
	  i.vex.bytes[0] = 0x8f;
3140
	  break;
3141
	default:
3142
	  abort ();
3143
	}
3144
 
3145
      /* The high 3 bits of the second VEX byte are 1's compliment
3146
	 of RXB bits from REX.  */
3147
      i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3148
 
3149
      /* Check the REX.W bit.  */
3150
      w = (i.rex & REX_W) ? 1 : 0;
3151
      if (i.tm.opcode_modifier.vexw)
3152
	{
3153
	  if (w)
3154
	    abort ();
3155
 
3156
	  if (i.tm.opcode_modifier.vexw == VEXW1)
3157
	    w = 1;
3158
	}
3159
 
3160
      i.vex.bytes[2] = (w << 7
3161
			| register_specifier << 3
3162
			| vector_length << 2
3163
			| implied_prefix);
3164
    }
3165
}
3166
 
3167
/* Build the EVEX prefix.  */
3168
 
3169
static void
3170
build_evex_prefix (void)
3171
{
3172
  unsigned int register_specifier;
3173
  unsigned int implied_prefix;
3174
  unsigned int m, w;
3175
  rex_byte vrex_used = 0;
3176
 
3177
  /* Check register specifier.  */
3178
  if (i.vex.register_specifier)
3179
    {
3180
      gas_assert ((i.vrex & REX_X) == 0);
3181
 
3182
      register_specifier = i.vex.register_specifier->reg_num;
3183
      if ((i.vex.register_specifier->reg_flags & RegRex))
3184
	register_specifier += 8;
3185
      /* The upper 16 registers are encoded in the fourth byte of the
3186
	 EVEX prefix.  */
3187
      if (!(i.vex.register_specifier->reg_flags & RegVRex))
3188
	i.vex.bytes[3] = 0x8;
3189
      register_specifier = ~register_specifier & 0xf;
3190
    }
3191
  else
3192
    {
3193
      register_specifier = 0xf;
3194
 
3195
      /* Encode upper 16 vector index register in the fourth byte of
3196
	 the EVEX prefix.  */
3197
      if (!(i.vrex & REX_X))
3198
	i.vex.bytes[3] = 0x8;
3199
      else
3200
	vrex_used |= REX_X;
3201
    }
3202
 
3203
  switch ((i.tm.base_opcode >> 8) & 0xff)
3204
    {
3205
    case 0:
3206
      implied_prefix = 0;
3207
      break;
3208
    case DATA_PREFIX_OPCODE:
3209
      implied_prefix = 1;
3210
      break;
3211
    case REPE_PREFIX_OPCODE:
3212
      implied_prefix = 2;
3213
      break;
3214
    case REPNE_PREFIX_OPCODE:
3215
      implied_prefix = 3;
3216
      break;
3217
    default:
3218
      abort ();
3219
    }
3220
 
3221
  /* 4 byte EVEX prefix.  */
3222
  i.vex.length = 4;
3223
  i.vex.bytes[0] = 0x62;
3224
 
3225
  /* mmmm bits.  */
3226
  switch (i.tm.opcode_modifier.vexopcode)
3227
    {
3228
    case VEX0F:
3229
      m = 1;
3230
      break;
3231
    case VEX0F38:
3232
      m = 2;
3233
      break;
3234
    case VEX0F3A:
3235
      m = 3;
3236
      break;
3237
    default:
3238
      abort ();
3239
      break;
3240
    }
3241
 
3242
  /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3243
     bits from REX.  */
3244
  i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3245
 
3246
  /* The fifth bit of the second EVEX byte is 1's compliment of the
3247
     REX_R bit in VREX.  */
3248
  if (!(i.vrex & REX_R))
3249
    i.vex.bytes[1] |= 0x10;
3250
  else
3251
    vrex_used |= REX_R;
3252
 
3253
  if ((i.reg_operands + i.imm_operands) == i.operands)
3254
    {
3255
      /* When all operands are registers, the REX_X bit in REX is not
3256
	 used.  We reuse it to encode the upper 16 registers, which is
3257
	 indicated by the REX_B bit in VREX.  The REX_X bit is encoded
3258
	 as 1's compliment.  */
3259
      if ((i.vrex & REX_B))
3260
	{
3261
	  vrex_used |= REX_B;
3262
	  i.vex.bytes[1] &= ~0x40;
3263
	}
3264
    }
3265
 
3266
  /* EVEX instructions shouldn't need the REX prefix.  */
3267
  i.vrex &= ~vrex_used;
3268
  gas_assert (i.vrex == 0);
3269
 
3270
  /* Check the REX.W bit.  */
3271
  w = (i.rex & REX_W) ? 1 : 0;
3272
  if (i.tm.opcode_modifier.vexw)
3273
    {
3274
      if (i.tm.opcode_modifier.vexw == VEXW1)
3275
	w = 1;
3276
    }
3277
  /* If w is not set it means we are dealing with WIG instruction.  */
3278
  else if (!w)
3279
    {
3280
      if (evexwig == evexw1)
3281
        w = 1;
3282
    }
3283
 
3284
  /* Encode the U bit.  */
3285
  implied_prefix |= 0x4;
3286
 
3287
  /* The third byte of the EVEX prefix.  */
3288
  i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3289
 
3290
  /* The fourth byte of the EVEX prefix.  */
3291
  /* The zeroing-masking bit.  */
3292
  if (i.mask && i.mask->zeroing)
3293
    i.vex.bytes[3] |= 0x80;
3294
 
3295
  /* Don't always set the broadcast bit if there is no RC.  */
3296
  if (!i.rounding)
3297
    {
3298
      /* Encode the vector length.  */
3299
      unsigned int vec_length;
3300
 
3301
      switch (i.tm.opcode_modifier.evex)
3302
	{
3303
	case EVEXLIG: /* LL' is ignored */
3304
	  vec_length = evexlig << 5;
3305
	  break;
3306
	case EVEX128:
3307
	  vec_length = 0 << 5;
3308
	  break;
3309
	case EVEX256:
3310
	  vec_length = 1 << 5;
3311
	  break;
3312
	case EVEX512:
3313
	  vec_length = 2 << 5;
3314
	  break;
3315
	default:
3316
	  abort ();
3317
	  break;
3318
	}
3319
      i.vex.bytes[3] |= vec_length;
3320
      /* Encode the broadcast bit.  */
3321
      if (i.broadcast)
3322
	i.vex.bytes[3] |= 0x10;
3323
    }
3324
  else
3325
    {
3326
      if (i.rounding->type != saeonly)
3327
	i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3328
      else
3329
	i.vex.bytes[3] |= 0x10;
3330
    }
3331
 
3332
  if (i.mask && i.mask->mask)
3333
    i.vex.bytes[3] |= i.mask->mask->reg_num;
3334
}
3335
 
3336
static void
3337
process_immext (void)
3338
{
3339
  expressionS *exp;
3340
 
3341
  if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3342
      && i.operands > 0)
3343
    {
3344
      /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3345
	 with an opcode suffix which is coded in the same place as an
3346
	 8-bit immediate field would be.
3347
	 Here we check those operands and remove them afterwards.  */
3348
      unsigned int x;
3349
 
3350
      for (x = 0; x < i.operands; x++)
3351
	if (register_number (i.op[x].regs) != x)
3352
	  as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3353
		  register_prefix, i.op[x].regs->reg_name, x + 1,
3354
		  i.tm.name);
3355
 
3356
      i.operands = 0;
3357
    }
3358
 
3359
  /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3360
     which is coded in the same place as an 8-bit immediate field
3361
     would be.  Here we fake an 8-bit immediate operand from the
3362
     opcode suffix stored in tm.extension_opcode.
3363
 
3364
     AVX instructions also use this encoding, for some of
3365
     3 argument instructions.  */
3366
 
3367
  gas_assert (i.imm_operands <= 1
3368
	      && (i.operands <= 2
3369
		  || ((i.tm.opcode_modifier.vex
3370
		       || i.tm.opcode_modifier.evex)
3371
		      && i.operands <= 4)));
3372
 
3373
  exp = &im_expressions[i.imm_operands++];
3374
  i.op[i.operands].imms = exp;
3375
  i.types[i.operands] = imm8;
3376
  i.operands++;
3377
  exp->X_op = O_constant;
3378
  exp->X_add_number = i.tm.extension_opcode;
3379
  i.tm.extension_opcode = None;
3380
}
3381
 
3382
 
3383
static int
3384
check_hle (void)
3385
{
3386
  switch (i.tm.opcode_modifier.hleprefixok)
3387
    {
3388
    default:
3389
      abort ();
3390
    case HLEPrefixNone:
3391
      as_bad (_("invalid instruction `%s' after `%s'"),
3392
	      i.tm.name, i.hle_prefix);
3393
      return 0;
3394
    case HLEPrefixLock:
3395
      if (i.prefix[LOCK_PREFIX])
3396
	return 1;
3397
      as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3398
      return 0;
3399
    case HLEPrefixAny:
3400
      return 1;
3401
    case HLEPrefixRelease:
3402
      if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3403
	{
3404
	  as_bad (_("instruction `%s' after `xacquire' not allowed"),
3405
		  i.tm.name);
3406
	  return 0;
3407
	}
3408
      if (i.mem_operands == 0
3409
	  || !operand_type_check (i.types[i.operands - 1], anymem))
3410
	{
3411
	  as_bad (_("memory destination needed for instruction `%s'"
3412
		    " after `xrelease'"), i.tm.name);
3413
	  return 0;
3414
	}
3415
      return 1;
3416
    }
3417
}
3418
 
3419
/* This is the guts of the machine-dependent assembler.  LINE points to a
3420
   machine dependent instruction.  This function is supposed to emit
3421
   the frags/bytes it assembles to.  */
3422
 
3423
void
3424
md_assemble (char *line)
3425
{
3426
  unsigned int j;
3427
  char mnemonic[MAX_MNEM_SIZE];
3428
  const insn_template *t;
3429
 
3430
  /* Initialize globals.  */
3431
  memset (&i, '\0', sizeof (i));
3432
  for (j = 0; j < MAX_OPERANDS; j++)
3433
    i.reloc[j] = NO_RELOC;
3434
  memset (disp_expressions, '\0', sizeof (disp_expressions));
3435
  memset (im_expressions, '\0', sizeof (im_expressions));
3436
  save_stack_p = save_stack;
3437
 
3438
  /* First parse an instruction mnemonic & call i386_operand for the operands.
3439
     We assume that the scrubber has arranged it so that line[0] is the valid
3440
     start of a (possibly prefixed) mnemonic.  */
3441
 
3442
  line = parse_insn (line, mnemonic);
3443
  if (line == NULL)
3444
    return;
3445
 
3446
  line = parse_operands (line, mnemonic);
3447
  this_operand = -1;
3448
  if (line == NULL)
3449
    return;
3450
 
3451
  /* Now we've parsed the mnemonic into a set of templates, and have the
3452
     operands at hand.  */
3453
 
3454
  /* All intel opcodes have reversed operands except for "bound" and
3455
     "enter".  We also don't reverse intersegment "jmp" and "call"
3456
     instructions with 2 immediate operands so that the immediate segment
3457
     precedes the offset, as it does when in AT&T mode. */
3458
  if (intel_syntax
3459
      && i.operands > 1
3460
      && (strcmp (mnemonic, "bound") != 0)
3461
      && (strcmp (mnemonic, "invlpga") != 0)
3462
      && !(operand_type_check (i.types[0], imm)
3463
	   && operand_type_check (i.types[1], imm)))
3464
    swap_operands ();
3465
 
3466
  /* The order of the immediates should be reversed
3467
     for 2 immediates extrq and insertq instructions */
3468
  if (i.imm_operands == 2
3469
      && (strcmp (mnemonic, "extrq") == 0
3470
	  || strcmp (mnemonic, "insertq") == 0))
3471
      swap_2_operands (0, 1);
3472
 
3473
  if (i.imm_operands)
3474
    optimize_imm ();
3475
 
3476
  /* Don't optimize displacement for movabs since it only takes 64bit
3477
     displacement.  */
3478
  if (i.disp_operands
3479
      && i.disp_encoding != disp_encoding_32bit
3480
      && (flag_code != CODE_64BIT
3481
	  || strcmp (mnemonic, "movabs") != 0))
3482
    optimize_disp ();
3483
 
3484
  /* Next, we find a template that matches the given insn,
3485
     making sure the overlap of the given operands types is consistent
3486
     with the template operand types.  */
3487
 
3488
  if (!(t = match_template ()))
3489
    return;
3490
 
3491
  if (sse_check != check_none
3492
      && !i.tm.opcode_modifier.noavx
3493
      && (i.tm.cpu_flags.bitfield.cpusse
3494
	  || i.tm.cpu_flags.bitfield.cpusse2
3495
	  || i.tm.cpu_flags.bitfield.cpusse3
3496
	  || i.tm.cpu_flags.bitfield.cpussse3
3497
	  || i.tm.cpu_flags.bitfield.cpusse4_1
3498
	  || i.tm.cpu_flags.bitfield.cpusse4_2))
3499
    {
3500
      (sse_check == check_warning
3501
       ? as_warn
3502
       : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3503
    }
3504
 
3505
  /* Zap movzx and movsx suffix.  The suffix has been set from
3506
     "word ptr" or "byte ptr" on the source operand in Intel syntax
3507
     or extracted from mnemonic in AT&T syntax.  But we'll use
3508
     the destination register to choose the suffix for encoding.  */
3509
  if ((i.tm.base_opcode & ~9) == 0x0fb6)
3510
    {
3511
      /* In Intel syntax, there must be a suffix.  In AT&T syntax, if
3512
	 there is no suffix, the default will be byte extension.  */
3513
      if (i.reg_operands != 2
3514
	  && !i.suffix
3515
	  && intel_syntax)
3516
	as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3517
 
3518
      i.suffix = 0;
3519
    }
3520
 
3521
  if (i.tm.opcode_modifier.fwait)
3522
    if (!add_prefix (FWAIT_OPCODE))
3523
      return;
3524
 
3525
  /* Check if REP prefix is OK.  */
3526
  if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3527
    {
3528
      as_bad (_("invalid instruction `%s' after `%s'"),
3529
		i.tm.name, i.rep_prefix);
3530
      return;
3531
    }
3532
 
3533
  /* Check for lock without a lockable instruction.  Destination operand
3534
     must be memory unless it is xchg (0x86).  */
3535
  if (i.prefix[LOCK_PREFIX]
3536
      && (!i.tm.opcode_modifier.islockable
3537
	  || i.mem_operands == 0
3538
	  || (i.tm.base_opcode != 0x86
3539
	      && !operand_type_check (i.types[i.operands - 1], anymem))))
3540
    {
3541
      as_bad (_("expecting lockable instruction after `lock'"));
3542
      return;
3543
    }
3544
 
3545
  /* Check if HLE prefix is OK.  */
3546
  if (i.hle_prefix && !check_hle ())
3547
    return;
3548
 
3549
  /* Check BND prefix.  */
3550
  if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3551
    as_bad (_("expecting valid branch instruction after `bnd'"));
3552
 
3553
  if (i.tm.cpu_flags.bitfield.cpumpx
3554
      && flag_code == CODE_64BIT
3555
      && i.prefix[ADDR_PREFIX])
3556
    as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3557
 
3558
  /* Insert BND prefix.  */
3559
  if (add_bnd_prefix
3560
      && i.tm.opcode_modifier.bndprefixok
3561
      && !i.prefix[BND_PREFIX])
3562
    add_prefix (BND_PREFIX_OPCODE);
3563
 
3564
  /* Check string instruction segment overrides.  */
3565
  if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3566
    {
3567
      if (!check_string ())
3568
	return;
3569
      i.disp_operands = 0;
3570
    }
3571
 
3572
  if (!process_suffix ())
3573
    return;
3574
 
3575
  /* Update operand types.  */
3576
  for (j = 0; j < i.operands; j++)
3577
    i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3578
 
3579
  /* Make still unresolved immediate matches conform to size of immediate
3580
     given in i.suffix.  */
3581
  if (!finalize_imm ())
3582
    return;
3583
 
3584
  if (i.types[0].bitfield.imm1)
3585
    i.imm_operands = 0;	/* kludge for shift insns.  */
3586
 
3587
  /* We only need to check those implicit registers for instructions
3588
     with 3 operands or less.  */
3589
  if (i.operands <= 3)
3590
    for (j = 0; j < i.operands; j++)
3591
      if (i.types[j].bitfield.inoutportreg
3592
	  || i.types[j].bitfield.shiftcount
3593
	  || i.types[j].bitfield.acc
3594
	  || i.types[j].bitfield.floatacc)
3595
	i.reg_operands--;
3596
 
3597
  /* ImmExt should be processed after SSE2AVX.  */
3598
  if (!i.tm.opcode_modifier.sse2avx
3599
      && i.tm.opcode_modifier.immext)
3600
    process_immext ();
3601
 
3602
  /* For insns with operands there are more diddles to do to the opcode.  */
3603
  if (i.operands)
3604
    {
3605
      if (!process_operands ())
3606
	return;
3607
    }
3608
  else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3609
    {
3610
      /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc.  */
3611
      as_warn (_("translating to `%sp'"), i.tm.name);
3612
    }
3613
 
3614
  if (i.tm.opcode_modifier.vex)
3615
    build_vex_prefix (t);
3616
 
3617
  if (i.tm.opcode_modifier.evex)
3618
    build_evex_prefix ();
3619
 
3620
  /* Handle conversion of 'int $3' --> special int3 insn.  XOP or FMA4
3621
     instructions may define INT_OPCODE as well, so avoid this corner
3622
     case for those instructions that use MODRM.  */
3623
  if (i.tm.base_opcode == INT_OPCODE
3624
      && !i.tm.opcode_modifier.modrm
3625
      && i.op[0].imms->X_add_number == 3)
3626
    {
3627
      i.tm.base_opcode = INT3_OPCODE;
3628
      i.imm_operands = 0;
3629
    }
3630
 
3631
  if ((i.tm.opcode_modifier.jump
3632
       || i.tm.opcode_modifier.jumpbyte
3633
       || i.tm.opcode_modifier.jumpdword)
3634
      && i.op[0].disps->X_op == O_constant)
3635
    {
3636
      /* Convert "jmp constant" (and "call constant") to a jump (call) to
3637
	 the absolute address given by the constant.  Since ix86 jumps and
3638
	 calls are pc relative, we need to generate a reloc.  */
3639
      i.op[0].disps->X_add_symbol = &abs_symbol;
3640
      i.op[0].disps->X_op = O_symbol;
3641
    }
3642
 
3643
  if (i.tm.opcode_modifier.rex64)
3644
    i.rex |= REX_W;
3645
 
3646
  /* For 8 bit registers we need an empty rex prefix.  Also if the
3647
     instruction already has a prefix, we need to convert old
3648
     registers to new ones.  */
3649
 
3650
  if ((i.types[0].bitfield.reg8
3651
       && (i.op[0].regs->reg_flags & RegRex64) != 0)
3652
      || (i.types[1].bitfield.reg8
3653
	  && (i.op[1].regs->reg_flags & RegRex64) != 0)
3654
      || ((i.types[0].bitfield.reg8
3655
	   || i.types[1].bitfield.reg8)
3656
	  && i.rex != 0))
3657
    {
3658
      int x;
3659
 
3660
      i.rex |= REX_OPCODE;
3661
      for (x = 0; x < 2; x++)
3662
	{
3663
	  /* Look for 8 bit operand that uses old registers.  */
3664
	  if (i.types[x].bitfield.reg8
3665
	      && (i.op[x].regs->reg_flags & RegRex64) == 0)
3666
	    {
3667
	      /* In case it is "hi" register, give up.  */
3668
	      if (i.op[x].regs->reg_num > 3)
3669
		as_bad (_("can't encode register '%s%s' in an "
3670
			  "instruction requiring REX prefix."),
3671
			register_prefix, i.op[x].regs->reg_name);
3672
 
3673
	      /* Otherwise it is equivalent to the extended register.
3674
		 Since the encoding doesn't change this is merely
3675
		 cosmetic cleanup for debug output.  */
3676
 
3677
	      i.op[x].regs = i.op[x].regs + 8;
3678
	    }
3679
	}
3680
    }
3681
 
3682
  if (i.rex != 0)
3683
    add_prefix (REX_OPCODE | i.rex);
3684
 
3685
  /* We are ready to output the insn.  */
3686
  output_insn ();
3687
}
3688
 
3689
static char *
3690
parse_insn (char *line, char *mnemonic)
3691
{
3692
  char *l = line;
3693
  char *token_start = l;
3694
  char *mnem_p;
3695
  int supported;
3696
  const insn_template *t;
3697
  char *dot_p = NULL;
3698
 
3699
  while (1)
3700
    {
3701
      mnem_p = mnemonic;
3702
      while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3703
	{
3704
	  if (*mnem_p == '.')
3705
	    dot_p = mnem_p;
3706
	  mnem_p++;
3707
	  if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3708
	    {
3709
	      as_bad (_("no such instruction: `%s'"), token_start);
3710
	      return NULL;
3711
	    }
3712
	  l++;
3713
	}
3714
      if (!is_space_char (*l)
3715
	  && *l != END_OF_INSN
3716
	  && (intel_syntax
3717
	      || (*l != PREFIX_SEPARATOR
3718
		  && *l != ',')))
3719
	{
3720
	  as_bad (_("invalid character %s in mnemonic"),
3721
		  output_invalid (*l));
3722
	  return NULL;
3723
	}
3724
      if (token_start == l)
3725
	{
3726
	  if (!intel_syntax && *l == PREFIX_SEPARATOR)
3727
	    as_bad (_("expecting prefix; got nothing"));
3728
	  else
3729
	    as_bad (_("expecting mnemonic; got nothing"));
3730
	  return NULL;
3731
	}
3732
 
3733
      /* Look up instruction (or prefix) via hash table.  */
3734
      current_templates = (const templates *) hash_find (op_hash, mnemonic);
3735
 
3736
      if (*l != END_OF_INSN
3737
	  && (!is_space_char (*l) || l[1] != END_OF_INSN)
3738
	  && current_templates
3739
	  && current_templates->start->opcode_modifier.isprefix)
3740
	{
3741
	  if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3742
	    {
3743
	      as_bad ((flag_code != CODE_64BIT
3744
		       ? _("`%s' is only supported in 64-bit mode")
3745
		       : _("`%s' is not supported in 64-bit mode")),
3746
		      current_templates->start->name);
3747
	      return NULL;
3748
	    }
3749
	  /* If we are in 16-bit mode, do not allow addr16 or data16.
3750
	     Similarly, in 32-bit mode, do not allow addr32 or data32.  */
3751
	  if ((current_templates->start->opcode_modifier.size16
3752
	       || current_templates->start->opcode_modifier.size32)
3753
	      && flag_code != CODE_64BIT
3754
	      && (current_templates->start->opcode_modifier.size32
3755
		  ^ (flag_code == CODE_16BIT)))
3756
	    {
3757
	      as_bad (_("redundant %s prefix"),
3758
		      current_templates->start->name);
3759
	      return NULL;
3760
	    }
3761
	  /* Add prefix, checking for repeated prefixes.  */
3762
	  switch (add_prefix (current_templates->start->base_opcode))
3763
	    {
3764
	    case PREFIX_EXIST:
3765
	      return NULL;
3766
	    case PREFIX_REP:
3767
	      if (current_templates->start->cpu_flags.bitfield.cpuhle)
3768
		i.hle_prefix = current_templates->start->name;
3769
	      else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3770
		i.bnd_prefix = current_templates->start->name;
3771
	      else
3772
		i.rep_prefix = current_templates->start->name;
3773
	      break;
3774
	    default:
3775
	      break;
3776
	    }
3777
	  /* Skip past PREFIX_SEPARATOR and reset token_start.  */
3778
	  token_start = ++l;
3779
	}
3780
      else
3781
	break;
3782
    }
3783
 
3784
  if (!current_templates)
3785
    {
3786
      /* Check if we should swap operand or force 32bit displacement in
3787
	 encoding.  */
3788
      if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3789
	i.swap_operand = 1;
3790
      else if (mnem_p - 3 == dot_p
3791
	       && dot_p[1] == 'd'
3792
	       && dot_p[2] == '8')
3793
	i.disp_encoding = disp_encoding_8bit;
3794
      else if (mnem_p - 4 == dot_p
3795
	       && dot_p[1] == 'd'
3796
	       && dot_p[2] == '3'
3797
	       && dot_p[3] == '2')
3798
	i.disp_encoding = disp_encoding_32bit;
3799
      else
3800
	goto check_suffix;
3801
      mnem_p = dot_p;
3802
      *dot_p = '\0';
3803
      current_templates = (const templates *) hash_find (op_hash, mnemonic);
3804
    }
3805
 
3806
  if (!current_templates)
3807
    {
3808
check_suffix:
3809
      /* See if we can get a match by trimming off a suffix.  */
3810
      switch (mnem_p[-1])
3811
	{
3812
	case WORD_MNEM_SUFFIX:
3813
	  if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3814
	    i.suffix = SHORT_MNEM_SUFFIX;
3815
	  else
3816
	case BYTE_MNEM_SUFFIX:
3817
	case QWORD_MNEM_SUFFIX:
3818
	  i.suffix = mnem_p[-1];
3819
	  mnem_p[-1] = '\0';
3820
	  current_templates = (const templates *) hash_find (op_hash,
3821
                                                             mnemonic);
3822
	  break;
3823
	case SHORT_MNEM_SUFFIX:
3824
	case LONG_MNEM_SUFFIX:
3825
	  if (!intel_syntax)
3826
	    {
3827
	      i.suffix = mnem_p[-1];
3828
	      mnem_p[-1] = '\0';
3829
	      current_templates = (const templates *) hash_find (op_hash,
3830
                                                                 mnemonic);
3831
	    }
3832
	  break;
3833
 
3834
	  /* Intel Syntax.  */
3835
	case 'd':
3836
	  if (intel_syntax)
3837
	    {
3838
	      if (intel_float_operand (mnemonic) == 1)
3839
		i.suffix = SHORT_MNEM_SUFFIX;
3840
	      else
3841
		i.suffix = LONG_MNEM_SUFFIX;
3842
	      mnem_p[-1] = '\0';
3843
	      current_templates = (const templates *) hash_find (op_hash,
3844
                                                                 mnemonic);
3845
	    }
3846
	  break;
3847
	}
3848
      if (!current_templates)
3849
	{
3850
	  as_bad (_("no such instruction: `%s'"), token_start);
3851
	  return NULL;
3852
	}
3853
    }
3854
 
3855
  if (current_templates->start->opcode_modifier.jump
3856
      || current_templates->start->opcode_modifier.jumpbyte)
3857
    {
3858
      /* Check for a branch hint.  We allow ",pt" and ",pn" for
3859
	 predict taken and predict not taken respectively.
3860
	 I'm not sure that branch hints actually do anything on loop
3861
	 and jcxz insns (JumpByte) for current Pentium4 chips.  They
3862
	 may work in the future and it doesn't hurt to accept them
3863
	 now.  */
3864
      if (l[0] == ',' && l[1] == 'p')
3865
	{
3866
	  if (l[2] == 't')
3867
	    {
3868
	      if (!add_prefix (DS_PREFIX_OPCODE))
3869
		return NULL;
3870
	      l += 3;
3871
	    }
3872
	  else if (l[2] == 'n')
3873
	    {
3874
	      if (!add_prefix (CS_PREFIX_OPCODE))
3875
		return NULL;
3876
	      l += 3;
3877
	    }
3878
	}
3879
    }
3880
  /* Any other comma loses.  */
3881
  if (*l == ',')
3882
    {
3883
      as_bad (_("invalid character %s in mnemonic"),
3884
	      output_invalid (*l));
3885
      return NULL;
3886
    }
3887
 
3888
  /* Check if instruction is supported on specified architecture.  */
3889
  supported = 0;
3890
  for (t = current_templates->start; t < current_templates->end; ++t)
3891
    {
3892
      supported |= cpu_flags_match (t);
3893
      if (supported == CPU_FLAGS_PERFECT_MATCH)
3894
	goto skip;
3895
    }
3896
 
3897
  if (!(supported & CPU_FLAGS_64BIT_MATCH))
3898
    {
3899
      as_bad (flag_code == CODE_64BIT
3900
	      ? _("`%s' is not supported in 64-bit mode")
3901
	      : _("`%s' is only supported in 64-bit mode"),
3902
	      current_templates->start->name);
3903
      return NULL;
3904
    }
3905
  if (supported != CPU_FLAGS_PERFECT_MATCH)
3906
    {
3907
      as_bad (_("`%s' is not supported on `%s%s'"),
3908
	      current_templates->start->name,
3909
	      cpu_arch_name ? cpu_arch_name : default_arch,
3910
	      cpu_sub_arch_name ? cpu_sub_arch_name : "");
3911
      return NULL;
3912
    }
3913
 
3914
skip:
3915
  if (!cpu_arch_flags.bitfield.cpui386
3916
	   && (flag_code != CODE_16BIT))
3917
    {
3918
      as_warn (_("use .code16 to ensure correct addressing mode"));
3919
    }
3920
 
3921
  return l;
3922
}
3923
 
3924
static char *
3925
parse_operands (char *l, const char *mnemonic)
3926
{
3927
  char *token_start;
3928
 
3929
  /* 1 if operand is pending after ','.  */
3930
  unsigned int expecting_operand = 0;
3931
 
3932
  /* Non-zero if operand parens not balanced.  */
3933
  unsigned int paren_not_balanced;
3934
 
3935
  while (*l != END_OF_INSN)
3936
    {
3937
      /* Skip optional white space before operand.  */
3938
      if (is_space_char (*l))
3939
	++l;
3940
      if (!is_operand_char (*l) && *l != END_OF_INSN)
3941
	{
3942
	  as_bad (_("invalid character %s before operand %d"),
3943
		  output_invalid (*l),
3944
		  i.operands + 1);
3945
	  return NULL;
3946
	}
3947
      token_start = l;	/* after white space */
3948
      paren_not_balanced = 0;
3949
      while (paren_not_balanced || *l != ',')
3950
	{
3951
	  if (*l == END_OF_INSN)
3952
	    {
3953
	      if (paren_not_balanced)
3954
		{
3955
		  if (!intel_syntax)
3956
		    as_bad (_("unbalanced parenthesis in operand %d."),
3957
			    i.operands + 1);
3958
		  else
3959
		    as_bad (_("unbalanced brackets in operand %d."),
3960
			    i.operands + 1);
3961
		  return NULL;
3962
		}
3963
	      else
3964
		break;	/* we are done */
3965
	    }
3966
	  else if (!is_operand_char (*l) && !is_space_char (*l))
3967
	    {
3968
	      as_bad (_("invalid character %s in operand %d"),
3969
		      output_invalid (*l),
3970
		      i.operands + 1);
3971
	      return NULL;
3972
	    }
3973
	  if (!intel_syntax)
3974
	    {
3975
	      if (*l == '(')
3976
		++paren_not_balanced;
3977
	      if (*l == ')')
3978
		--paren_not_balanced;
3979
	    }
3980
	  else
3981
	    {
3982
	      if (*l == '[')
3983
		++paren_not_balanced;
3984
	      if (*l == ']')
3985
		--paren_not_balanced;
3986
	    }
3987
	  l++;
3988
	}
3989
      if (l != token_start)
3990
	{			/* Yes, we've read in another operand.  */
3991
	  unsigned int operand_ok;
3992
	  this_operand = i.operands++;
3993
	  i.types[this_operand].bitfield.unspecified = 1;
3994
	  if (i.operands > MAX_OPERANDS)
3995
	    {
3996
	      as_bad (_("spurious operands; (%d operands/instruction max)"),
3997
		      MAX_OPERANDS);
3998
	      return NULL;
3999
	    }
4000
	  /* Now parse operand adding info to 'i' as we go along.  */
4001
	  END_STRING_AND_SAVE (l);
4002
 
4003
	  if (intel_syntax)
4004
	    operand_ok =
4005
	      i386_intel_operand (token_start,
4006
				  intel_float_operand (mnemonic));
4007
	  else
4008
	    operand_ok = i386_att_operand (token_start);
4009
 
4010
	  RESTORE_END_STRING (l);
4011
	  if (!operand_ok)
4012
	    return NULL;
4013
	}
4014
      else
4015
	{
4016
	  if (expecting_operand)
4017
	    {
4018
	    expecting_operand_after_comma:
4019
	      as_bad (_("expecting operand after ','; got nothing"));
4020
	      return NULL;
4021
	    }
4022
	  if (*l == ',')
4023
	    {
4024
	      as_bad (_("expecting operand before ','; got nothing"));
4025
	      return NULL;
4026
	    }
4027
	}
4028
 
4029
      /* Now *l must be either ',' or END_OF_INSN.  */
4030
      if (*l == ',')
4031
	{
4032
	  if (*++l == END_OF_INSN)
4033
	    {
4034
	      /* Just skip it, if it's \n complain.  */
4035
	      goto expecting_operand_after_comma;
4036
	    }
4037
	  expecting_operand = 1;
4038
	}
4039
    }
4040
  return l;
4041
}
4042
 
4043
static void
4044
swap_2_operands (int xchg1, int xchg2)
4045
{
4046
  union i386_op temp_op;
4047
  i386_operand_type temp_type;
4048
  enum bfd_reloc_code_real temp_reloc;
4049
 
4050
  temp_type = i.types[xchg2];
4051
  i.types[xchg2] = i.types[xchg1];
4052
  i.types[xchg1] = temp_type;
4053
  temp_op = i.op[xchg2];
4054
  i.op[xchg2] = i.op[xchg1];
4055
  i.op[xchg1] = temp_op;
4056
  temp_reloc = i.reloc[xchg2];
4057
  i.reloc[xchg2] = i.reloc[xchg1];
4058
  i.reloc[xchg1] = temp_reloc;
4059
 
4060
  if (i.mask)
4061
    {
4062
      if (i.mask->operand == xchg1)
4063
	i.mask->operand = xchg2;
4064
      else if (i.mask->operand == xchg2)
4065
	i.mask->operand = xchg1;
4066
    }
4067
  if (i.broadcast)
4068
    {
4069
      if (i.broadcast->operand == xchg1)
4070
	i.broadcast->operand = xchg2;
4071
      else if (i.broadcast->operand == xchg2)
4072
	i.broadcast->operand = xchg1;
4073
    }
4074
  if (i.rounding)
4075
    {
4076
      if (i.rounding->operand == xchg1)
4077
	i.rounding->operand = xchg2;
4078
      else if (i.rounding->operand == xchg2)
4079
	i.rounding->operand = xchg1;
4080
    }
4081
}
4082
 
4083
static void
4084
swap_operands (void)
4085
{
4086
  switch (i.operands)
4087
    {
4088
    case 5:
4089
    case 4:
4090
      swap_2_operands (1, i.operands - 2);
4091
    case 3:
4092
    case 2:
4093
      swap_2_operands (0, i.operands - 1);
4094
      break;
4095
    default:
4096
      abort ();
4097
    }
4098
 
4099
  if (i.mem_operands == 2)
4100
    {
4101
      const seg_entry *temp_seg;
4102
      temp_seg = i.seg[0];
4103
      i.seg[0] = i.seg[1];
4104
      i.seg[1] = temp_seg;
4105
    }
4106
}
4107
 
4108
/* Try to ensure constant immediates are represented in the smallest
4109
   opcode possible.  */
4110
static void
4111
optimize_imm (void)
4112
{
4113
  char guess_suffix = 0;
4114
  int op;
4115
 
4116
  if (i.suffix)
4117
    guess_suffix = i.suffix;
4118
  else if (i.reg_operands)
4119
    {
4120
      /* Figure out a suffix from the last register operand specified.
4121
	 We can't do this properly yet, ie. excluding InOutPortReg,
4122
	 but the following works for instructions with immediates.
4123
	 In any case, we can't set i.suffix yet.  */
4124
      for (op = i.operands; --op >= 0;)
4125
	if (i.types[op].bitfield.reg8)
4126
	  {
4127
	    guess_suffix = BYTE_MNEM_SUFFIX;
4128
	    break;
4129
	  }
4130
	else if (i.types[op].bitfield.reg16)
4131
	  {
4132
	    guess_suffix = WORD_MNEM_SUFFIX;
4133
	    break;
4134
	  }
4135
	else if (i.types[op].bitfield.reg32)
4136
	  {
4137
	    guess_suffix = LONG_MNEM_SUFFIX;
4138
	    break;
4139
	  }
4140
	else if (i.types[op].bitfield.reg64)
4141
	  {
4142
	    guess_suffix = QWORD_MNEM_SUFFIX;
4143
	    break;
4144
	  }
4145
    }
4146
  else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4147
    guess_suffix = WORD_MNEM_SUFFIX;
4148
 
4149
  for (op = i.operands; --op >= 0;)
4150
    if (operand_type_check (i.types[op], imm))
4151
      {
4152
	switch (i.op[op].imms->X_op)
4153
	  {
4154
	  case O_constant:
4155
	    /* If a suffix is given, this operand may be shortened.  */
4156
	    switch (guess_suffix)
4157
	      {
4158
	      case LONG_MNEM_SUFFIX:
4159
		i.types[op].bitfield.imm32 = 1;
4160
		i.types[op].bitfield.imm64 = 1;
4161
		break;
4162
	      case WORD_MNEM_SUFFIX:
4163
		i.types[op].bitfield.imm16 = 1;
4164
		i.types[op].bitfield.imm32 = 1;
4165
		i.types[op].bitfield.imm32s = 1;
4166
		i.types[op].bitfield.imm64 = 1;
4167
		break;
4168
	      case BYTE_MNEM_SUFFIX:
4169
		i.types[op].bitfield.imm8 = 1;
4170
		i.types[op].bitfield.imm8s = 1;
4171
		i.types[op].bitfield.imm16 = 1;
4172
		i.types[op].bitfield.imm32 = 1;
4173
		i.types[op].bitfield.imm32s = 1;
4174
		i.types[op].bitfield.imm64 = 1;
4175
		break;
4176
	      }
4177
 
4178
	    /* If this operand is at most 16 bits, convert it
4179
	       to a signed 16 bit number before trying to see
4180
	       whether it will fit in an even smaller size.
4181
	       This allows a 16-bit operand such as $0xffe0 to
4182
	       be recognised as within Imm8S range.  */
4183
	    if ((i.types[op].bitfield.imm16)
4184
		&& (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4185
	      {
4186
		i.op[op].imms->X_add_number =
4187
		  (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4188
	      }
4189
	    if ((i.types[op].bitfield.imm32)
4190
		&& ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4191
		    == 0))
4192
	      {
4193
		i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4194
						^ ((offsetT) 1 << 31))
4195
					       - ((offsetT) 1 << 31));
4196
	      }
4197
	    i.types[op]
4198
	      = operand_type_or (i.types[op],
4199
				 smallest_imm_type (i.op[op].imms->X_add_number));
4200
 
4201
	    /* We must avoid matching of Imm32 templates when 64bit
4202
	       only immediate is available.  */
4203
	    if (guess_suffix == QWORD_MNEM_SUFFIX)
4204
	      i.types[op].bitfield.imm32 = 0;
4205
	    break;
4206
 
4207
	  case O_absent:
4208
	  case O_register:
4209
	    abort ();
4210
 
4211
	    /* Symbols and expressions.  */
4212
	  default:
4213
	    /* Convert symbolic operand to proper sizes for matching, but don't
4214
	       prevent matching a set of insns that only supports sizes other
4215
	       than those matching the insn suffix.  */
4216
	    {
4217
	      i386_operand_type mask, allowed;
4218
	      const insn_template *t;
4219
 
4220
	      operand_type_set (&mask, 0);
4221
	      operand_type_set (&allowed, 0);
4222
 
4223
	      for (t = current_templates->start;
4224
		   t < current_templates->end;
4225
		   ++t)
4226
		allowed = operand_type_or (allowed,
4227
					   t->operand_types[op]);
4228
	      switch (guess_suffix)
4229
		{
4230
		case QWORD_MNEM_SUFFIX:
4231
		  mask.bitfield.imm64 = 1;
4232
		  mask.bitfield.imm32s = 1;
4233
		  break;
4234
		case LONG_MNEM_SUFFIX:
4235
		  mask.bitfield.imm32 = 1;
4236
		  break;
4237
		case WORD_MNEM_SUFFIX:
4238
		  mask.bitfield.imm16 = 1;
4239
		  break;
4240
		case BYTE_MNEM_SUFFIX:
4241
		  mask.bitfield.imm8 = 1;
4242
		  break;
4243
		default:
4244
		  break;
4245
		}
4246
	      allowed = operand_type_and (mask, allowed);
4247
	      if (!operand_type_all_zero (&allowed))
4248
		i.types[op] = operand_type_and (i.types[op], mask);
4249
	    }
4250
	    break;
4251
	  }
4252
      }
4253
}
4254
 
4255
/* Try to use the smallest displacement type too.  */
4256
static void
4257
optimize_disp (void)
4258
{
4259
  int op;
4260
 
4261
  for (op = i.operands; --op >= 0;)
4262
    if (operand_type_check (i.types[op], disp))
4263
      {
4264
	if (i.op[op].disps->X_op == O_constant)
4265
	  {
4266
	    offsetT op_disp = i.op[op].disps->X_add_number;
4267
 
4268
	    if (i.types[op].bitfield.disp16
4269
		&& (op_disp & ~(offsetT) 0xffff) == 0)
4270
	      {
4271
		/* If this operand is at most 16 bits, convert
4272
		   to a signed 16 bit number and don't use 64bit
4273
		   displacement.  */
4274
		op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4275
		i.types[op].bitfield.disp64 = 0;
4276
	      }
4277
	    if (i.types[op].bitfield.disp32
4278
		&& (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4279
	      {
4280
		/* If this operand is at most 32 bits, convert
4281
		   to a signed 32 bit number and don't use 64bit
4282
		   displacement.  */
4283
		op_disp &= (((offsetT) 2 << 31) - 1);
4284
		op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4285
		i.types[op].bitfield.disp64 = 0;
4286
	      }
4287
	    if (!op_disp && i.types[op].bitfield.baseindex)
4288
	      {
4289
		i.types[op].bitfield.disp8 = 0;
4290
		i.types[op].bitfield.disp16 = 0;
4291
		i.types[op].bitfield.disp32 = 0;
4292
		i.types[op].bitfield.disp32s = 0;
4293
		i.types[op].bitfield.disp64 = 0;
4294
		i.op[op].disps = 0;
4295
		i.disp_operands--;
4296
	      }
4297
	    else if (flag_code == CODE_64BIT)
4298
	      {
4299
		if (fits_in_signed_long (op_disp))
4300
		  {
4301
		    i.types[op].bitfield.disp64 = 0;
4302
		    i.types[op].bitfield.disp32s = 1;
4303
		  }
4304
		if (i.prefix[ADDR_PREFIX]
4305
		    && fits_in_unsigned_long (op_disp))
4306
		  i.types[op].bitfield.disp32 = 1;
4307
	      }
4308
	    if ((i.types[op].bitfield.disp32
4309
		 || i.types[op].bitfield.disp32s
4310
		 || i.types[op].bitfield.disp16)
4311
		&& fits_in_signed_byte (op_disp))
4312
	      i.types[op].bitfield.disp8 = 1;
4313
	  }
4314
	else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4315
		 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4316
	  {
4317
	    fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4318
			 i.op[op].disps, 0, i.reloc[op]);
4319
	    i.types[op].bitfield.disp8 = 0;
4320
	    i.types[op].bitfield.disp16 = 0;
4321
	    i.types[op].bitfield.disp32 = 0;
4322
	    i.types[op].bitfield.disp32s = 0;
4323
	    i.types[op].bitfield.disp64 = 0;
4324
	  }
4325
 	else
4326
	  /* We only support 64bit displacement on constants.  */
4327
	  i.types[op].bitfield.disp64 = 0;
4328
      }
4329
}
4330
 
4331
/* Check if operands are valid for the instruction.  */
4332
 
4333
static int
4334
check_VecOperands (const insn_template *t)
4335
{
4336
  unsigned int op;
4337
 
4338
  /* Without VSIB byte, we can't have a vector register for index.  */
4339
  if (!t->opcode_modifier.vecsib
4340
      && i.index_reg
4341
      && (i.index_reg->reg_type.bitfield.regxmm
4342
	  || i.index_reg->reg_type.bitfield.regymm
4343
	  || i.index_reg->reg_type.bitfield.regzmm))
4344
    {
4345
      i.error = unsupported_vector_index_register;
4346
      return 1;
4347
    }
4348
 
4349
  /* Check if default mask is allowed.  */
4350
  if (t->opcode_modifier.nodefmask
4351
      && (!i.mask || i.mask->mask->reg_num == 0))
4352
    {
4353
      i.error = no_default_mask;
4354
      return 1;
4355
    }
4356
 
4357
  /* For VSIB byte, we need a vector register for index, and all vector
4358
     registers must be distinct.  */
4359
  if (t->opcode_modifier.vecsib)
4360
    {
4361
      if (!i.index_reg
4362
	  || !((t->opcode_modifier.vecsib == VecSIB128
4363
		&& i.index_reg->reg_type.bitfield.regxmm)
4364
	       || (t->opcode_modifier.vecsib == VecSIB256
4365
		   && i.index_reg->reg_type.bitfield.regymm)
4366
	       || (t->opcode_modifier.vecsib == VecSIB512
4367
		   && i.index_reg->reg_type.bitfield.regzmm)))
4368
      {
4369
	i.error = invalid_vsib_address;
4370
	return 1;
4371
      }
4372
 
4373
      gas_assert (i.reg_operands == 2 || i.mask);
4374
      if (i.reg_operands == 2 && !i.mask)
4375
	{
4376
	  gas_assert (i.types[0].bitfield.regxmm
4377
		      || i.types[0].bitfield.regymm
4378
		      || i.types[0].bitfield.regzmm);
4379
	  gas_assert (i.types[2].bitfield.regxmm
4380
		      || i.types[2].bitfield.regymm
4381
		      || i.types[2].bitfield.regzmm);
4382
	  if (operand_check == check_none)
4383
	    return 0;
4384
	  if (register_number (i.op[0].regs)
4385
	      != register_number (i.index_reg)
4386
	      && register_number (i.op[2].regs)
4387
		 != register_number (i.index_reg)
4388
	      && register_number (i.op[0].regs)
4389
		 != register_number (i.op[2].regs))
4390
	    return 0;
4391
	  if (operand_check == check_error)
4392
	    {
4393
	      i.error = invalid_vector_register_set;
4394
	      return 1;
4395
	    }
4396
	  as_warn (_("mask, index, and destination registers should be distinct"));
4397
	}
4398
    }
4399
 
4400
  /* Check if broadcast is supported by the instruction and is applied
4401
     to the memory operand.  */
4402
  if (i.broadcast)
4403
    {
4404
      int broadcasted_opnd_size;
4405
 
4406
      /* Check if specified broadcast is supported in this instruction,
4407
	 and it's applied to memory operand of DWORD or QWORD type,
4408
	 depending on VecESize.  */
4409
      if (i.broadcast->type != t->opcode_modifier.broadcast
4410
	  || !i.types[i.broadcast->operand].bitfield.mem
4411
	  || (t->opcode_modifier.vecesize == 0
4412
	      && !i.types[i.broadcast->operand].bitfield.dword
4413
	      && !i.types[i.broadcast->operand].bitfield.unspecified)
4414
	  || (t->opcode_modifier.vecesize == 1
4415
	      && !i.types[i.broadcast->operand].bitfield.qword
4416
	      && !i.types[i.broadcast->operand].bitfield.unspecified))
4417
	goto bad_broadcast;
4418
 
4419
      broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4420
      if (i.broadcast->type == BROADCAST_1TO16)
4421
	broadcasted_opnd_size <<= 4; /* Broadcast 1to16.  */
4422
      else if (i.broadcast->type == BROADCAST_1TO8)
4423
	broadcasted_opnd_size <<= 3; /* Broadcast 1to8.  */
4424
      else
4425
	goto bad_broadcast;
4426
 
4427
      if ((broadcasted_opnd_size == 256
4428
	   && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4429
	  || (broadcasted_opnd_size == 512
4430
	      && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4431
	{
4432
	bad_broadcast:
4433
	  i.error = unsupported_broadcast;
4434
	  return 1;
4435
	}
4436
    }
4437
  /* If broadcast is supported in this instruction, we need to check if
4438
     operand of one-element size isn't specified without broadcast.  */
4439
  else if (t->opcode_modifier.broadcast && i.mem_operands)
4440
    {
4441
      /* Find memory operand.  */
4442
      for (op = 0; op < i.operands; op++)
4443
	if (operand_type_check (i.types[op], anymem))
4444
	  break;
4445
      gas_assert (op < i.operands);
4446
      /* Check size of the memory operand.  */
4447
      if ((t->opcode_modifier.vecesize == 0
4448
	   && i.types[op].bitfield.dword)
4449
	  || (t->opcode_modifier.vecesize == 1
4450
	      && i.types[op].bitfield.qword))
4451
	{
4452
	  i.error = broadcast_needed;
4453
	  return 1;
4454
	}
4455
    }
4456
 
4457
  /* Check if requested masking is supported.  */
4458
  if (i.mask
4459
      && (!t->opcode_modifier.masking
4460
	  || (i.mask->zeroing
4461
	      && t->opcode_modifier.masking == MERGING_MASKING)))
4462
    {
4463
      i.error = unsupported_masking;
4464
      return 1;
4465
    }
4466
 
4467
  /* Check if masking is applied to dest operand.  */
4468
  if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4469
    {
4470
      i.error = mask_not_on_destination;
4471
      return 1;
4472
    }
4473
 
4474
  /* Check RC/SAE.  */
4475
  if (i.rounding)
4476
    {
4477
      if ((i.rounding->type != saeonly
4478
	   && !t->opcode_modifier.staticrounding)
4479
	  || (i.rounding->type == saeonly
4480
	      && (t->opcode_modifier.staticrounding
4481
		  || !t->opcode_modifier.sae)))
4482
	{
4483
	  i.error = unsupported_rc_sae;
4484
	  return 1;
4485
	}
4486
      /* If the instruction has several immediate operands and one of
4487
	 them is rounding, the rounding operand should be the last
4488
	 immediate operand.  */
4489
      if (i.imm_operands > 1
4490
	  && i.rounding->operand != (int) (i.imm_operands - 1))
4491
	{
4492
	  i.error = rc_sae_operand_not_last_imm;
4493
	  return 1;
4494
	}
4495
    }
4496
 
4497
  /* Check vector Disp8 operand.  */
4498
  if (t->opcode_modifier.disp8memshift)
4499
    {
4500
      if (i.broadcast)
4501
	i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4502
      else
4503
	i.memshift = t->opcode_modifier.disp8memshift;
4504
 
4505
      for (op = 0; op < i.operands; op++)
4506
	if (operand_type_check (i.types[op], disp)
4507
	    && i.op[op].disps->X_op == O_constant)
4508
	  {
4509
	    offsetT value = i.op[op].disps->X_add_number;
4510
	    int vec_disp8_ok = fits_in_vec_disp8 (value);
4511
	    if (t->operand_types [op].bitfield.vec_disp8)
4512
	      {
4513
		if (vec_disp8_ok)
4514
		  i.types[op].bitfield.vec_disp8 = 1;
4515
		else
4516
		  {
4517
		    /* Vector insn can only have Vec_Disp8/Disp32 in
4518
		       32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4519
		       mode.  */
4520
		    i.types[op].bitfield.disp8 = 0;
4521
		    if (flag_code != CODE_16BIT)
4522
		      i.types[op].bitfield.disp16 = 0;
4523
		  }
4524
	      }
4525
	    else if (flag_code != CODE_16BIT)
4526
	      {
4527
		/* One form of this instruction supports vector Disp8.
4528
		   Try vector Disp8 if we need to use Disp32.  */
4529
		if (vec_disp8_ok && !fits_in_signed_byte (value))
4530
		  {
4531
		    i.error = try_vector_disp8;
4532
		    return 1;
4533
		  }
4534
	      }
4535
	  }
4536
    }
4537
  else
4538
    i.memshift = -1;
4539
 
4540
  return 0;
4541
}
4542
 
4543
/* Check if operands are valid for the instruction.  Update VEX
4544
   operand types.  */
4545
 
4546
static int
4547
VEX_check_operands (const insn_template *t)
4548
{
4549
  /* VREX is only valid with EVEX prefix.  */
4550
  if (i.need_vrex && !t->opcode_modifier.evex)
4551
    {
4552
      i.error = invalid_register_operand;
4553
      return 1;
4554
    }
4555
 
4556
  if (!t->opcode_modifier.vex)
4557
    return 0;
4558
 
4559
  /* Only check VEX_Imm4, which must be the first operand.  */
4560
  if (t->operand_types[0].bitfield.vec_imm4)
4561
    {
4562
      if (i.op[0].imms->X_op != O_constant
4563
	  || !fits_in_imm4 (i.op[0].imms->X_add_number))
4564
	{
4565
	  i.error = bad_imm4;
4566
	  return 1;
4567
	}
4568
 
4569
      /* Turn off Imm8 so that update_imm won't complain.  */
4570
      i.types[0] = vec_imm4;
4571
    }
4572
 
4573
  return 0;
4574
}
4575
 
4576
static const insn_template *
4577
match_template (void)
4578
{
4579
  /* Points to template once we've found it.  */
4580
  const insn_template *t;
4581
  i386_operand_type overlap0, overlap1, overlap2, overlap3;
4582
  i386_operand_type overlap4;
4583
  unsigned int found_reverse_match;
4584
  i386_opcode_modifier suffix_check;
4585
  i386_operand_type operand_types [MAX_OPERANDS];
4586
  int addr_prefix_disp;
4587
  unsigned int j;
4588
  unsigned int found_cpu_match;
4589
  unsigned int check_register;
4590
  enum i386_error specific_error = 0;
4591
 
4592
#if MAX_OPERANDS != 5
4593
# error "MAX_OPERANDS must be 5."
4594
#endif
4595
 
4596
  found_reverse_match = 0;
4597
  addr_prefix_disp = -1;
4598
 
4599
  memset (&suffix_check, 0, sizeof (suffix_check));
4600
  if (i.suffix == BYTE_MNEM_SUFFIX)
4601
    suffix_check.no_bsuf = 1;
4602
  else if (i.suffix == WORD_MNEM_SUFFIX)
4603
    suffix_check.no_wsuf = 1;
4604
  else if (i.suffix == SHORT_MNEM_SUFFIX)
4605
    suffix_check.no_ssuf = 1;
4606
  else if (i.suffix == LONG_MNEM_SUFFIX)
4607
    suffix_check.no_lsuf = 1;
4608
  else if (i.suffix == QWORD_MNEM_SUFFIX)
4609
    suffix_check.no_qsuf = 1;
4610
  else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4611
    suffix_check.no_ldsuf = 1;
4612
 
4613
  /* Must have right number of operands.  */
4614
  i.error = number_of_operands_mismatch;
4615
 
4616
  for (t = current_templates->start; t < current_templates->end; t++)
4617
    {
4618
      addr_prefix_disp = -1;
4619
 
4620
      if (i.operands != t->operands)
4621
	continue;
4622
 
4623
      /* Check processor support.  */
4624
      i.error = unsupported;
4625
      found_cpu_match = (cpu_flags_match (t)
4626
			 == CPU_FLAGS_PERFECT_MATCH);
4627
      if (!found_cpu_match)
4628
	continue;
4629
 
4630
      /* Check old gcc support. */
4631
      i.error = old_gcc_only;
4632
      if (!old_gcc && t->opcode_modifier.oldgcc)
4633
	continue;
4634
 
4635
      /* Check AT&T mnemonic.   */
4636
      i.error = unsupported_with_intel_mnemonic;
4637
      if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4638
	continue;
4639
 
4640
      /* Check AT&T/Intel syntax.   */
4641
      i.error = unsupported_syntax;
4642
      if ((intel_syntax && t->opcode_modifier.attsyntax)
4643
	  || (!intel_syntax && t->opcode_modifier.intelsyntax))
4644
	continue;
4645
 
4646
      /* Check the suffix, except for some instructions in intel mode.  */
4647
      i.error = invalid_instruction_suffix;
4648
      if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4649
	  && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4650
	      || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4651
	      || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4652
	      || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4653
	      || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4654
	      || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4655
	continue;
4656
 
4657
      if (!operand_size_match (t))
4658
	continue;
4659
 
4660
      for (j = 0; j < MAX_OPERANDS; j++)
4661
	operand_types[j] = t->operand_types[j];
4662
 
4663
      /* In general, don't allow 64-bit operands in 32-bit mode.  */
4664
      if (i.suffix == QWORD_MNEM_SUFFIX
4665
	  && flag_code != CODE_64BIT
4666
	  && (intel_syntax
4667
	      ? (!t->opcode_modifier.ignoresize
4668
		 && !intel_float_operand (t->name))
4669
	      : intel_float_operand (t->name) != 2)
4670
	  && ((!operand_types[0].bitfield.regmmx
4671
	       && !operand_types[0].bitfield.regxmm
4672
	       && !operand_types[0].bitfield.regymm
4673
	       && !operand_types[0].bitfield.regzmm)
4674
	      || (!operand_types[t->operands > 1].bitfield.regmmx
4675
		  && !!operand_types[t->operands > 1].bitfield.regxmm
4676
		  && !!operand_types[t->operands > 1].bitfield.regymm
4677
		  && !!operand_types[t->operands > 1].bitfield.regzmm))
4678
	  && (t->base_opcode != 0x0fc7
4679
	      || t->extension_opcode != 1 /* cmpxchg8b */))
4680
	continue;
4681
 
4682
      /* In general, don't allow 32-bit operands on pre-386.  */
4683
      else if (i.suffix == LONG_MNEM_SUFFIX
4684
	       && !cpu_arch_flags.bitfield.cpui386
4685
	       && (intel_syntax
4686
		   ? (!t->opcode_modifier.ignoresize
4687
		      && !intel_float_operand (t->name))
4688
		   : intel_float_operand (t->name) != 2)
4689
	       && ((!operand_types[0].bitfield.regmmx
4690
		    && !operand_types[0].bitfield.regxmm)
4691
		   || (!operand_types[t->operands > 1].bitfield.regmmx
4692
		       && !!operand_types[t->operands > 1].bitfield.regxmm)))
4693
	continue;
4694
 
4695
      /* Do not verify operands when there are none.  */
4696
      else
4697
	{
4698
	  if (!t->operands)
4699
	    /* We've found a match; break out of loop.  */
4700
	    break;
4701
	}
4702
 
4703
      /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4704
	 into Disp32/Disp16/Disp32 operand.  */
4705
      if (i.prefix[ADDR_PREFIX] != 0)
4706
	  {
4707
	    /* There should be only one Disp operand.  */
4708
	    switch (flag_code)
4709
	    {
4710
	    case CODE_16BIT:
4711
	      for (j = 0; j < MAX_OPERANDS; j++)
4712
		{
4713
		  if (operand_types[j].bitfield.disp16)
4714
		    {
4715
		      addr_prefix_disp = j;
4716
		      operand_types[j].bitfield.disp32 = 1;
4717
		      operand_types[j].bitfield.disp16 = 0;
4718
		      break;
4719
		    }
4720
		}
4721
	      break;
4722
	    case CODE_32BIT:
4723
	      for (j = 0; j < MAX_OPERANDS; j++)
4724
		{
4725
		  if (operand_types[j].bitfield.disp32)
4726
		    {
4727
		      addr_prefix_disp = j;
4728
		      operand_types[j].bitfield.disp32 = 0;
4729
		      operand_types[j].bitfield.disp16 = 1;
4730
		      break;
4731
		    }
4732
		}
4733
	      break;
4734
	    case CODE_64BIT:
4735
	      for (j = 0; j < MAX_OPERANDS; j++)
4736
		{
4737
		  if (operand_types[j].bitfield.disp64)
4738
		    {
4739
		      addr_prefix_disp = j;
4740
		      operand_types[j].bitfield.disp64 = 0;
4741
		      operand_types[j].bitfield.disp32 = 1;
4742
		      break;
4743
		    }
4744
		}
4745
	      break;
4746
	    }
4747
	  }
4748
 
4749
      /* We check register size if needed.  */
4750
      check_register = t->opcode_modifier.checkregsize;
4751
      overlap0 = operand_type_and (i.types[0], operand_types[0]);
4752
      switch (t->operands)
4753
	{
4754
	case 1:
4755
	  if (!operand_type_match (overlap0, i.types[0]))
4756
	    continue;
4757
	  break;
4758
	case 2:
4759
	  /* xchg %eax, %eax is a special case. It is an aliase for nop
4760
	     only in 32bit mode and we can use opcode 0x90.  In 64bit
4761
	     mode, we can't use 0x90 for xchg %eax, %eax since it should
4762
	     zero-extend %eax to %rax.  */
4763
	  if (flag_code == CODE_64BIT
4764
	      && t->base_opcode == 0x90
4765
	      && operand_type_equal (&i.types [0], &acc32)
4766
	      && operand_type_equal (&i.types [1], &acc32))
4767
	    continue;
4768
	  if (i.swap_operand)
4769
	    {
4770
	      /* If we swap operand in encoding, we either match
4771
		 the next one or reverse direction of operands.  */
4772
	      if (t->opcode_modifier.s)
4773
		continue;
4774
	      else if (t->opcode_modifier.d)
4775
		goto check_reverse;
4776
	    }
4777
 
4778
	case 3:
4779
	  /* If we swap operand in encoding, we match the next one.  */
4780
	  if (i.swap_operand && t->opcode_modifier.s)
4781
	    continue;
4782
	case 4:
4783
	case 5:
4784
	  overlap1 = operand_type_and (i.types[1], operand_types[1]);
4785
	  if (!operand_type_match (overlap0, i.types[0])
4786
	      || !operand_type_match (overlap1, i.types[1])
4787
	      || (check_register
4788
		  && !operand_type_register_match (overlap0, i.types[0],
4789
						   operand_types[0],
4790
						   overlap1, i.types[1],
4791
						   operand_types[1])))
4792
	    {
4793
	      /* Check if other direction is valid ...  */
4794
	      if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
4795
		continue;
4796
 
4797
check_reverse:
4798
	      /* Try reversing direction of operands.  */
4799
	      overlap0 = operand_type_and (i.types[0], operand_types[1]);
4800
	      overlap1 = operand_type_and (i.types[1], operand_types[0]);
4801
	      if (!operand_type_match (overlap0, i.types[0])
4802
		  || !operand_type_match (overlap1, i.types[1])
4803
		  || (check_register
4804
		      && !operand_type_register_match (overlap0,
4805
						       i.types[0],
4806
						       operand_types[1],
4807
						       overlap1,
4808
						       i.types[1],
4809
						       operand_types[0])))
4810
		{
4811
		  /* Does not match either direction.  */
4812
		  continue;
4813
		}
4814
	      /* found_reverse_match holds which of D or FloatDR
4815
		 we've found.  */
4816
	      if (t->opcode_modifier.d)
4817
		found_reverse_match = Opcode_D;
4818
	      else if (t->opcode_modifier.floatd)
4819
		found_reverse_match = Opcode_FloatD;
4820
	      else
4821
		found_reverse_match = 0;
4822
	      if (t->opcode_modifier.floatr)
4823
		found_reverse_match |= Opcode_FloatR;
4824
	    }
4825
	  else
4826
	    {
4827
	      /* Found a forward 2 operand match here.  */
4828
	      switch (t->operands)
4829
		{
4830
		case 5:
4831
		  overlap4 = operand_type_and (i.types[4],
4832
					       operand_types[4]);
4833
		case 4:
4834
		  overlap3 = operand_type_and (i.types[3],
4835
					       operand_types[3]);
4836
		case 3:
4837
		  overlap2 = operand_type_and (i.types[2],
4838
					       operand_types[2]);
4839
		  break;
4840
		}
4841
 
4842
	      switch (t->operands)
4843
		{
4844
		case 5:
4845
		  if (!operand_type_match (overlap4, i.types[4])
4846
		      || !operand_type_register_match (overlap3,
4847
						       i.types[3],
4848
						       operand_types[3],
4849
						       overlap4,
4850
						       i.types[4],
4851
						       operand_types[4]))
4852
		    continue;
4853
		case 4:
4854
		  if (!operand_type_match (overlap3, i.types[3])
4855
		      || (check_register
4856
			  && !operand_type_register_match (overlap2,
4857
							   i.types[2],
4858
							   operand_types[2],
4859
							   overlap3,
4860
							   i.types[3],
4861
							   operand_types[3])))
4862
		    continue;
4863
		case 3:
4864
		  /* Here we make use of the fact that there are no
4865
		     reverse match 3 operand instructions, and all 3
4866
		     operand instructions only need to be checked for
4867
		     register consistency between operands 2 and 3.  */
4868
		  if (!operand_type_match (overlap2, i.types[2])
4869
		      || (check_register
4870
			  && !operand_type_register_match (overlap1,
4871
							   i.types[1],
4872
							   operand_types[1],
4873
							   overlap2,
4874
							   i.types[2],
4875
							   operand_types[2])))
4876
		    continue;
4877
		  break;
4878
		}
4879
	    }
4880
	  /* Found either forward/reverse 2, 3 or 4 operand match here:
4881
	     slip through to break.  */
4882
	}
4883
      if (!found_cpu_match)
4884
	{
4885
	  found_reverse_match = 0;
4886
	  continue;
4887
	}
4888
 
4889
      /* Check if vector and VEX operands are valid.  */
4890
      if (check_VecOperands (t) || VEX_check_operands (t))
4891
	{
4892
	  specific_error = i.error;
4893
	  continue;
4894
	}
4895
 
4896
      /* We've found a match; break out of loop.  */
4897
      break;
4898
    }
4899
 
4900
  if (t == current_templates->end)
4901
    {
4902
      /* We found no match.  */
4903
      const char *err_msg;
4904
      switch (specific_error ? specific_error : i.error)
4905
	{
4906
	default:
4907
	  abort ();
4908
	case operand_size_mismatch:
4909
	  err_msg = _("operand size mismatch");
4910
	  break;
4911
	case operand_type_mismatch:
4912
	  err_msg = _("operand type mismatch");
4913
	  break;
4914
	case register_type_mismatch:
4915
	  err_msg = _("register type mismatch");
4916
	  break;
4917
	case number_of_operands_mismatch:
4918
	  err_msg = _("number of operands mismatch");
4919
	  break;
4920
	case invalid_instruction_suffix:
4921
	  err_msg = _("invalid instruction suffix");
4922
	  break;
4923
	case bad_imm4:
4924
	  err_msg = _("constant doesn't fit in 4 bits");
4925
	  break;
4926
	case old_gcc_only:
4927
	  err_msg = _("only supported with old gcc");
4928
	  break;
4929
	case unsupported_with_intel_mnemonic:
4930
	  err_msg = _("unsupported with Intel mnemonic");
4931
	  break;
4932
	case unsupported_syntax:
4933
	  err_msg = _("unsupported syntax");
4934
	  break;
4935
	case unsupported:
4936
	  as_bad (_("unsupported instruction `%s'"),
4937
		  current_templates->start->name);
4938
	  return NULL;
4939
	case invalid_vsib_address:
4940
	  err_msg = _("invalid VSIB address");
4941
	  break;
4942
	case invalid_vector_register_set:
4943
	  err_msg = _("mask, index, and destination registers must be distinct");
4944
	  break;
4945
	case unsupported_vector_index_register:
4946
	  err_msg = _("unsupported vector index register");
4947
	  break;
4948
	case unsupported_broadcast:
4949
	  err_msg = _("unsupported broadcast");
4950
	  break;
4951
	case broadcast_not_on_src_operand:
4952
	  err_msg = _("broadcast not on source memory operand");
4953
	  break;
4954
	case broadcast_needed:
4955
	  err_msg = _("broadcast is needed for operand of such type");
4956
	  break;
4957
	case unsupported_masking:
4958
	  err_msg = _("unsupported masking");
4959
	  break;
4960
	case mask_not_on_destination:
4961
	  err_msg = _("mask not on destination operand");
4962
	  break;
4963
	case no_default_mask:
4964
	  err_msg = _("default mask isn't allowed");
4965
	  break;
4966
	case unsupported_rc_sae:
4967
	  err_msg = _("unsupported static rounding/sae");
4968
	  break;
4969
	case rc_sae_operand_not_last_imm:
4970
	  if (intel_syntax)
4971
	    err_msg = _("RC/SAE operand must precede immediate operands");
4972
	  else
4973
	    err_msg = _("RC/SAE operand must follow immediate operands");
4974
	  break;
4975
	case invalid_register_operand:
4976
	  err_msg = _("invalid register operand");
4977
	  break;
4978
	}
4979
      as_bad (_("%s for `%s'"), err_msg,
4980
	      current_templates->start->name);
4981
      return NULL;
4982
    }
4983
 
4984
  if (!quiet_warnings)
4985
    {
4986
      if (!intel_syntax
4987
	  && (i.types[0].bitfield.jumpabsolute
4988
	      != operand_types[0].bitfield.jumpabsolute))
4989
	{
4990
	  as_warn (_("indirect %s without `*'"), t->name);
4991
	}
4992
 
4993
      if (t->opcode_modifier.isprefix
4994
	  && t->opcode_modifier.ignoresize)
4995
	{
4996
	  /* Warn them that a data or address size prefix doesn't
4997
	     affect assembly of the next line of code.  */
4998
	  as_warn (_("stand-alone `%s' prefix"), t->name);
4999
	}
5000
    }
5001
 
5002
  /* Copy the template we found.  */
5003
  i.tm = *t;
5004
 
5005
  if (addr_prefix_disp != -1)
5006
    i.tm.operand_types[addr_prefix_disp]
5007
      = operand_types[addr_prefix_disp];
5008
 
5009
  if (found_reverse_match)
5010
    {
5011
      /* If we found a reverse match we must alter the opcode
5012
	 direction bit.  found_reverse_match holds bits to change
5013
	 (different for int & float insns).  */
5014
 
5015
      i.tm.base_opcode ^= found_reverse_match;
5016
 
5017
      i.tm.operand_types[0] = operand_types[1];
5018
      i.tm.operand_types[1] = operand_types[0];
5019
    }
5020
 
5021
  return t;
5022
}
5023
 
5024
static int
5025
check_string (void)
5026
{
5027
  int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5028
  if (i.tm.operand_types[mem_op].bitfield.esseg)
5029
    {
5030
      if (i.seg[0] != NULL && i.seg[0] != &es)
5031
	{
5032
	  as_bad (_("`%s' operand %d must use `%ses' segment"),
5033
		  i.tm.name,
5034
		  mem_op + 1,
5035
		  register_prefix);
5036
	  return 0;
5037
	}
5038
      /* There's only ever one segment override allowed per instruction.
5039
	 This instruction possibly has a legal segment override on the
5040
	 second operand, so copy the segment to where non-string
5041
	 instructions store it, allowing common code.  */
5042
      i.seg[0] = i.seg[1];
5043
    }
5044
  else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5045
    {
5046
      if (i.seg[1] != NULL && i.seg[1] != &es)
5047
	{
5048
	  as_bad (_("`%s' operand %d must use `%ses' segment"),
5049
		  i.tm.name,
5050
		  mem_op + 2,
5051
		  register_prefix);
5052
	  return 0;
5053
	}
5054
    }
5055
  return 1;
5056
}
5057
 
5058
static int
5059
process_suffix (void)
5060
{
5061
  /* If matched instruction specifies an explicit instruction mnemonic
5062
     suffix, use it.  */
5063
  if (i.tm.opcode_modifier.size16)
5064
    i.suffix = WORD_MNEM_SUFFIX;
5065
  else if (i.tm.opcode_modifier.size32)
5066
    i.suffix = LONG_MNEM_SUFFIX;
5067
  else if (i.tm.opcode_modifier.size64)
5068
    i.suffix = QWORD_MNEM_SUFFIX;
5069
  else if (i.reg_operands)
5070
    {
5071
      /* If there's no instruction mnemonic suffix we try to invent one
5072
	 based on register operands.  */
5073
      if (!i.suffix)
5074
	{
5075
	  /* We take i.suffix from the last register operand specified,
5076
	     Destination register type is more significant than source
5077
	     register type.  crc32 in SSE4.2 prefers source register
5078
	     type. */
5079
	  if (i.tm.base_opcode == 0xf20f38f1)
5080
	    {
5081
	      if (i.types[0].bitfield.reg16)
5082
		i.suffix = WORD_MNEM_SUFFIX;
5083
	      else if (i.types[0].bitfield.reg32)
5084
		i.suffix = LONG_MNEM_SUFFIX;
5085
	      else if (i.types[0].bitfield.reg64)
5086
		i.suffix = QWORD_MNEM_SUFFIX;
5087
	    }
5088
	  else if (i.tm.base_opcode == 0xf20f38f0)
5089
	    {
5090
	      if (i.types[0].bitfield.reg8)
5091
		i.suffix = BYTE_MNEM_SUFFIX;
5092
	    }
5093
 
5094
	  if (!i.suffix)
5095
	    {
5096
	      int op;
5097
 
5098
	      if (i.tm.base_opcode == 0xf20f38f1
5099
		  || i.tm.base_opcode == 0xf20f38f0)
5100
		{
5101
		  /* We have to know the operand size for crc32.  */
5102
		  as_bad (_("ambiguous memory operand size for `%s`"),
5103
			  i.tm.name);
5104
		  return 0;
5105
		}
5106
 
5107
	      for (op = i.operands; --op >= 0;)
5108
		if (!i.tm.operand_types[op].bitfield.inoutportreg)
5109
		  {
5110
		    if (i.types[op].bitfield.reg8)
5111
		      {
5112
			i.suffix = BYTE_MNEM_SUFFIX;
5113
			break;
5114
		      }
5115
		    else if (i.types[op].bitfield.reg16)
5116
		      {
5117
			i.suffix = WORD_MNEM_SUFFIX;
5118
			break;
5119
		      }
5120
		    else if (i.types[op].bitfield.reg32)
5121
		      {
5122
			i.suffix = LONG_MNEM_SUFFIX;
5123
			break;
5124
		      }
5125
		    else if (i.types[op].bitfield.reg64)
5126
		      {
5127
			i.suffix = QWORD_MNEM_SUFFIX;
5128
			break;
5129
		      }
5130
		  }
5131
	    }
5132
	}
5133
      else if (i.suffix == BYTE_MNEM_SUFFIX)
5134
	{
5135
	  if (intel_syntax
5136
	      && i.tm.opcode_modifier.ignoresize
5137
	      && i.tm.opcode_modifier.no_bsuf)
5138
	    i.suffix = 0;
5139
	  else if (!check_byte_reg ())
5140
	    return 0;
5141
	}
5142
      else if (i.suffix == LONG_MNEM_SUFFIX)
5143
	{
5144
	  if (intel_syntax
5145
	      && i.tm.opcode_modifier.ignoresize
5146
	      && i.tm.opcode_modifier.no_lsuf)
5147
	    i.suffix = 0;
5148
	  else if (!check_long_reg ())
5149
	    return 0;
5150
	}
5151
      else if (i.suffix == QWORD_MNEM_SUFFIX)
5152
	{
5153
	  if (intel_syntax
5154
	      && i.tm.opcode_modifier.ignoresize
5155
	      && i.tm.opcode_modifier.no_qsuf)
5156
	    i.suffix = 0;
5157
	  else if (!check_qword_reg ())
5158
	    return 0;
5159
	}
5160
      else if (i.suffix == WORD_MNEM_SUFFIX)
5161
	{
5162
	  if (intel_syntax
5163
	      && i.tm.opcode_modifier.ignoresize
5164
	      && i.tm.opcode_modifier.no_wsuf)
5165
	    i.suffix = 0;
5166
	  else if (!check_word_reg ())
5167
	    return 0;
5168
	}
5169
      else if (i.suffix == XMMWORD_MNEM_SUFFIX
5170
	       || i.suffix == YMMWORD_MNEM_SUFFIX
5171
	       || i.suffix == ZMMWORD_MNEM_SUFFIX)
5172
	{
5173
	  /* Skip if the instruction has x/y/z suffix.  match_template
5174
	     should check if it is a valid suffix.  */
5175
	}
5176
      else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5177
	/* Do nothing if the instruction is going to ignore the prefix.  */
5178
	;
5179
      else
5180
	abort ();
5181
    }
5182
  else if (i.tm.opcode_modifier.defaultsize
5183
	   && !i.suffix
5184
	   /* exclude fldenv/frstor/fsave/fstenv */
5185
	   && i.tm.opcode_modifier.no_ssuf)
5186
    {
5187
      i.suffix = stackop_size;
5188
    }
5189
  else if (intel_syntax
5190
	   && !i.suffix
5191
	   && (i.tm.operand_types[0].bitfield.jumpabsolute
5192
	       || i.tm.opcode_modifier.jumpbyte
5193
	       || i.tm.opcode_modifier.jumpintersegment
5194
	       || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5195
		   && i.tm.extension_opcode <= 3)))
5196
    {
5197
      switch (flag_code)
5198
	{
5199
	case CODE_64BIT:
5200
	  if (!i.tm.opcode_modifier.no_qsuf)
5201
	    {
5202
	      i.suffix = QWORD_MNEM_SUFFIX;
5203
	      break;
5204
	    }
5205
	case CODE_32BIT:
5206
	  if (!i.tm.opcode_modifier.no_lsuf)
5207
	    i.suffix = LONG_MNEM_SUFFIX;
5208
	  break;
5209
	case CODE_16BIT:
5210
	  if (!i.tm.opcode_modifier.no_wsuf)
5211
	    i.suffix = WORD_MNEM_SUFFIX;
5212
	  break;
5213
	}
5214
    }
5215
 
5216
  if (!i.suffix)
5217
    {
5218
      if (!intel_syntax)
5219
	{
5220
	  if (i.tm.opcode_modifier.w)
5221
	    {
5222
	      as_bad (_("no instruction mnemonic suffix given and "
5223
			"no register operands; can't size instruction"));
5224
	      return 0;
5225
	    }
5226
	}
5227
      else
5228
	{
5229
	  unsigned int suffixes;
5230
 
5231
	  suffixes = !i.tm.opcode_modifier.no_bsuf;
5232
	  if (!i.tm.opcode_modifier.no_wsuf)
5233
	    suffixes |= 1 << 1;
5234
	  if (!i.tm.opcode_modifier.no_lsuf)
5235
	    suffixes |= 1 << 2;
5236
	  if (!i.tm.opcode_modifier.no_ldsuf)
5237
	    suffixes |= 1 << 3;
5238
	  if (!i.tm.opcode_modifier.no_ssuf)
5239
	    suffixes |= 1 << 4;
5240
	  if (!i.tm.opcode_modifier.no_qsuf)
5241
	    suffixes |= 1 << 5;
5242
 
5243
	  /* There are more than suffix matches.  */
5244
	  if (i.tm.opcode_modifier.w
5245
	      || ((suffixes & (suffixes - 1))
5246
		  && !i.tm.opcode_modifier.defaultsize
5247
		  && !i.tm.opcode_modifier.ignoresize))
5248
	    {
5249
	      as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5250
	      return 0;
5251
	    }
5252
	}
5253
    }
5254
 
5255
  /* Change the opcode based on the operand size given by i.suffix;
5256
     We don't need to change things for byte insns.  */
5257
 
5258
  if (i.suffix
5259
      && i.suffix != BYTE_MNEM_SUFFIX
5260
      && i.suffix != XMMWORD_MNEM_SUFFIX
5261
      && i.suffix != YMMWORD_MNEM_SUFFIX
5262
      && i.suffix != ZMMWORD_MNEM_SUFFIX)
5263
    {
5264
      /* It's not a byte, select word/dword operation.  */
5265
      if (i.tm.opcode_modifier.w)
5266
	{
5267
	  if (i.tm.opcode_modifier.shortform)
5268
	    i.tm.base_opcode |= 8;
5269
	  else
5270
	    i.tm.base_opcode |= 1;
5271
	}
5272
 
5273
      /* Now select between word & dword operations via the operand
5274
	 size prefix, except for instructions that will ignore this
5275
	 prefix anyway.  */
5276
      if (i.tm.opcode_modifier.addrprefixop0)
5277
	{
5278
	  /* The address size override prefix changes the size of the
5279
	     first operand.  */
5280
	  if ((flag_code == CODE_32BIT
5281
	       && i.op->regs[0].reg_type.bitfield.reg16)
5282
	      || (flag_code != CODE_32BIT
5283
		  && i.op->regs[0].reg_type.bitfield.reg32))
5284
	    if (!add_prefix (ADDR_PREFIX_OPCODE))
5285
	      return 0;
5286
	}
5287
      else if (i.suffix != QWORD_MNEM_SUFFIX
5288
	       && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5289
	       && !i.tm.opcode_modifier.ignoresize
5290
	       && !i.tm.opcode_modifier.floatmf
5291
	       && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5292
		   || (flag_code == CODE_64BIT
5293
		       && i.tm.opcode_modifier.jumpbyte)))
5294
	{
5295
	  unsigned int prefix = DATA_PREFIX_OPCODE;
5296
 
5297
	  if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5298
	    prefix = ADDR_PREFIX_OPCODE;
5299
 
5300
	  if (!add_prefix (prefix))
5301
	    return 0;
5302
	}
5303
 
5304
      /* Set mode64 for an operand.  */
5305
      if (i.suffix == QWORD_MNEM_SUFFIX
5306
	  && flag_code == CODE_64BIT
5307
	  && !i.tm.opcode_modifier.norex64)
5308
	{
5309
	  /* Special case for xchg %rax,%rax.  It is NOP and doesn't
5310
	     need rex64.  cmpxchg8b is also a special case. */
5311
	  if (! (i.operands == 2
5312
		 && i.tm.base_opcode == 0x90
5313
		 && i.tm.extension_opcode == None
5314
		 && operand_type_equal (&i.types [0], &acc64)
5315
		 && operand_type_equal (&i.types [1], &acc64))
5316
	      && ! (i.operands == 1
5317
		    && i.tm.base_opcode == 0xfc7
5318
		    && i.tm.extension_opcode == 1
5319
		    && !operand_type_check (i.types [0], reg)
5320
		    && operand_type_check (i.types [0], anymem)))
5321
	    i.rex |= REX_W;
5322
	}
5323
 
5324
      /* Size floating point instruction.  */
5325
      if (i.suffix == LONG_MNEM_SUFFIX)
5326
	if (i.tm.opcode_modifier.floatmf)
5327
	  i.tm.base_opcode ^= 4;
5328
    }
5329
 
5330
  return 1;
5331
}
5332
 
5333
static int
5334
check_byte_reg (void)
5335
{
5336
  int op;
5337
 
5338
  for (op = i.operands; --op >= 0;)
5339
    {
5340
      /* If this is an eight bit register, it's OK.  If it's the 16 or
5341
	 32 bit version of an eight bit register, we will just use the
5342
	 low portion, and that's OK too.  */
5343
      if (i.types[op].bitfield.reg8)
5344
	continue;
5345
 
5346
      /* I/O port address operands are OK too.  */
5347
      if (i.tm.operand_types[op].bitfield.inoutportreg)
5348
	continue;
5349
 
5350
      /* crc32 doesn't generate this warning.  */
5351
      if (i.tm.base_opcode == 0xf20f38f0)
5352
	continue;
5353
 
5354
      if ((i.types[op].bitfield.reg16
5355
	   || i.types[op].bitfield.reg32
5356
	   || i.types[op].bitfield.reg64)
5357
	  && i.op[op].regs->reg_num < 4
5358
	  /* Prohibit these changes in 64bit mode, since the lowering
5359
	     would be more complicated.  */
5360
	  && flag_code != CODE_64BIT)
5361
	{
5362
#if REGISTER_WARNINGS
5363
	  if (!quiet_warnings)
5364
	    as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5365
		     register_prefix,
5366
		     (i.op[op].regs + (i.types[op].bitfield.reg16
5367
				       ? REGNAM_AL - REGNAM_AX
5368
				       : REGNAM_AL - REGNAM_EAX))->reg_name,
5369
		     register_prefix,
5370
		     i.op[op].regs->reg_name,
5371
		     i.suffix);
5372
#endif
5373
	  continue;
5374
	}
5375
      /* Any other register is bad.  */
5376
      if (i.types[op].bitfield.reg16
5377
	  || i.types[op].bitfield.reg32
5378
	  || i.types[op].bitfield.reg64
5379
	  || i.types[op].bitfield.regmmx
5380
	  || i.types[op].bitfield.regxmm
5381
	  || i.types[op].bitfield.regymm
5382
	  || i.types[op].bitfield.regzmm
5383
	  || i.types[op].bitfield.sreg2
5384
	  || i.types[op].bitfield.sreg3
5385
	  || i.types[op].bitfield.control
5386
	  || i.types[op].bitfield.debug
5387
	  || i.types[op].bitfield.test
5388
	  || i.types[op].bitfield.floatreg
5389
	  || i.types[op].bitfield.floatacc)
5390
	{
5391
	  as_bad (_("`%s%s' not allowed with `%s%c'"),
5392
		  register_prefix,
5393
		  i.op[op].regs->reg_name,
5394
		  i.tm.name,
5395
		  i.suffix);
5396
	  return 0;
5397
	}
5398
    }
5399
  return 1;
5400
}
5401
 
5402
static int
5403
check_long_reg (void)
5404
{
5405
  int op;
5406
 
5407
  for (op = i.operands; --op >= 0;)
5408
    /* Reject eight bit registers, except where the template requires
5409
       them. (eg. movzb)  */
5410
    if (i.types[op].bitfield.reg8
5411
	&& (i.tm.operand_types[op].bitfield.reg16
5412
	    || i.tm.operand_types[op].bitfield.reg32
5413
	    || i.tm.operand_types[op].bitfield.acc))
5414
      {
5415
	as_bad (_("`%s%s' not allowed with `%s%c'"),
5416
		register_prefix,
5417
		i.op[op].regs->reg_name,
5418
		i.tm.name,
5419
		i.suffix);
5420
	return 0;
5421
      }
5422
  /* Warn if the e prefix on a general reg is missing.  */
5423
    else if ((!quiet_warnings || flag_code == CODE_64BIT)
5424
	     && i.types[op].bitfield.reg16
5425
	     && (i.tm.operand_types[op].bitfield.reg32
5426
		 || i.tm.operand_types[op].bitfield.acc))
5427
      {
5428
	/* Prohibit these changes in the 64bit mode, since the
5429
	   lowering is more complicated.  */
5430
	if (flag_code == CODE_64BIT)
5431
	  {
5432
	    as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5433
		    register_prefix, i.op[op].regs->reg_name,
5434
		    i.suffix);
5435
	    return 0;
5436
	  }
5437
#if REGISTER_WARNINGS
5438
	else
5439
	  as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5440
		   register_prefix,
5441
		   (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5442
		   register_prefix,
5443
		   i.op[op].regs->reg_name,
5444
		   i.suffix);
5445
#endif
5446
      }
5447
  /* Warn if the r prefix on a general reg is missing.  */
5448
    else if (i.types[op].bitfield.reg64
5449
	     && (i.tm.operand_types[op].bitfield.reg32
5450
		 || i.tm.operand_types[op].bitfield.acc))
5451
      {
5452
	if (intel_syntax
5453
	    && i.tm.opcode_modifier.toqword
5454
	    && !i.types[0].bitfield.regxmm)
5455
	  {
5456
	    /* Convert to QWORD.  We want REX byte. */
5457
	    i.suffix = QWORD_MNEM_SUFFIX;
5458
	  }
5459
	else
5460
	  {
5461
	    as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5462
		    register_prefix, i.op[op].regs->reg_name,
5463
		    i.suffix);
5464
	    return 0;
5465
	  }
5466
      }
5467
  return 1;
5468
}
5469
 
5470
static int
5471
check_qword_reg (void)
5472
{
5473
  int op;
5474
 
5475
  for (op = i.operands; --op >= 0; )
5476
    /* Reject eight bit registers, except where the template requires
5477
       them. (eg. movzb)  */
5478
    if (i.types[op].bitfield.reg8
5479
	&& (i.tm.operand_types[op].bitfield.reg16
5480
	    || i.tm.operand_types[op].bitfield.reg32
5481
	    || i.tm.operand_types[op].bitfield.acc))
5482
      {
5483
	as_bad (_("`%s%s' not allowed with `%s%c'"),
5484
		register_prefix,
5485
		i.op[op].regs->reg_name,
5486
		i.tm.name,
5487
		i.suffix);
5488
	return 0;
5489
      }
5490
  /* Warn if the e prefix on a general reg is missing.  */
5491
    else if ((i.types[op].bitfield.reg16
5492
	      || i.types[op].bitfield.reg32)
5493
	     && (i.tm.operand_types[op].bitfield.reg32
5494
		 || i.tm.operand_types[op].bitfield.acc))
5495
      {
5496
	/* Prohibit these changes in the 64bit mode, since the
5497
	   lowering is more complicated.  */
5498
	if (intel_syntax
5499
	    && i.tm.opcode_modifier.todword
5500
	    && !i.types[0].bitfield.regxmm)
5501
	  {
5502
	    /* Convert to DWORD.  We don't want REX byte. */
5503
	    i.suffix = LONG_MNEM_SUFFIX;
5504
	  }
5505
	else
5506
	  {
5507
	    as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5508
		    register_prefix, i.op[op].regs->reg_name,
5509
		    i.suffix);
5510
	    return 0;
5511
	  }
5512
      }
5513
  return 1;
5514
}
5515
 
5516
static int
5517
check_word_reg (void)
5518
{
5519
  int op;
5520
  for (op = i.operands; --op >= 0;)
5521
    /* Reject eight bit registers, except where the template requires
5522
       them. (eg. movzb)  */
5523
    if (i.types[op].bitfield.reg8
5524
	&& (i.tm.operand_types[op].bitfield.reg16
5525
	    || i.tm.operand_types[op].bitfield.reg32
5526
	    || i.tm.operand_types[op].bitfield.acc))
5527
      {
5528
	as_bad (_("`%s%s' not allowed with `%s%c'"),
5529
		register_prefix,
5530
		i.op[op].regs->reg_name,
5531
		i.tm.name,
5532
		i.suffix);
5533
	return 0;
5534
      }
5535
  /* Warn if the e prefix on a general reg is present.  */
5536
    else if ((!quiet_warnings || flag_code == CODE_64BIT)
5537
	     && i.types[op].bitfield.reg32
5538
	     && (i.tm.operand_types[op].bitfield.reg16
5539
		 || i.tm.operand_types[op].bitfield.acc))
5540
      {
5541
	/* Prohibit these changes in the 64bit mode, since the
5542
	   lowering is more complicated.  */
5543
	if (flag_code == CODE_64BIT)
5544
	  {
5545
	    as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5546
		    register_prefix, i.op[op].regs->reg_name,
5547
		    i.suffix);
5548
	    return 0;
5549
	  }
5550
	else
5551
#if REGISTER_WARNINGS
5552
	  as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5553
		   register_prefix,
5554
		   (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5555
		   register_prefix,
5556
		   i.op[op].regs->reg_name,
5557
		   i.suffix);
5558
#endif
5559
      }
5560
  return 1;
5561
}
5562
 
5563
static int
5564
update_imm (unsigned int j)
5565
{
5566
  i386_operand_type overlap = i.types[j];
5567
  if ((overlap.bitfield.imm8
5568
       || overlap.bitfield.imm8s
5569
       || overlap.bitfield.imm16
5570
       || overlap.bitfield.imm32
5571
       || overlap.bitfield.imm32s
5572
       || overlap.bitfield.imm64)
5573
      && !operand_type_equal (&overlap, &imm8)
5574
      && !operand_type_equal (&overlap, &imm8s)
5575
      && !operand_type_equal (&overlap, &imm16)
5576
      && !operand_type_equal (&overlap, &imm32)
5577
      && !operand_type_equal (&overlap, &imm32s)
5578
      && !operand_type_equal (&overlap, &imm64))
5579
    {
5580
      if (i.suffix)
5581
	{
5582
	  i386_operand_type temp;
5583
 
5584
	  operand_type_set (&temp, 0);
5585
	  if (i.suffix == BYTE_MNEM_SUFFIX)
5586
	    {
5587
	      temp.bitfield.imm8 = overlap.bitfield.imm8;
5588
	      temp.bitfield.imm8s = overlap.bitfield.imm8s;
5589
	    }
5590
	  else if (i.suffix == WORD_MNEM_SUFFIX)
5591
	    temp.bitfield.imm16 = overlap.bitfield.imm16;
5592
	  else if (i.suffix == QWORD_MNEM_SUFFIX)
5593
	    {
5594
	      temp.bitfield.imm64 = overlap.bitfield.imm64;
5595
	      temp.bitfield.imm32s = overlap.bitfield.imm32s;
5596
	    }
5597
	  else
5598
	    temp.bitfield.imm32 = overlap.bitfield.imm32;
5599
	  overlap = temp;
5600
	}
5601
      else if (operand_type_equal (&overlap, &imm16_32_32s)
5602
	       || operand_type_equal (&overlap, &imm16_32)
5603
	       || operand_type_equal (&overlap, &imm16_32s))
5604
	{
5605
	  if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5606
	    overlap = imm16;
5607
	  else
5608
	    overlap = imm32s;
5609
	}
5610
      if (!operand_type_equal (&overlap, &imm8)
5611
	  && !operand_type_equal (&overlap, &imm8s)
5612
	  && !operand_type_equal (&overlap, &imm16)
5613
	  && !operand_type_equal (&overlap, &imm32)
5614
	  && !operand_type_equal (&overlap, &imm32s)
5615
	  && !operand_type_equal (&overlap, &imm64))
5616
	{
5617
	  as_bad (_("no instruction mnemonic suffix given; "
5618
		    "can't determine immediate size"));
5619
	  return 0;
5620
	}
5621
    }
5622
  i.types[j] = overlap;
5623
 
5624
  return 1;
5625
}
5626
 
5627
static int
5628
finalize_imm (void)
5629
{
5630
  unsigned int j, n;
5631
 
5632
  /* Update the first 2 immediate operands.  */
5633
  n = i.operands > 2 ? 2 : i.operands;
5634
  if (n)
5635
    {
5636
      for (j = 0; j < n; j++)
5637
	if (update_imm (j) == 0)
5638
	  return 0;
5639
 
5640
      /* The 3rd operand can't be immediate operand.  */
5641
      gas_assert (operand_type_check (i.types[2], imm) == 0);
5642
    }
5643
 
5644
  return 1;
5645
}
5646
 
5647
static int
5648
bad_implicit_operand (int xmm)
5649
{
5650
  const char *ireg = xmm ? "xmm0" : "ymm0";
5651
 
5652
  if (intel_syntax)
5653
    as_bad (_("the last operand of `%s' must be `%s%s'"),
5654
	    i.tm.name, register_prefix, ireg);
5655
  else
5656
    as_bad (_("the first operand of `%s' must be `%s%s'"),
5657
	    i.tm.name, register_prefix, ireg);
5658
  return 0;
5659
}
5660
 
5661
static int
5662
process_operands (void)
5663
{
5664
  /* Default segment register this instruction will use for memory
5665
     accesses.  0 means unknown.  This is only for optimizing out
5666
     unnecessary segment overrides.  */
5667
  const seg_entry *default_seg = 0;
5668
 
5669
  if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5670
    {
5671
      unsigned int dupl = i.operands;
5672
      unsigned int dest = dupl - 1;
5673
      unsigned int j;
5674
 
5675
      /* The destination must be an xmm register.  */
5676
      gas_assert (i.reg_operands
5677
		  && MAX_OPERANDS > dupl
5678
		  && operand_type_equal (&i.types[dest], ®xmm));
5679
 
5680
      if (i.tm.opcode_modifier.firstxmm0)
5681
	{
5682
	  /* The first operand is implicit and must be xmm0.  */
5683
	  gas_assert (operand_type_equal (&i.types[0], ®xmm));
5684
	  if (register_number (i.op[0].regs) != 0)
5685
	    return bad_implicit_operand (1);
5686
 
5687
	  if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
5688
	    {
5689
	      /* Keep xmm0 for instructions with VEX prefix and 3
5690
		 sources.  */
5691
	      goto duplicate;
5692
	    }
5693
	  else
5694
	    {
5695
	      /* We remove the first xmm0 and keep the number of
5696
		 operands unchanged, which in fact duplicates the
5697
		 destination.  */
5698
	      for (j = 1; j < i.operands; j++)
5699
		{
5700
		  i.op[j - 1] = i.op[j];
5701
		  i.types[j - 1] = i.types[j];
5702
		  i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5703
		}
5704
	    }
5705
	}
5706
      else if (i.tm.opcode_modifier.implicit1stxmm0)
5707
	{
5708
	  gas_assert ((MAX_OPERANDS - 1) > dupl
5709
		      && (i.tm.opcode_modifier.vexsources
5710
			  == VEX3SOURCES));
5711
 
5712
	  /* Add the implicit xmm0 for instructions with VEX prefix
5713
	     and 3 sources.  */
5714
	  for (j = i.operands; j > 0; j--)
5715
	    {
5716
	      i.op[j] = i.op[j - 1];
5717
	      i.types[j] = i.types[j - 1];
5718
	      i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5719
	    }
5720
	  i.op[0].regs
5721
	    = (const reg_entry *) hash_find (reg_hash, "xmm0");
5722
	  i.types[0] = regxmm;
5723
	  i.tm.operand_types[0] = regxmm;
5724
 
5725
	  i.operands += 2;
5726
	  i.reg_operands += 2;
5727
	  i.tm.operands += 2;
5728
 
5729
	  dupl++;
5730
	  dest++;
5731
	  i.op[dupl] = i.op[dest];
5732
	  i.types[dupl] = i.types[dest];
5733
	  i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5734
	}
5735
      else
5736
	{
5737
duplicate:
5738
	  i.operands++;
5739
	  i.reg_operands++;
5740
	  i.tm.operands++;
5741
 
5742
	  i.op[dupl] = i.op[dest];
5743
	  i.types[dupl] = i.types[dest];
5744
	  i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5745
	}
5746
 
5747
       if (i.tm.opcode_modifier.immext)
5748
	 process_immext ();
5749
    }
5750
  else if (i.tm.opcode_modifier.firstxmm0)
5751
    {
5752
      unsigned int j;
5753
 
5754
      /* The first operand is implicit and must be xmm0/ymm0/zmm0.  */
5755
      gas_assert (i.reg_operands
5756
		  && (operand_type_equal (&i.types[0], ®xmm)
5757
		      || operand_type_equal (&i.types[0], ®ymm)
5758
		      || operand_type_equal (&i.types[0], ®zmm)));
5759
      if (register_number (i.op[0].regs) != 0)
5760
	return bad_implicit_operand (i.types[0].bitfield.regxmm);
5761
 
5762
      for (j = 1; j < i.operands; j++)
5763
	{
5764
	  i.op[j - 1] = i.op[j];
5765
	  i.types[j - 1] = i.types[j];
5766
 
5767
	  /* We need to adjust fields in i.tm since they are used by
5768
	     build_modrm_byte.  */
5769
	  i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5770
	}
5771
 
5772
      i.operands--;
5773
      i.reg_operands--;
5774
      i.tm.operands--;
5775
    }
5776
  else if (i.tm.opcode_modifier.regkludge)
5777
    {
5778
      /* The imul $imm, %reg instruction is converted into
5779
	 imul $imm, %reg, %reg, and the clr %reg instruction
5780
	 is converted into xor %reg, %reg.  */
5781
 
5782
      unsigned int first_reg_op;
5783
 
5784
      if (operand_type_check (i.types[0], reg))
5785
	first_reg_op = 0;
5786
      else
5787
	first_reg_op = 1;
5788
      /* Pretend we saw the extra register operand.  */
5789
      gas_assert (i.reg_operands == 1
5790
		  && i.op[first_reg_op + 1].regs == 0);
5791
      i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5792
      i.types[first_reg_op + 1] = i.types[first_reg_op];
5793
      i.operands++;
5794
      i.reg_operands++;
5795
    }
5796
 
5797
  if (i.tm.opcode_modifier.shortform)
5798
    {
5799
      if (i.types[0].bitfield.sreg2
5800
	  || i.types[0].bitfield.sreg3)
5801
	{
5802
	  if (i.tm.base_opcode == POP_SEG_SHORT
5803
	      && i.op[0].regs->reg_num == 1)
5804
	    {
5805
	      as_bad (_("you can't `pop %scs'"), register_prefix);
5806
	      return 0;
5807
	    }
5808
	  i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5809
	  if ((i.op[0].regs->reg_flags & RegRex) != 0)
5810
	    i.rex |= REX_B;
5811
	}
5812
      else
5813
	{
5814
	  /* The register or float register operand is in operand
5815
 
5816
	  unsigned int op;
5817
 
5818
	  if (i.types[0].bitfield.floatreg
5819
	      || operand_type_check (i.types[0], reg))
5820
	    op = 0;
5821
	  else
5822
	    op = 1;
5823
	  /* Register goes in low 3 bits of opcode.  */
5824
	  i.tm.base_opcode |= i.op[op].regs->reg_num;
5825
	  if ((i.op[op].regs->reg_flags & RegRex) != 0)
5826
	    i.rex |= REX_B;
5827
	  if (!quiet_warnings && i.tm.opcode_modifier.ugh)
5828
	    {
5829
	      /* Warn about some common errors, but press on regardless.
5830
		 The first case can be generated by gcc (<= 2.8.1).  */
5831
	      if (i.operands == 2)
5832
		{
5833
		  /* Reversed arguments on faddp, fsubp, etc.  */
5834
		  as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
5835
			   register_prefix, i.op[!intel_syntax].regs->reg_name,
5836
			   register_prefix, i.op[intel_syntax].regs->reg_name);
5837
		}
5838
	      else
5839
		{
5840
		  /* Extraneous `l' suffix on fp insn.  */
5841
		  as_warn (_("translating to `%s %s%s'"), i.tm.name,
5842
			   register_prefix, i.op[0].regs->reg_name);
5843
		}
5844
	    }
5845
	}
5846
    }
5847
  else if (i.tm.opcode_modifier.modrm)
5848
    {
5849
      /* The opcode is completed (modulo i.tm.extension_opcode which
5850
	 must be put into the modrm byte).  Now, we make the modrm and
5851
	 index base bytes based on all the info we've collected.  */
5852
 
5853
      default_seg = build_modrm_byte ();
5854
    }
5855
  else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
5856
    {
5857
      default_seg = &ds;
5858
    }
5859
  else if (i.tm.opcode_modifier.isstring)
5860
    {
5861
      /* For the string instructions that allow a segment override
5862
	 on one of their operands, the default segment is ds.  */
5863
      default_seg = &ds;
5864
    }
5865
 
5866
  if (i.tm.base_opcode == 0x8d /* lea */
5867
      && i.seg[0]
5868
      && !quiet_warnings)
5869
    as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
5870
 
5871
  /* If a segment was explicitly specified, and the specified segment
5872
     is not the default, use an opcode prefix to select it.  If we
5873
     never figured out what the default segment is, then default_seg
5874
     will be zero at this point, and the specified segment prefix will
5875
     always be used.  */
5876
  if ((i.seg[0]) && (i.seg[0] != default_seg))
5877
    {
5878
      if (!add_prefix (i.seg[0]->seg_prefix))
5879
	return 0;
5880
    }
5881
  return 1;
5882
}
5883
 
5884
static const seg_entry *
5885
build_modrm_byte (void)
5886
{
5887
  const seg_entry *default_seg = 0;
5888
  unsigned int source, dest;
5889
  int vex_3_sources;
5890
 
5891
  /* The first operand of instructions with VEX prefix and 3 sources
5892
     must be VEX_Imm4.  */
5893
  vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
5894
  if (vex_3_sources)
5895
    {
5896
      unsigned int nds, reg_slot;
5897
      expressionS *exp;
5898
 
5899
      if (i.tm.opcode_modifier.veximmext
5900
          && i.tm.opcode_modifier.immext)
5901
        {
5902
          dest = i.operands - 2;
5903
          gas_assert (dest == 3);
5904
        }
5905
      else
5906
        dest = i.operands - 1;
5907
      nds = dest - 1;
5908
 
5909
      /* There are 2 kinds of instructions:
5910
         1. 5 operands: 4 register operands or 3 register operands
5911
         plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
5912
         VexW0 or VexW1.  The destination must be either XMM, YMM or
5913
	 ZMM register.
5914
         2. 4 operands: 4 register operands or 3 register operands
5915
         plus 1 memory operand, VexXDS, and VexImmExt  */
5916
      gas_assert ((i.reg_operands == 4
5917
                   || (i.reg_operands == 3 && i.mem_operands == 1))
5918
                  && i.tm.opcode_modifier.vexvvvv == VEXXDS
5919
                  && (i.tm.opcode_modifier.veximmext
5920
                      || (i.imm_operands == 1
5921
                          && i.types[0].bitfield.vec_imm4
5922
                          && (i.tm.opcode_modifier.vexw == VEXW0
5923
                              || i.tm.opcode_modifier.vexw == VEXW1)
5924
                          && (operand_type_equal (&i.tm.operand_types[dest], ®xmm)
5925
                              || operand_type_equal (&i.tm.operand_types[dest], ®ymm)
5926
                              || operand_type_equal (&i.tm.operand_types[dest], ®zmm)))));
5927
 
5928
      if (i.imm_operands == 0)
5929
        {
5930
          /* When there is no immediate operand, generate an 8bit
5931
             immediate operand to encode the first operand.  */
5932
          exp = &im_expressions[i.imm_operands++];
5933
          i.op[i.operands].imms = exp;
5934
          i.types[i.operands] = imm8;
5935
          i.operands++;
5936
          /* If VexW1 is set, the first operand is the source and
5937
             the second operand is encoded in the immediate operand.  */
5938
          if (i.tm.opcode_modifier.vexw == VEXW1)
5939
            {
5940
              source = 0;
5941
              reg_slot = 1;
5942
            }
5943
          else
5944
            {
5945
              source = 1;
5946
              reg_slot = 0;
5947
            }
5948
 
5949
          /* FMA swaps REG and NDS.  */
5950
          if (i.tm.cpu_flags.bitfield.cpufma)
5951
            {
5952
              unsigned int tmp;
5953
              tmp = reg_slot;
5954
              reg_slot = nds;
5955
              nds = tmp;
5956
            }
5957
 
5958
          gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
5959
					  ®xmm)
5960
                      || operand_type_equal (&i.tm.operand_types[reg_slot],
5961
                                             ®ymm)
5962
                      || operand_type_equal (&i.tm.operand_types[reg_slot],
5963
                                             ®zmm));
5964
          exp->X_op = O_constant;
5965
          exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
5966
	  gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
5967
	}
5968
      else
5969
        {
5970
          unsigned int imm_slot;
5971
 
5972
          if (i.tm.opcode_modifier.vexw == VEXW0)
5973
            {
5974
              /* If VexW0 is set, the third operand is the source and
5975
                 the second operand is encoded in the immediate
5976
                 operand.  */
5977
              source = 2;
5978
              reg_slot = 1;
5979
            }
5980
          else
5981
            {
5982
              /* VexW1 is set, the second operand is the source and
5983
                 the third operand is encoded in the immediate
5984
                 operand.  */
5985
              source = 1;
5986
              reg_slot = 2;
5987
            }
5988
 
5989
          if (i.tm.opcode_modifier.immext)
5990
            {
5991
              /* When ImmExt is set, the immdiate byte is the last
5992
                 operand.  */
5993
              imm_slot = i.operands - 1;
5994
              source--;
5995
              reg_slot--;
5996
            }
5997
          else
5998
            {
5999
              imm_slot = 0;
6000
 
6001
              /* Turn on Imm8 so that output_imm will generate it.  */
6002
              i.types[imm_slot].bitfield.imm8 = 1;
6003
            }
6004
 
6005
          gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6006
					  ®xmm)
6007
		      || operand_type_equal (&i.tm.operand_types[reg_slot],
6008
					     ®ymm)
6009
		      || operand_type_equal (&i.tm.operand_types[reg_slot],
6010
					     ®zmm));
6011
          i.op[imm_slot].imms->X_add_number
6012
              |= register_number (i.op[reg_slot].regs) << 4;
6013
	  gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6014
        }
6015
 
6016
      gas_assert (operand_type_equal (&i.tm.operand_types[nds], ®xmm)
6017
                  || operand_type_equal (&i.tm.operand_types[nds],
6018
                                         ®ymm)
6019
                  || operand_type_equal (&i.tm.operand_types[nds],
6020
                                         ®zmm));
6021
      i.vex.register_specifier = i.op[nds].regs;
6022
    }
6023
  else
6024
    source = dest = 0;
6025
 
6026
  /* i.reg_operands MUST be the number of real register operands;
6027
     implicit registers do not count.  If there are 3 register
6028
     operands, it must be a instruction with VexNDS.  For a
6029
     instruction with VexNDD, the destination register is encoded
6030
     in VEX prefix.  If there are 4 register operands, it must be
6031
     a instruction with VEX prefix and 3 sources.  */
6032
  if (i.mem_operands == 0
6033
      && ((i.reg_operands == 2
6034
	   && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6035
	  || (i.reg_operands == 3
6036
	      && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6037
	  || (i.reg_operands == 4 && vex_3_sources)))
6038
    {
6039
      switch (i.operands)
6040
	{
6041
	case 2:
6042
	  source = 0;
6043
	  break;
6044
	case 3:
6045
	  /* When there are 3 operands, one of them may be immediate,
6046
	     which may be the first or the last operand.  Otherwise,
6047
	     the first operand must be shift count register (cl) or it
6048
	     is an instruction with VexNDS. */
6049
	  gas_assert (i.imm_operands == 1
6050
		      || (i.imm_operands == 0
6051
			  && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6052
			      || i.types[0].bitfield.shiftcount)));
6053
	  if (operand_type_check (i.types[0], imm)
6054
	      || i.types[0].bitfield.shiftcount)
6055
	    source = 1;
6056
	  else
6057
	    source = 0;
6058
	  break;
6059
	case 4:
6060
	  /* When there are 4 operands, the first two must be 8bit
6061
	     immediate operands. The source operand will be the 3rd
6062
	     one.
6063
 
6064
	     For instructions with VexNDS, if the first operand
6065
	     an imm8, the source operand is the 2nd one.  If the last
6066
	     operand is imm8, the source operand is the first one.  */
6067
	  gas_assert ((i.imm_operands == 2
6068
		       && i.types[0].bitfield.imm8
6069
		       && i.types[1].bitfield.imm8)
6070
		      || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6071
			  && i.imm_operands == 1
6072
			  && (i.types[0].bitfield.imm8
6073
			      || i.types[i.operands - 1].bitfield.imm8
6074
			      || i.rounding)));
6075
	  if (i.imm_operands == 2)
6076
	    source = 2;
6077
	  else
6078
	    {
6079
	      if (i.types[0].bitfield.imm8)
6080
		source = 1;
6081
	      else
6082
		source = 0;
6083
	    }
6084
	  break;
6085
	case 5:
6086
	  if (i.tm.opcode_modifier.evex)
6087
	    {
6088
	      /* For EVEX instructions, when there are 5 operands, the
6089
		 first one must be immediate operand.  If the second one
6090
		 is immediate operand, the source operand is the 3th
6091
		 one.  If the last one is immediate operand, the source
6092
		 operand is the 2nd one.  */
6093
	      gas_assert (i.imm_operands == 2
6094
			  && i.tm.opcode_modifier.sae
6095
			  && operand_type_check (i.types[0], imm));
6096
	      if (operand_type_check (i.types[1], imm))
6097
		source = 2;
6098
	      else if (operand_type_check (i.types[4], imm))
6099
		source = 1;
6100
	      else
6101
		abort ();
6102
	    }
6103
	  break;
6104
	default:
6105
	  abort ();
6106
	}
6107
 
6108
      if (!vex_3_sources)
6109
	{
6110
	  dest = source + 1;
6111
 
6112
	  /* RC/SAE operand could be between DEST and SRC.  That happens
6113
	     when one operand is GPR and the other one is XMM/YMM/ZMM
6114
	     register.  */
6115
	  if (i.rounding && i.rounding->operand == (int) dest)
6116
	    dest++;
6117
 
6118
	  if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6119
	    {
6120
	      /* For instructions with VexNDS, the register-only source
6121
		 operand must be 32/64bit integer, XMM, YMM or ZMM
6122
		 register.  It is encoded in VEX prefix.  We need to
6123
		 clear RegMem bit before calling operand_type_equal.  */
6124
 
6125
	      i386_operand_type op;
6126
	      unsigned int vvvv;
6127
 
6128
	      /* Check register-only source operand when two source
6129
		 operands are swapped.  */
6130
	      if (!i.tm.operand_types[source].bitfield.baseindex
6131
		  && i.tm.operand_types[dest].bitfield.baseindex)
6132
		{
6133
		  vvvv = source;
6134
		  source = dest;
6135
		}
6136
	      else
6137
		vvvv = dest;
6138
 
6139
	      op = i.tm.operand_types[vvvv];
6140
	      op.bitfield.regmem = 0;
6141
	      if ((dest + 1) >= i.operands
6142
		  || (op.bitfield.reg32 != 1
6143
		      && !op.bitfield.reg64 != 1
6144
		      && !operand_type_equal (&op, ®xmm)
6145
		      && !operand_type_equal (&op, ®ymm)
6146
		      && !operand_type_equal (&op, ®zmm)
6147
		      && !operand_type_equal (&op, ®mask)))
6148
		abort ();
6149
	      i.vex.register_specifier = i.op[vvvv].regs;
6150
	      dest++;
6151
	    }
6152
	}
6153
 
6154
      i.rm.mode = 3;
6155
      /* One of the register operands will be encoded in the i.tm.reg
6156
	 field, the other in the combined i.tm.mode and i.tm.regmem
6157
	 fields.  If no form of this instruction supports a memory
6158
	 destination operand, then we assume the source operand may
6159
	 sometimes be a memory operand and so we need to store the
6160
	 destination in the i.rm.reg field.  */
6161
      if (!i.tm.operand_types[dest].bitfield.regmem
6162
	  && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6163
	{
6164
	  i.rm.reg = i.op[dest].regs->reg_num;
6165
	  i.rm.regmem = i.op[source].regs->reg_num;
6166
	  if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6167
	    i.rex |= REX_R;
6168
	  if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6169
	    i.vrex |= REX_R;
6170
	  if ((i.op[source].regs->reg_flags & RegRex) != 0)
6171
	    i.rex |= REX_B;
6172
	  if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6173
	    i.vrex |= REX_B;
6174
	}
6175
      else
6176
	{
6177
	  i.rm.reg = i.op[source].regs->reg_num;
6178
	  i.rm.regmem = i.op[dest].regs->reg_num;
6179
	  if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6180
	    i.rex |= REX_B;
6181
	  if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6182
	    i.vrex |= REX_B;
6183
	  if ((i.op[source].regs->reg_flags & RegRex) != 0)
6184
	    i.rex |= REX_R;
6185
	  if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6186
	    i.vrex |= REX_R;
6187
	}
6188
      if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6189
	{
6190
	  if (!i.types[0].bitfield.control
6191
	      && !i.types[1].bitfield.control)
6192
	    abort ();
6193
	  i.rex &= ~(REX_R | REX_B);
6194
	  add_prefix (LOCK_PREFIX_OPCODE);
6195
	}
6196
    }
6197
  else
6198
    {			/* If it's not 2 reg operands...  */
6199
      unsigned int mem;
6200
 
6201
      if (i.mem_operands)
6202
	{
6203
	  unsigned int fake_zero_displacement = 0;
6204
	  unsigned int op;
6205
 
6206
	  for (op = 0; op < i.operands; op++)
6207
	    if (operand_type_check (i.types[op], anymem))
6208
	      break;
6209
	  gas_assert (op < i.operands);
6210
 
6211
	  if (i.tm.opcode_modifier.vecsib)
6212
	    {
6213
	      if (i.index_reg->reg_num == RegEiz
6214
		  || i.index_reg->reg_num == RegRiz)
6215
		abort ();
6216
 
6217
	      i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6218
	      if (!i.base_reg)
6219
		{
6220
		  i.sib.base = NO_BASE_REGISTER;
6221
		  i.sib.scale = i.log2_scale_factor;
6222
		  /* No Vec_Disp8 if there is no base.  */
6223
		  i.types[op].bitfield.vec_disp8 = 0;
6224
		  i.types[op].bitfield.disp8 = 0;
6225
		  i.types[op].bitfield.disp16 = 0;
6226
		  i.types[op].bitfield.disp64 = 0;
6227
		  if (flag_code != CODE_64BIT)
6228
		    {
6229
		      /* Must be 32 bit */
6230
		      i.types[op].bitfield.disp32 = 1;
6231
		      i.types[op].bitfield.disp32s = 0;
6232
		    }
6233
		  else
6234
		    {
6235
		      i.types[op].bitfield.disp32 = 0;
6236
		      i.types[op].bitfield.disp32s = 1;
6237
		    }
6238
		}
6239
	      i.sib.index = i.index_reg->reg_num;
6240
	      if ((i.index_reg->reg_flags & RegRex) != 0)
6241
		i.rex |= REX_X;
6242
	      if ((i.index_reg->reg_flags & RegVRex) != 0)
6243
		i.vrex |= REX_X;
6244
	    }
6245
 
6246
	  default_seg = &ds;
6247
 
6248
	  if (i.base_reg == 0)
6249
	    {
6250
	      i.rm.mode = 0;
6251
	      if (!i.disp_operands)
6252
		{
6253
		  fake_zero_displacement = 1;
6254
		  /* Instructions with VSIB byte need 32bit displacement
6255
		     if there is no base register.  */
6256
		  if (i.tm.opcode_modifier.vecsib)
6257
		    i.types[op].bitfield.disp32 = 1;
6258
		}
6259
	      if (i.index_reg == 0)
6260
		{
6261
		  gas_assert (!i.tm.opcode_modifier.vecsib);
6262
		  /* Operand is just   */
6263
		  if (flag_code == CODE_64BIT)
6264
		    {
6265
		      /* 64bit mode overwrites the 32bit absolute
6266
			 addressing by RIP relative addressing and
6267
			 absolute addressing is encoded by one of the
6268
			 redundant SIB forms.  */
6269
		      i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6270
		      i.sib.base = NO_BASE_REGISTER;
6271
		      i.sib.index = NO_INDEX_REGISTER;
6272
		      i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6273
				     ? disp32s : disp32);
6274
		    }
6275
		  else if ((flag_code == CODE_16BIT)
6276
			   ^ (i.prefix[ADDR_PREFIX] != 0))
6277
		    {
6278
		      i.rm.regmem = NO_BASE_REGISTER_16;
6279
		      i.types[op] = disp16;
6280
		    }
6281
		  else
6282
		    {
6283
		      i.rm.regmem = NO_BASE_REGISTER;
6284
		      i.types[op] = disp32;
6285
		    }
6286
		}
6287
	      else if (!i.tm.opcode_modifier.vecsib)
6288
		{
6289
		  /* !i.base_reg && i.index_reg  */
6290
		  if (i.index_reg->reg_num == RegEiz
6291
		      || i.index_reg->reg_num == RegRiz)
6292
		    i.sib.index = NO_INDEX_REGISTER;
6293
		  else
6294
		    i.sib.index = i.index_reg->reg_num;
6295
		  i.sib.base = NO_BASE_REGISTER;
6296
		  i.sib.scale = i.log2_scale_factor;
6297
		  i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6298
		  /* No Vec_Disp8 if there is no base.  */
6299
		  i.types[op].bitfield.vec_disp8 = 0;
6300
		  i.types[op].bitfield.disp8 = 0;
6301
		  i.types[op].bitfield.disp16 = 0;
6302
		  i.types[op].bitfield.disp64 = 0;
6303
		  if (flag_code != CODE_64BIT)
6304
		    {
6305
		      /* Must be 32 bit */
6306
		      i.types[op].bitfield.disp32 = 1;
6307
		      i.types[op].bitfield.disp32s = 0;
6308
		    }
6309
		  else
6310
		    {
6311
		      i.types[op].bitfield.disp32 = 0;
6312
		      i.types[op].bitfield.disp32s = 1;
6313
		    }
6314
		  if ((i.index_reg->reg_flags & RegRex) != 0)
6315
		    i.rex |= REX_X;
6316
		}
6317
	    }
6318
	  /* RIP addressing for 64bit mode.  */
6319
	  else if (i.base_reg->reg_num == RegRip ||
6320
		   i.base_reg->reg_num == RegEip)
6321
	    {
6322
	      gas_assert (!i.tm.opcode_modifier.vecsib);
6323
	      i.rm.regmem = NO_BASE_REGISTER;
6324
	      i.types[op].bitfield.disp8 = 0;
6325
	      i.types[op].bitfield.disp16 = 0;
6326
	      i.types[op].bitfield.disp32 = 0;
6327
	      i.types[op].bitfield.disp32s = 1;
6328
	      i.types[op].bitfield.disp64 = 0;
6329
	      i.types[op].bitfield.vec_disp8 = 0;
6330
	      i.flags[op] |= Operand_PCrel;
6331
	      if (! i.disp_operands)
6332
		fake_zero_displacement = 1;
6333
	    }
6334
	  else if (i.base_reg->reg_type.bitfield.reg16)
6335
	    {
6336
	      gas_assert (!i.tm.opcode_modifier.vecsib);
6337
	      switch (i.base_reg->reg_num)
6338
		{
6339
		case 3: /* (%bx)  */
6340
		  if (i.index_reg == 0)
6341
		    i.rm.regmem = 7;
6342
		  else /* (%bx,%si) -> 0, or (%bx,%di) -> 1  */
6343
		    i.rm.regmem = i.index_reg->reg_num - 6;
6344
		  break;
6345
		case 5: /* (%bp)  */
6346
		  default_seg = &ss;
6347
		  if (i.index_reg == 0)
6348
		    {
6349
		      i.rm.regmem = 6;
6350
		      if (operand_type_check (i.types[op], disp) == 0)
6351
			{
6352
			  /* fake (%bp) into 0(%bp)  */
6353
			  if (i.tm.operand_types[op].bitfield.vec_disp8)
6354
			    i.types[op].bitfield.vec_disp8 = 1;
6355
			  else
6356
			    i.types[op].bitfield.disp8 = 1;
6357
			  fake_zero_displacement = 1;
6358
			}
6359
		    }
6360
		  else /* (%bp,%si) -> 2, or (%bp,%di) -> 3  */
6361
		    i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6362
		  break;
6363
		default: /* (%si) -> 4 or (%di) -> 5  */
6364
		  i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6365
		}
6366
	      i.rm.mode = mode_from_disp_size (i.types[op]);
6367
	    }
6368
	  else /* i.base_reg and 32/64 bit mode  */
6369
	    {
6370
	      if (flag_code == CODE_64BIT
6371
		  && operand_type_check (i.types[op], disp))
6372
		{
6373
		  i386_operand_type temp;
6374
		  operand_type_set (&temp, 0);
6375
		  temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6376
		  temp.bitfield.vec_disp8
6377
		    = i.types[op].bitfield.vec_disp8;
6378
		  i.types[op] = temp;
6379
		  if (i.prefix[ADDR_PREFIX] == 0)
6380
		    i.types[op].bitfield.disp32s = 1;
6381
		  else
6382
		    i.types[op].bitfield.disp32 = 1;
6383
		}
6384
 
6385
	      if (!i.tm.opcode_modifier.vecsib)
6386
		i.rm.regmem = i.base_reg->reg_num;
6387
	      if ((i.base_reg->reg_flags & RegRex) != 0)
6388
		i.rex |= REX_B;
6389
	      i.sib.base = i.base_reg->reg_num;
6390
	      /* x86-64 ignores REX prefix bit here to avoid decoder
6391
		 complications.  */
6392
	      if (!(i.base_reg->reg_flags & RegRex)
6393
		  && (i.base_reg->reg_num == EBP_REG_NUM
6394
		   || i.base_reg->reg_num == ESP_REG_NUM))
6395
		  default_seg = &ss;
6396
	      if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6397
		{
6398
		  fake_zero_displacement = 1;
6399
		  if (i.tm.operand_types [op].bitfield.vec_disp8)
6400
		    i.types[op].bitfield.vec_disp8 = 1;
6401
		  else
6402
		    i.types[op].bitfield.disp8 = 1;
6403
		}
6404
	      i.sib.scale = i.log2_scale_factor;
6405
	      if (i.index_reg == 0)
6406
		{
6407
		  gas_assert (!i.tm.opcode_modifier.vecsib);
6408
		  /* (%esp) becomes two byte modrm with no index
6409
		     register.  We've already stored the code for esp
6410
		     in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6411
		     Any base register besides %esp will not use the
6412
		     extra modrm byte.  */
6413
		  i.sib.index = NO_INDEX_REGISTER;
6414
		}
6415
	      else if (!i.tm.opcode_modifier.vecsib)
6416
		{
6417
		  if (i.index_reg->reg_num == RegEiz
6418
		      || i.index_reg->reg_num == RegRiz)
6419
		    i.sib.index = NO_INDEX_REGISTER;
6420
		  else
6421
		    i.sib.index = i.index_reg->reg_num;
6422
		  i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6423
		  if ((i.index_reg->reg_flags & RegRex) != 0)
6424
		    i.rex |= REX_X;
6425
		}
6426
 
6427
	      if (i.disp_operands
6428
		  && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6429
		      || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6430
		i.rm.mode = 0;
6431
	      else
6432
		{
6433
		  if (!fake_zero_displacement
6434
		      && !i.disp_operands
6435
		      && i.disp_encoding)
6436
		    {
6437
		      fake_zero_displacement = 1;
6438
		      if (i.disp_encoding == disp_encoding_8bit)
6439
			i.types[op].bitfield.disp8 = 1;
6440
		      else
6441
			i.types[op].bitfield.disp32 = 1;
6442
		    }
6443
		  i.rm.mode = mode_from_disp_size (i.types[op]);
6444
		}
6445
	    }
6446
 
6447
	  if (fake_zero_displacement)
6448
	    {
6449
	      /* Fakes a zero displacement assuming that i.types[op]
6450
		 holds the correct displacement size.  */
6451
	      expressionS *exp;
6452
 
6453
	      gas_assert (i.op[op].disps == 0);
6454
	      exp = &disp_expressions[i.disp_operands++];
6455
	      i.op[op].disps = exp;
6456
	      exp->X_op = O_constant;
6457
	      exp->X_add_number = 0;
6458
	      exp->X_add_symbol = (symbolS *) 0;
6459
	      exp->X_op_symbol = (symbolS *) 0;
6460
	    }
6461
 
6462
	  mem = op;
6463
	}
6464
      else
6465
	mem = ~0;
6466
 
6467
      if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6468
	{
6469
	  if (operand_type_check (i.types[0], imm))
6470
	    i.vex.register_specifier = NULL;
6471
	  else
6472
	    {
6473
	      /* VEX.vvvv encodes one of the sources when the first
6474
		 operand is not an immediate.  */
6475
	      if (i.tm.opcode_modifier.vexw == VEXW0)
6476
		i.vex.register_specifier = i.op[0].regs;
6477
	      else
6478
		i.vex.register_specifier = i.op[1].regs;
6479
	    }
6480
 
6481
	  /* Destination is a XMM register encoded in the ModRM.reg
6482
	     and VEX.R bit.  */
6483
	  i.rm.reg = i.op[2].regs->reg_num;
6484
	  if ((i.op[2].regs->reg_flags & RegRex) != 0)
6485
	    i.rex |= REX_R;
6486
 
6487
	  /* ModRM.rm and VEX.B encodes the other source.  */
6488
	  if (!i.mem_operands)
6489
	    {
6490
	      i.rm.mode = 3;
6491
 
6492
	      if (i.tm.opcode_modifier.vexw == VEXW0)
6493
		i.rm.regmem = i.op[1].regs->reg_num;
6494
	      else
6495
		i.rm.regmem = i.op[0].regs->reg_num;
6496
 
6497
	      if ((i.op[1].regs->reg_flags & RegRex) != 0)
6498
		i.rex |= REX_B;
6499
	    }
6500
	}
6501
      else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6502
	{
6503
	  i.vex.register_specifier = i.op[2].regs;
6504
	  if (!i.mem_operands)
6505
	    {
6506
	      i.rm.mode = 3;
6507
	      i.rm.regmem = i.op[1].regs->reg_num;
6508
	      if ((i.op[1].regs->reg_flags & RegRex) != 0)
6509
		i.rex |= REX_B;
6510
	    }
6511
	}
6512
      /* Fill in i.rm.reg or i.rm.regmem field with register operand
6513
	 (if any) based on i.tm.extension_opcode.  Again, we must be
6514
	 careful to make sure that segment/control/debug/test/MMX
6515
	 registers are coded into the i.rm.reg field.  */
6516
      else if (i.reg_operands)
6517
	{
6518
	  unsigned int op;
6519
	  unsigned int vex_reg = ~0;
6520
 
6521
	  for (op = 0; op < i.operands; op++)
6522
	    if (i.types[op].bitfield.reg8
6523
		|| i.types[op].bitfield.reg16
6524
		|| i.types[op].bitfield.reg32
6525
		|| i.types[op].bitfield.reg64
6526
		|| i.types[op].bitfield.regmmx
6527
		|| i.types[op].bitfield.regxmm
6528
		|| i.types[op].bitfield.regymm
6529
		|| i.types[op].bitfield.regbnd
6530
		|| i.types[op].bitfield.regzmm
6531
		|| i.types[op].bitfield.regmask
6532
		|| i.types[op].bitfield.sreg2
6533
		|| i.types[op].bitfield.sreg3
6534
		|| i.types[op].bitfield.control
6535
		|| i.types[op].bitfield.debug
6536
		|| i.types[op].bitfield.test)
6537
	      break;
6538
 
6539
	  if (vex_3_sources)
6540
	    op = dest;
6541
	  else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6542
	    {
6543
	      /* For instructions with VexNDS, the register-only
6544
		 source operand is encoded in VEX prefix. */
6545
	      gas_assert (mem != (unsigned int) ~0);
6546
 
6547
	      if (op > mem)
6548
		{
6549
		  vex_reg = op++;
6550
		  gas_assert (op < i.operands);
6551
		}
6552
	      else
6553
		{
6554
		  /* Check register-only source operand when two source
6555
		     operands are swapped.  */
6556
		  if (!i.tm.operand_types[op].bitfield.baseindex
6557
		      && i.tm.operand_types[op + 1].bitfield.baseindex)
6558
		    {
6559
		      vex_reg = op;
6560
		      op += 2;
6561
		      gas_assert (mem == (vex_reg + 1)
6562
				  && op < i.operands);
6563
		    }
6564
		  else
6565
		    {
6566
		      vex_reg = op + 1;
6567
		      gas_assert (vex_reg < i.operands);
6568
		    }
6569
		}
6570
	    }
6571
	  else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6572
	    {
6573
	      /* For instructions with VexNDD, the register destination
6574
		 is encoded in VEX prefix.  */
6575
	      if (i.mem_operands == 0)
6576
		{
6577
		  /* There is no memory operand.  */
6578
		  gas_assert ((op + 2) == i.operands);
6579
		  vex_reg = op + 1;
6580
		}
6581
	      else
6582
		{
6583
		  /* There are only 2 operands.  */
6584
		  gas_assert (op < 2 && i.operands == 2);
6585
		  vex_reg = 1;
6586
		}
6587
	    }
6588
	  else
6589
	    gas_assert (op < i.operands);
6590
 
6591
	  if (vex_reg != (unsigned int) ~0)
6592
	    {
6593
	      i386_operand_type *type = &i.tm.operand_types[vex_reg];
6594
 
6595
	      if (type->bitfield.reg32 != 1
6596
		  && type->bitfield.reg64 != 1
6597
		  && !operand_type_equal (type, ®xmm)
6598
		  && !operand_type_equal (type, ®ymm)
6599
		  && !operand_type_equal (type, ®zmm)
6600
		  && !operand_type_equal (type, ®mask))
6601
		abort ();
6602
 
6603
	      i.vex.register_specifier = i.op[vex_reg].regs;
6604
	    }
6605
 
6606
	  /* Don't set OP operand twice.  */
6607
	  if (vex_reg != op)
6608
	    {
6609
	      /* If there is an extension opcode to put here, the
6610
		 register number must be put into the regmem field.  */
6611
	      if (i.tm.extension_opcode != None)
6612
		{
6613
		  i.rm.regmem = i.op[op].regs->reg_num;
6614
		  if ((i.op[op].regs->reg_flags & RegRex) != 0)
6615
		    i.rex |= REX_B;
6616
		  if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6617
		    i.vrex |= REX_B;
6618
		}
6619
	      else
6620
		{
6621
		  i.rm.reg = i.op[op].regs->reg_num;
6622
		  if ((i.op[op].regs->reg_flags & RegRex) != 0)
6623
		    i.rex |= REX_R;
6624
		  if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6625
		    i.vrex |= REX_R;
6626
		}
6627
	    }
6628
 
6629
	  /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6630
	     must set it to 3 to indicate this is a register operand
6631
	     in the regmem field.  */
6632
	  if (!i.mem_operands)
6633
	    i.rm.mode = 3;
6634
	}
6635
 
6636
      /* Fill in i.rm.reg field with extension opcode (if any).  */
6637
      if (i.tm.extension_opcode != None)
6638
	i.rm.reg = i.tm.extension_opcode;
6639
    }
6640
  return default_seg;
6641
}
6642
 
6643
static void
6644
output_branch (void)
6645
{
6646
  char *p;
6647
  int size;
6648
  int code16;
6649
  int prefix;
6650
  relax_substateT subtype;
6651
  symbolS *sym;
6652
  offsetT off;
6653
 
6654
  code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6655
  size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6656
 
6657
  prefix = 0;
6658
  if (i.prefix[DATA_PREFIX] != 0)
6659
    {
6660
      prefix = 1;
6661
      i.prefixes -= 1;
6662
      code16 ^= CODE16;
6663
    }
6664
  /* Pentium4 branch hints.  */
6665
  if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6666
      || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6667
    {
6668
      prefix++;
6669
      i.prefixes--;
6670
    }
6671
  if (i.prefix[REX_PREFIX] != 0)
6672
    {
6673
      prefix++;
6674
      i.prefixes--;
6675
    }
6676
 
6677
  /* BND prefixed jump.  */
6678
  if (i.prefix[BND_PREFIX] != 0)
6679
    {
6680
      FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6681
      i.prefixes -= 1;
6682
    }
6683
 
6684
  if (i.prefixes != 0 && !intel_syntax)
6685
    as_warn (_("skipping prefixes on this instruction"));
6686
 
6687
  /* It's always a symbol;  End frag & setup for relax.
6688
     Make sure there is enough room in this frag for the largest
6689
     instruction we may generate in md_convert_frag.  This is 2
6690
     bytes for the opcode and room for the prefix and largest
6691
     displacement.  */
6692
  frag_grow (prefix + 2 + 4);
6693
  /* Prefix and 1 opcode byte go in fr_fix.  */
6694
  p = frag_more (prefix + 1);
6695
  if (i.prefix[DATA_PREFIX] != 0)
6696
    *p++ = DATA_PREFIX_OPCODE;
6697
  if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6698
      || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6699
    *p++ = i.prefix[SEG_PREFIX];
6700
  if (i.prefix[REX_PREFIX] != 0)
6701
    *p++ = i.prefix[REX_PREFIX];
6702
  *p = i.tm.base_opcode;
6703
 
6704
  if ((unsigned char) *p == JUMP_PC_RELATIVE)
6705
    subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
6706
  else if (cpu_arch_flags.bitfield.cpui386)
6707
    subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
6708
  else
6709
    subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
6710
  subtype |= code16;
6711
 
6712
  sym = i.op[0].disps->X_add_symbol;
6713
  off = i.op[0].disps->X_add_number;
6714
 
6715
  if (i.op[0].disps->X_op != O_constant
6716
      && i.op[0].disps->X_op != O_symbol)
6717
    {
6718
      /* Handle complex expressions.  */
6719
      sym = make_expr_symbol (i.op[0].disps);
6720
      off = 0;
6721
    }
6722
 
6723
  /* 1 possible extra opcode + 4 byte displacement go in var part.
6724
     Pass reloc in fr_var.  */
6725
  frag_var (rs_machine_dependent, 5,
6726
	    ((!object_64bit
6727
	      || i.reloc[0] != NO_RELOC
6728
	      || (i.bnd_prefix == NULL && !add_bnd_prefix))
6729
	     ? i.reloc[0]
6730
	     : BFD_RELOC_X86_64_PC32_BND),
6731
	    subtype, sym, off, p);
6732
}
6733
 
6734
static void
6735
output_jump (void)
6736
{
6737
  char *p;
6738
  int size;
6739
  fixS *fixP;
6740
 
6741
  if (i.tm.opcode_modifier.jumpbyte)
6742
    {
6743
      /* This is a loop or jecxz type instruction.  */
6744
      size = 1;
6745
      if (i.prefix[ADDR_PREFIX] != 0)
6746
	{
6747
	  FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6748
	  i.prefixes -= 1;
6749
	}
6750
      /* Pentium4 branch hints.  */
6751
      if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6752
	  || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6753
	{
6754
	  FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6755
	  i.prefixes--;
6756
	}
6757
    }
6758
  else
6759
    {
6760
      int code16;
6761
 
6762
      code16 = 0;
6763
      if (flag_code == CODE_16BIT)
6764
	code16 = CODE16;
6765
 
6766
      if (i.prefix[DATA_PREFIX] != 0)
6767
	{
6768
	  FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6769
	  i.prefixes -= 1;
6770
	  code16 ^= CODE16;
6771
	}
6772
 
6773
      size = 4;
6774
      if (code16)
6775
	size = 2;
6776
    }
6777
 
6778
  if (i.prefix[REX_PREFIX] != 0)
6779
    {
6780
      FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6781
      i.prefixes -= 1;
6782
    }
6783
 
6784
  /* BND prefixed jump.  */
6785
  if (i.prefix[BND_PREFIX] != 0)
6786
    {
6787
      FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6788
      i.prefixes -= 1;
6789
    }
6790
 
6791
  if (i.prefixes != 0 && !intel_syntax)
6792
    as_warn (_("skipping prefixes on this instruction"));
6793
 
6794
  p = frag_more (i.tm.opcode_length + size);
6795
  switch (i.tm.opcode_length)
6796
    {
6797
    case 2:
6798
      *p++ = i.tm.base_opcode >> 8;
6799
    case 1:
6800
      *p++ = i.tm.base_opcode;
6801
      break;
6802
    default:
6803
      abort ();
6804
    }
6805
 
6806
  fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6807
		      i.op[0].disps, 1, reloc (size, 1, 1,
6808
					       (i.bnd_prefix != NULL
6809
						|| add_bnd_prefix),
6810
					       i.reloc[0]));
6811
 
6812
  /* All jumps handled here are signed, but don't use a signed limit
6813
     check for 32 and 16 bit jumps as we want to allow wrap around at
6814
     4G and 64k respectively.  */
6815
  if (size == 1)
6816
    fixP->fx_signed = 1;
6817
}
6818
 
6819
static void
6820
output_interseg_jump (void)
6821
{
6822
  char *p;
6823
  int size;
6824
  int prefix;
6825
  int code16;
6826
 
6827
  code16 = 0;
6828
  if (flag_code == CODE_16BIT)
6829
    code16 = CODE16;
6830
 
6831
  prefix = 0;
6832
  if (i.prefix[DATA_PREFIX] != 0)
6833
    {
6834
      prefix = 1;
6835
      i.prefixes -= 1;
6836
      code16 ^= CODE16;
6837
    }
6838
  if (i.prefix[REX_PREFIX] != 0)
6839
    {
6840
      prefix++;
6841
      i.prefixes -= 1;
6842
    }
6843
 
6844
  size = 4;
6845
  if (code16)
6846
    size = 2;
6847
 
6848
  if (i.prefixes != 0 && !intel_syntax)
6849
    as_warn (_("skipping prefixes on this instruction"));
6850
 
6851
  /* 1 opcode; 2 segment; offset  */
6852
  p = frag_more (prefix + 1 + 2 + size);
6853
 
6854
  if (i.prefix[DATA_PREFIX] != 0)
6855
    *p++ = DATA_PREFIX_OPCODE;
6856
 
6857
  if (i.prefix[REX_PREFIX] != 0)
6858
    *p++ = i.prefix[REX_PREFIX];
6859
 
6860
  *p++ = i.tm.base_opcode;
6861
  if (i.op[1].imms->X_op == O_constant)
6862
    {
6863
      offsetT n = i.op[1].imms->X_add_number;
6864
 
6865
      if (size == 2
6866
	  && !fits_in_unsigned_word (n)
6867
	  && !fits_in_signed_word (n))
6868
	{
6869
	  as_bad (_("16-bit jump out of range"));
6870
	  return;
6871
	}
6872
      md_number_to_chars (p, n, size);
6873
    }
6874
  else
6875
    fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6876
		 i.op[1].imms, 0, reloc (size, 0, 0, 0, i.reloc[1]));
6877
  if (i.op[0].imms->X_op != O_constant)
6878
    as_bad (_("can't handle non absolute segment in `%s'"),
6879
	    i.tm.name);
6880
  md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
6881
}
6882
 
6883
static void
6884
output_insn (void)
6885
{
6886
  fragS *insn_start_frag;
6887
  offsetT insn_start_off;
6888
 
6889
  /* Tie dwarf2 debug info to the address at the start of the insn.
6890
     We can't do this after the insn has been output as the current
6891
     frag may have been closed off.  eg. by frag_var.  */
6892
  dwarf2_emit_insn (0);
6893
 
6894
  insn_start_frag = frag_now;
6895
  insn_start_off = frag_now_fix ();
6896
 
6897
  /* Output jumps.  */
6898
  if (i.tm.opcode_modifier.jump)
6899
    output_branch ();
6900
  else if (i.tm.opcode_modifier.jumpbyte
6901
	   || i.tm.opcode_modifier.jumpdword)
6902
    output_jump ();
6903
  else if (i.tm.opcode_modifier.jumpintersegment)
6904
    output_interseg_jump ();
6905
  else
6906
    {
6907
      /* Output normal instructions here.  */
6908
      char *p;
6909
      unsigned char *q;
6910
      unsigned int j;
6911
      unsigned int prefix;
6912
 
6913
      /* Since the VEX/EVEX prefix contains the implicit prefix, we
6914
	 don't need the explicit prefix.  */
6915
      if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
6916
	{
6917
	  switch (i.tm.opcode_length)
6918
	    {
6919
	    case 3:
6920
	      if (i.tm.base_opcode & 0xff000000)
6921
		{
6922
		  prefix = (i.tm.base_opcode >> 24) & 0xff;
6923
		  goto check_prefix;
6924
		}
6925
	      break;
6926
	    case 2:
6927
	      if ((i.tm.base_opcode & 0xff0000) != 0)
6928
		{
6929
		  prefix = (i.tm.base_opcode >> 16) & 0xff;
6930
		  if (i.tm.cpu_flags.bitfield.cpupadlock)
6931
		    {
6932
check_prefix:
6933
		      if (prefix != REPE_PREFIX_OPCODE
6934
			  || (i.prefix[REP_PREFIX]
6935
			      != REPE_PREFIX_OPCODE))
6936
			add_prefix (prefix);
6937
		    }
6938
		  else
6939
		    add_prefix (prefix);
6940
		}
6941
	      break;
6942
	    case 1:
6943
	      break;
6944
	    default:
6945
	      abort ();
6946
	    }
6947
 
6948
	  /* The prefix bytes.  */
6949
	  for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
6950
	    if (*q)
6951
	      FRAG_APPEND_1_CHAR (*q);
6952
	}
6953
      else
6954
	{
6955
	  for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
6956
	    if (*q)
6957
	      switch (j)
6958
		{
6959
		case REX_PREFIX:
6960
		  /* REX byte is encoded in VEX prefix.  */
6961
		  break;
6962
		case SEG_PREFIX:
6963
		case ADDR_PREFIX:
6964
		  FRAG_APPEND_1_CHAR (*q);
6965
		  break;
6966
		default:
6967
		  /* There should be no other prefixes for instructions
6968
		     with VEX prefix.  */
6969
		  abort ();
6970
		}
6971
 
6972
	  /* For EVEX instructions i.vrex should become 0 after
6973
	     build_evex_prefix.  For VEX instructions upper 16 registers
6974
	     aren't available, so VREX should be 0.  */
6975
	  if (i.vrex)
6976
	    abort ();
6977
	  /* Now the VEX prefix.  */
6978
	  p = frag_more (i.vex.length);
6979
	  for (j = 0; j < i.vex.length; j++)
6980
	    p[j] = i.vex.bytes[j];
6981
	}
6982
 
6983
      /* Now the opcode; be careful about word order here!  */
6984
      if (i.tm.opcode_length == 1)
6985
	{
6986
	  FRAG_APPEND_1_CHAR (i.tm.base_opcode);
6987
	}
6988
      else
6989
	{
6990
	  switch (i.tm.opcode_length)
6991
	    {
6992
	    case 4:
6993
	      p = frag_more (4);
6994
	      *p++ = (i.tm.base_opcode >> 24) & 0xff;
6995
	      *p++ = (i.tm.base_opcode >> 16) & 0xff;
6996
	      break;
6997
	    case 3:
6998
	      p = frag_more (3);
6999
	      *p++ = (i.tm.base_opcode >> 16) & 0xff;
7000
	      break;
7001
	    case 2:
7002
	      p = frag_more (2);
7003
	      break;
7004
	    default:
7005
	      abort ();
7006
	      break;
7007
	    }
7008
 
7009
	  /* Put out high byte first: can't use md_number_to_chars!  */
7010
	  *p++ = (i.tm.base_opcode >> 8) & 0xff;
7011
	  *p = i.tm.base_opcode & 0xff;
7012
	}
7013
 
7014
      /* Now the modrm byte and sib byte (if present).  */
7015
      if (i.tm.opcode_modifier.modrm)
7016
	{
7017
	  FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7018
			       | i.rm.reg << 3
7019
			       | i.rm.mode << 6));
7020
	  /* If i.rm.regmem == ESP (4)
7021
	     && i.rm.mode != (Register mode)
7022
	     && not 16 bit
7023
	     ==> need second modrm byte.  */
7024
	  if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7025
	      && i.rm.mode != 3
7026
	      && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7027
	    FRAG_APPEND_1_CHAR ((i.sib.base << 0
7028
				 | i.sib.index << 3
7029
				 | i.sib.scale << 6));
7030
	}
7031
 
7032
      if (i.disp_operands)
7033
	output_disp (insn_start_frag, insn_start_off);
7034
 
7035
      if (i.imm_operands)
7036
	output_imm (insn_start_frag, insn_start_off);
7037
    }
7038
 
7039
#ifdef DEBUG386
7040
  if (flag_debug)
7041
    {
7042
      pi ("" /*line*/, &i);
7043
    }
7044
#endif /* DEBUG386  */
7045
}
7046
 
7047
/* Return the size of the displacement operand N.  */
7048
 
7049
static int
7050
disp_size (unsigned int n)
7051
{
7052
  int size = 4;
7053
 
7054
  /* Vec_Disp8 has to be 8bit.  */
7055
  if (i.types[n].bitfield.vec_disp8)
7056
    size = 1;
7057
  else if (i.types[n].bitfield.disp64)
7058
    size = 8;
7059
  else if (i.types[n].bitfield.disp8)
7060
    size = 1;
7061
  else if (i.types[n].bitfield.disp16)
7062
    size = 2;
7063
  return size;
7064
}
7065
 
7066
/* Return the size of the immediate operand N.  */
7067
 
7068
static int
7069
imm_size (unsigned int n)
7070
{
7071
  int size = 4;
7072
  if (i.types[n].bitfield.imm64)
7073
    size = 8;
7074
  else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7075
    size = 1;
7076
  else if (i.types[n].bitfield.imm16)
7077
    size = 2;
7078
  return size;
7079
}
7080
 
7081
static void
7082
output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7083
{
7084
  char *p;
7085
  unsigned int n;
7086
 
7087
  for (n = 0; n < i.operands; n++)
7088
    {
7089
      if (i.types[n].bitfield.vec_disp8
7090
	  || operand_type_check (i.types[n], disp))
7091
	{
7092
	  if (i.op[n].disps->X_op == O_constant)
7093
	    {
7094
	      int size = disp_size (n);
7095
	      offsetT val = i.op[n].disps->X_add_number;
7096
 
7097
	      if (i.types[n].bitfield.vec_disp8)
7098
		val >>= i.memshift;
7099
	      val = offset_in_range (val, size);
7100
	      p = frag_more (size);
7101
	      md_number_to_chars (p, val, size);
7102
	    }
7103
	  else
7104
	    {
7105
	      enum bfd_reloc_code_real reloc_type;
7106
	      int size = disp_size (n);
7107
	      int sign = i.types[n].bitfield.disp32s;
7108
	      int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7109
 
7110
	      /* We can't have 8 bit displacement here.  */
7111
	      gas_assert (!i.types[n].bitfield.disp8);
7112
 
7113
	      /* The PC relative address is computed relative
7114
		 to the instruction boundary, so in case immediate
7115
		 fields follows, we need to adjust the value.  */
7116
	      if (pcrel && i.imm_operands)
7117
		{
7118
		  unsigned int n1;
7119
		  int sz = 0;
7120
 
7121
		  for (n1 = 0; n1 < i.operands; n1++)
7122
		    if (operand_type_check (i.types[n1], imm))
7123
		      {
7124
			/* Only one immediate is allowed for PC
7125
			   relative address.  */
7126
			gas_assert (sz == 0);
7127
			sz = imm_size (n1);
7128
			i.op[n].disps->X_add_number -= sz;
7129
		      }
7130
		  /* We should find the immediate.  */
7131
		  gas_assert (sz != 0);
7132
		}
7133
 
7134
	      p = frag_more (size);
7135
	      reloc_type = reloc (size, pcrel, sign,
7136
				  (i.bnd_prefix != NULL
7137
				   || add_bnd_prefix),
7138
				  i.reloc[n]);
7139
	      if (GOT_symbol
7140
		  && GOT_symbol == i.op[n].disps->X_add_symbol
7141
		  && (((reloc_type == BFD_RELOC_32
7142
			|| reloc_type == BFD_RELOC_X86_64_32S
7143
			|| (reloc_type == BFD_RELOC_64
7144
			    && object_64bit))
7145
		       && (i.op[n].disps->X_op == O_symbol
7146
			   || (i.op[n].disps->X_op == O_add
7147
			       && ((symbol_get_value_expression
7148
				    (i.op[n].disps->X_op_symbol)->X_op)
7149
				   == O_subtract))))
7150
		      || reloc_type == BFD_RELOC_32_PCREL))
7151
		{
7152
		  offsetT add;
7153
 
7154
		  if (insn_start_frag == frag_now)
7155
		    add = (p - frag_now->fr_literal) - insn_start_off;
7156
		  else
7157
		    {
7158
		      fragS *fr;
7159
 
7160
		      add = insn_start_frag->fr_fix - insn_start_off;
7161
		      for (fr = insn_start_frag->fr_next;
7162
			   fr && fr != frag_now; fr = fr->fr_next)
7163
			add += fr->fr_fix;
7164
		      add += p - frag_now->fr_literal;
7165
		    }
7166
 
7167
		  if (!object_64bit)
7168
		    {
7169
		      reloc_type = BFD_RELOC_386_GOTPC;
7170
		      i.op[n].imms->X_add_number += add;
7171
		    }
7172
		  else if (reloc_type == BFD_RELOC_64)
7173
		    reloc_type = BFD_RELOC_X86_64_GOTPC64;
7174
		  else
7175
		    /* Don't do the adjustment for x86-64, as there
7176
		       the pcrel addressing is relative to the _next_
7177
		       insn, and that is taken care of in other code.  */
7178
		    reloc_type = BFD_RELOC_X86_64_GOTPC32;
7179
		}
7180
	      fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7181
			   i.op[n].disps, pcrel, reloc_type);
7182
	    }
7183
	}
7184
    }
7185
}
7186
 
7187
static void
7188
output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7189
{
7190
  char *p;
7191
  unsigned int n;
7192
 
7193
  for (n = 0; n < i.operands; n++)
7194
    {
7195
      /* Skip SAE/RC Imm operand in EVEX.  They are already handled.  */
7196
      if (i.rounding && (int) n == i.rounding->operand)
7197
	continue;
7198
 
7199
      if (operand_type_check (i.types[n], imm))
7200
	{
7201
	  if (i.op[n].imms->X_op == O_constant)
7202
	    {
7203
	      int size = imm_size (n);
7204
	      offsetT val;
7205
 
7206
	      val = offset_in_range (i.op[n].imms->X_add_number,
7207
				     size);
7208
	      p = frag_more (size);
7209
	      md_number_to_chars (p, val, size);
7210
	    }
7211
	  else
7212
	    {
7213
	      /* Not absolute_section.
7214
		 Need a 32-bit fixup (don't support 8bit
7215
		 non-absolute imms).  Try to support other
7216
		 sizes ...  */
7217
	      enum bfd_reloc_code_real reloc_type;
7218
	      int size = imm_size (n);
7219
	      int sign;
7220
 
7221
	      if (i.types[n].bitfield.imm32s
7222
		  && (i.suffix == QWORD_MNEM_SUFFIX
7223
		      || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7224
		sign = 1;
7225
	      else
7226
		sign = 0;
7227
 
7228
	      p = frag_more (size);
7229
	      reloc_type = reloc (size, 0, sign, 0, i.reloc[n]);
7230
 
7231
	      /*   This is tough to explain.  We end up with this one if we
7232
	       * have operands that look like
7233
	       * "_GLOBAL_OFFSET_TABLE_+[.-.L284]".  The goal here is to
7234
	       * obtain the absolute address of the GOT, and it is strongly
7235
	       * preferable from a performance point of view to avoid using
7236
	       * a runtime relocation for this.  The actual sequence of
7237
	       * instructions often look something like:
7238
	       *
7239
	       *	call	.L66
7240
	       * .L66:
7241
	       *	popl	%ebx
7242
	       *	addl	$_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7243
	       *
7244
	       *   The call and pop essentially return the absolute address
7245
	       * of the label .L66 and store it in %ebx.  The linker itself
7246
	       * will ultimately change the first operand of the addl so
7247
	       * that %ebx points to the GOT, but to keep things simple, the
7248
	       * .o file must have this operand set so that it generates not
7249
	       * the absolute address of .L66, but the absolute address of
7250
	       * itself.  This allows the linker itself simply treat a GOTPC
7251
	       * relocation as asking for a pcrel offset to the GOT to be
7252
	       * added in, and the addend of the relocation is stored in the
7253
	       * operand field for the instruction itself.
7254
	       *
7255
	       *   Our job here is to fix the operand so that it would add
7256
	       * the correct offset so that %ebx would point to itself.  The
7257
	       * thing that is tricky is that .-.L66 will point to the
7258
	       * beginning of the instruction, so we need to further modify
7259
	       * the operand so that it will point to itself.  There are
7260
	       * other cases where you have something like:
7261
	       *
7262
	       *	.long	$_GLOBAL_OFFSET_TABLE_+[.-.L66]
7263
	       *
7264
	       * and here no correction would be required.  Internally in
7265
	       * the assembler we treat operands of this form as not being
7266
	       * pcrel since the '.' is explicitly mentioned, and I wonder
7267
	       * whether it would simplify matters to do it this way.  Who
7268
	       * knows.  In earlier versions of the PIC patches, the
7269
	       * pcrel_adjust field was used to store the correction, but
7270
	       * since the expression is not pcrel, I felt it would be
7271
	       * confusing to do it this way.  */
7272
 
7273
	      if ((reloc_type == BFD_RELOC_32
7274
		   || reloc_type == BFD_RELOC_X86_64_32S
7275
		   || reloc_type == BFD_RELOC_64)
7276
		  && GOT_symbol
7277
		  && GOT_symbol == i.op[n].imms->X_add_symbol
7278
		  && (i.op[n].imms->X_op == O_symbol
7279
		      || (i.op[n].imms->X_op == O_add
7280
			  && ((symbol_get_value_expression
7281
			       (i.op[n].imms->X_op_symbol)->X_op)
7282
			      == O_subtract))))
7283
		{
7284
		  offsetT add;
7285
 
7286
		  if (insn_start_frag == frag_now)
7287
		    add = (p - frag_now->fr_literal) - insn_start_off;
7288
		  else
7289
		    {
7290
		      fragS *fr;
7291
 
7292
		      add = insn_start_frag->fr_fix - insn_start_off;
7293
		      for (fr = insn_start_frag->fr_next;
7294
			   fr && fr != frag_now; fr = fr->fr_next)
7295
			add += fr->fr_fix;
7296
		      add += p - frag_now->fr_literal;
7297
		    }
7298
 
7299
		  if (!object_64bit)
7300
		    reloc_type = BFD_RELOC_386_GOTPC;
7301
		  else if (size == 4)
7302
		    reloc_type = BFD_RELOC_X86_64_GOTPC32;
7303
		  else if (size == 8)
7304
		    reloc_type = BFD_RELOC_X86_64_GOTPC64;
7305
		  i.op[n].imms->X_add_number += add;
7306
		}
7307
	      fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7308
			   i.op[n].imms, 0, reloc_type);
7309
	    }
7310
	}
7311
    }
7312
}
7313
 
7314
/* x86_cons_fix_new is called via the expression parsing code when a
7315
   reloc is needed.  We use this hook to get the correct .got reloc.  */
7316
static enum bfd_reloc_code_real got_reloc = NO_RELOC;
7317
static int cons_sign = -1;
7318
 
7319
void
7320
x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7321
		  expressionS *exp)
7322
{
7323
  enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, 0, got_reloc);
7324
 
7325
  got_reloc = NO_RELOC;
7326
 
7327
#ifdef TE_PE
7328
  if (exp->X_op == O_secrel)
7329
    {
7330
      exp->X_op = O_symbol;
7331
      r = BFD_RELOC_32_SECREL;
7332
    }
7333
#endif
7334
 
7335
  fix_new_exp (frag, off, len, exp, 0, r);
7336
}
7337
 
7338
/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7339
   purpose of the `.dc.a' internal pseudo-op.  */
7340
 
7341
int
7342
x86_address_bytes (void)
7343
{
7344
  if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7345
    return 4;
7346
  return stdoutput->arch_info->bits_per_address / 8;
7347
}
7348
 
7349
#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7350
    || defined (LEX_AT)
7351
# define lex_got(reloc, adjust, types, bnd_prefix) NULL
7352
#else
7353
/* Parse operands of the form
7354
   @GOTOFF+
7355
   and similar .plt or .got references.
7356
 
7357
   If we find one, set up the correct relocation in RELOC and copy the
7358
   input string, minus the `@GOTOFF' into a malloc'd buffer for
7359
   parsing by the calling routine.  Return this buffer, and if ADJUST
7360
   is non-null set it to the length of the string we removed from the
7361
   input line.  Otherwise return NULL.  */
7362
static char *
7363
lex_got (enum bfd_reloc_code_real *rel,
7364
	 int *adjust,
7365
	 i386_operand_type *types,
7366
	 int bnd_prefix)
7367
{
7368
  /* Some of the relocations depend on the size of what field is to
7369
     be relocated.  But in our callers i386_immediate and i386_displacement
7370
     we don't yet know the operand size (this will be set by insn
7371
     matching).  Hence we record the word32 relocation here,
7372
     and adjust the reloc according to the real size in reloc().  */
7373
  static const struct {
7374
    const char *str;
7375
    int len;
7376
    const enum bfd_reloc_code_real rel[2];
7377
    const i386_operand_type types64;
7378
  } gotrel[] = {
7379
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7380
    { STRING_COMMA_LEN ("SIZE"),      { BFD_RELOC_SIZE32,
7381
					BFD_RELOC_SIZE32 },
7382
      OPERAND_TYPE_IMM32_64 },
7383
#endif
7384
    { STRING_COMMA_LEN ("PLTOFF"),   { _dummy_first_bfd_reloc_code_real,
7385
				       BFD_RELOC_X86_64_PLTOFF64 },
7386
      OPERAND_TYPE_IMM64 },
7387
    { STRING_COMMA_LEN ("PLT"),      { BFD_RELOC_386_PLT32,
7388
				       BFD_RELOC_X86_64_PLT32    },
7389
      OPERAND_TYPE_IMM32_32S_DISP32 },
7390
    { STRING_COMMA_LEN ("GOTPLT"),   { _dummy_first_bfd_reloc_code_real,
7391
				       BFD_RELOC_X86_64_GOTPLT64 },
7392
      OPERAND_TYPE_IMM64_DISP64 },
7393
    { STRING_COMMA_LEN ("GOTOFF"),   { BFD_RELOC_386_GOTOFF,
7394
				       BFD_RELOC_X86_64_GOTOFF64 },
7395
      OPERAND_TYPE_IMM64_DISP64 },
7396
    { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7397
				       BFD_RELOC_X86_64_GOTPCREL },
7398
      OPERAND_TYPE_IMM32_32S_DISP32 },
7399
    { STRING_COMMA_LEN ("TLSGD"),    { BFD_RELOC_386_TLS_GD,
7400
				       BFD_RELOC_X86_64_TLSGD    },
7401
      OPERAND_TYPE_IMM32_32S_DISP32 },
7402
    { STRING_COMMA_LEN ("TLSLDM"),   { BFD_RELOC_386_TLS_LDM,
7403
				       _dummy_first_bfd_reloc_code_real },
7404
      OPERAND_TYPE_NONE },
7405
    { STRING_COMMA_LEN ("TLSLD"),    { _dummy_first_bfd_reloc_code_real,
7406
				       BFD_RELOC_X86_64_TLSLD    },
7407
      OPERAND_TYPE_IMM32_32S_DISP32 },
7408
    { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7409
				       BFD_RELOC_X86_64_GOTTPOFF },
7410
      OPERAND_TYPE_IMM32_32S_DISP32 },
7411
    { STRING_COMMA_LEN ("TPOFF"),    { BFD_RELOC_386_TLS_LE_32,
7412
				       BFD_RELOC_X86_64_TPOFF32  },
7413
      OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7414
    { STRING_COMMA_LEN ("NTPOFF"),   { BFD_RELOC_386_TLS_LE,
7415
				       _dummy_first_bfd_reloc_code_real },
7416
      OPERAND_TYPE_NONE },
7417
    { STRING_COMMA_LEN ("DTPOFF"),   { BFD_RELOC_386_TLS_LDO_32,
7418
				       BFD_RELOC_X86_64_DTPOFF32 },
7419
      OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7420
    { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7421
				       _dummy_first_bfd_reloc_code_real },
7422
      OPERAND_TYPE_NONE },
7423
    { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7424
				       _dummy_first_bfd_reloc_code_real },
7425
      OPERAND_TYPE_NONE },
7426
    { STRING_COMMA_LEN ("GOT"),      { BFD_RELOC_386_GOT32,
7427
				       BFD_RELOC_X86_64_GOT32    },
7428
      OPERAND_TYPE_IMM32_32S_64_DISP32 },
7429
    { STRING_COMMA_LEN ("TLSDESC"),  { BFD_RELOC_386_TLS_GOTDESC,
7430
				       BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7431
      OPERAND_TYPE_IMM32_32S_DISP32 },
7432
    { STRING_COMMA_LEN ("TLSCALL"),  { BFD_RELOC_386_TLS_DESC_CALL,
7433
				       BFD_RELOC_X86_64_TLSDESC_CALL },
7434
      OPERAND_TYPE_IMM32_32S_DISP32 },
7435
  };
7436
  char *cp;
7437
  unsigned int j;
7438
 
7439
#if defined (OBJ_MAYBE_ELF)
7440
  if (!IS_ELF)
7441
    return NULL;
7442
#endif
7443
 
7444
  for (cp = input_line_pointer; *cp != '@'; cp++)
7445
    if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7446
      return NULL;
7447
 
7448
  for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7449
    {
7450
      int len = gotrel[j].len;
7451
      if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7452
	{
7453
	  if (gotrel[j].rel[object_64bit] != 0)
7454
	    {
7455
	      int first, second;
7456
	      char *tmpbuf, *past_reloc;
7457
 
7458
	      *rel = gotrel[j].rel[object_64bit];
7459
 
7460
	      if (types)
7461
		{
7462
		  if (flag_code != CODE_64BIT)
7463
		    {
7464
		      types->bitfield.imm32 = 1;
7465
		      types->bitfield.disp32 = 1;
7466
		    }
7467
		  else
7468
		    *types = gotrel[j].types64;
7469
		}
7470
 
7471
	      if (j != 0 && GOT_symbol == NULL)
7472
		GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7473
 
7474
	      /* The length of the first part of our input line.  */
7475
	      first = cp - input_line_pointer;
7476
 
7477
	      /* The second part goes from after the reloc token until
7478
		 (and including) an end_of_line char or comma.  */
7479
	      past_reloc = cp + 1 + len;
7480
	      cp = past_reloc;
7481
	      while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7482
		++cp;
7483
	      second = cp + 1 - past_reloc;
7484
 
7485
	      /* Allocate and copy string.  The trailing NUL shouldn't
7486
		 be necessary, but be safe.  */
7487
	      tmpbuf = (char *) xmalloc (first + second + 2);
7488
	      memcpy (tmpbuf, input_line_pointer, first);
7489
	      if (second != 0 && *past_reloc != ' ')
7490
		/* Replace the relocation token with ' ', so that
7491
		   errors like foo@GOTOFF1 will be detected.  */
7492
		tmpbuf[first++] = ' ';
7493
	      else
7494
		/* Increment length by 1 if the relocation token is
7495
		   removed.  */
7496
		len++;
7497
	      if (adjust)
7498
		*adjust = len;
7499
	      memcpy (tmpbuf + first, past_reloc, second);
7500
	      tmpbuf[first + second] = '\0';
7501
	      if (bnd_prefix && *rel == BFD_RELOC_X86_64_PLT32)
7502
		*rel = BFD_RELOC_X86_64_PLT32_BND;
7503
	      return tmpbuf;
7504
	    }
7505
 
7506
	  as_bad (_("@%s reloc is not supported with %d-bit output format"),
7507
		  gotrel[j].str, 1 << (5 + object_64bit));
7508
	  return NULL;
7509
	}
7510
    }
7511
 
7512
  /* Might be a symbol version string.  Don't as_bad here.  */
7513
  return NULL;
7514
}
7515
#endif
7516
 
7517
#ifdef TE_PE
7518
#ifdef lex_got
7519
#undef lex_got
7520
#endif
7521
/* Parse operands of the form
7522
   @SECREL32+
7523
 
7524
   If we find one, set up the correct relocation in RELOC and copy the
7525
   input string, minus the `@SECREL32' into a malloc'd buffer for
7526
   parsing by the calling routine.  Return this buffer, and if ADJUST
7527
   is non-null set it to the length of the string we removed from the
7528
   input line.  Otherwise return NULL.
7529
 
7530
   This function is copied from the ELF version above adjusted for PE targets.  */
7531
 
7532
static char *
7533
lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7534
	 int *adjust ATTRIBUTE_UNUSED,
7535
	 i386_operand_type *types,
7536
	 int bnd_prefix ATTRIBUTE_UNUSED)
7537
{
7538
  static const struct
7539
  {
7540
    const char *str;
7541
    int len;
7542
    const enum bfd_reloc_code_real rel[2];
7543
    const i386_operand_type types64;
7544
  }
7545
  gotrel[] =
7546
  {
7547
    { STRING_COMMA_LEN ("SECREL32"),    { BFD_RELOC_32_SECREL,
7548
					  BFD_RELOC_32_SECREL },
7549
      OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7550
  };
7551
 
7552
  char *cp;
7553
  unsigned j;
7554
 
7555
  for (cp = input_line_pointer; *cp != '@'; cp++)
7556
    if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7557
      return NULL;
7558
 
7559
  for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7560
    {
7561
      int len = gotrel[j].len;
7562
 
7563
      if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7564
	{
7565
	  if (gotrel[j].rel[object_64bit] != 0)
7566
	    {
7567
	      int first, second;
7568
	      char *tmpbuf, *past_reloc;
7569
 
7570
	      *rel = gotrel[j].rel[object_64bit];
7571
	      if (adjust)
7572
		*adjust = len;
7573
 
7574
	      if (types)
7575
		{
7576
		  if (flag_code != CODE_64BIT)
7577
		    {
7578
		      types->bitfield.imm32 = 1;
7579
		      types->bitfield.disp32 = 1;
7580
		    }
7581
		  else
7582
		    *types = gotrel[j].types64;
7583
		}
7584
 
7585
	      /* The length of the first part of our input line.  */
7586
	      first = cp - input_line_pointer;
7587
 
7588
	      /* The second part goes from after the reloc token until
7589
		 (and including) an end_of_line char or comma.  */
7590
	      past_reloc = cp + 1 + len;
7591
	      cp = past_reloc;
7592
	      while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7593
		++cp;
7594
	      second = cp + 1 - past_reloc;
7595
 
7596
	      /* Allocate and copy string.  The trailing NUL shouldn't
7597
		 be necessary, but be safe.  */
7598
	      tmpbuf = (char *) xmalloc (first + second + 2);
7599
	      memcpy (tmpbuf, input_line_pointer, first);
7600
	      if (second != 0 && *past_reloc != ' ')
7601
		/* Replace the relocation token with ' ', so that
7602
		   errors like foo@SECLREL321 will be detected.  */
7603
		tmpbuf[first++] = ' ';
7604
	      memcpy (tmpbuf + first, past_reloc, second);
7605
	      tmpbuf[first + second] = '\0';
7606
	      return tmpbuf;
7607
	    }
7608
 
7609
	  as_bad (_("@%s reloc is not supported with %d-bit output format"),
7610
		  gotrel[j].str, 1 << (5 + object_64bit));
7611
	  return NULL;
7612
	}
7613
    }
7614
 
7615
  /* Might be a symbol version string.  Don't as_bad here.  */
7616
  return NULL;
7617
}
7618
 
7619
#endif /* TE_PE */
7620
 
7621
void
7622
x86_cons (expressionS *exp, int size)
7623
{
7624
  intel_syntax = -intel_syntax;
7625
 
7626
  exp->X_md = 0;
7627
  if (size == 4 || (object_64bit && size == 8))
7628
    {
7629
      /* Handle @GOTOFF and the like in an expression.  */
7630
      char *save;
7631
      char *gotfree_input_line;
7632
      int adjust = 0;
7633
 
7634
      save = input_line_pointer;
7635
      gotfree_input_line = lex_got (&got_reloc, &adjust, NULL, 0);
7636
      if (gotfree_input_line)
7637
	input_line_pointer = gotfree_input_line;
7638
 
7639
      expression (exp);
7640
 
7641
      if (gotfree_input_line)
7642
	{
7643
	  /* expression () has merrily parsed up to the end of line,
7644
	     or a comma - in the wrong buffer.  Transfer how far
7645
	     input_line_pointer has moved to the right buffer.  */
7646
	  input_line_pointer = (save
7647
				+ (input_line_pointer - gotfree_input_line)
7648
				+ adjust);
7649
	  free (gotfree_input_line);
7650
	  if (exp->X_op == O_constant
7651
	      || exp->X_op == O_absent
7652
	      || exp->X_op == O_illegal
7653
	      || exp->X_op == O_register
7654
	      || exp->X_op == O_big)
7655
	    {
7656
	      char c = *input_line_pointer;
7657
	      *input_line_pointer = 0;
7658
	      as_bad (_("missing or invalid expression `%s'"), save);
7659
	      *input_line_pointer = c;
7660
	    }
7661
	}
7662
    }
7663
  else
7664
    expression (exp);
7665
 
7666
  intel_syntax = -intel_syntax;
7667
 
7668
  if (intel_syntax)
7669
    i386_intel_simplify (exp);
7670
}
7671
 
7672
static void
7673
signed_cons (int size)
7674
{
7675
  if (flag_code == CODE_64BIT)
7676
    cons_sign = 1;
7677
  cons (size);
7678
  cons_sign = -1;
7679
}
7680
 
7681
#ifdef TE_PE
7682
static void
7683
pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
7684
{
7685
  expressionS exp;
7686
 
7687
  do
7688
    {
7689
      expression (&exp);
7690
      if (exp.X_op == O_symbol)
7691
	exp.X_op = O_secrel;
7692
 
7693
      emit_expr (&exp, 4);
7694
    }
7695
  while (*input_line_pointer++ == ',');
7696
 
7697
  input_line_pointer--;
7698
  demand_empty_rest_of_line ();
7699
}
7700
#endif
7701
 
7702
/* Handle Vector operations.  */
7703
 
7704
static char *
7705
check_VecOperations (char *op_string, char *op_end)
7706
{
7707
  const reg_entry *mask;
7708
  const char *saved;
7709
  char *end_op;
7710
 
7711
  while (*op_string
7712
	 && (op_end == NULL || op_string < op_end))
7713
    {
7714
      saved = op_string;
7715
      if (*op_string == '{')
7716
	{
7717
	  op_string++;
7718
 
7719
	  /* Check broadcasts.  */
7720
	  if (strncmp (op_string, "1to", 3) == 0)
7721
	    {
7722
	      int bcst_type;
7723
 
7724
	      if (i.broadcast)
7725
		goto duplicated_vec_op;
7726
 
7727
	      op_string += 3;
7728
	      if (*op_string == '8')
7729
		bcst_type = BROADCAST_1TO8;
7730
	      else if (*op_string == '1'
7731
		       && *(op_string+1) == '6')
7732
		{
7733
		  bcst_type = BROADCAST_1TO16;
7734
		  op_string++;
7735
		}
7736
	      else
7737
		{
7738
		  as_bad (_("Unsupported broadcast: `%s'"), saved);
7739
		  return NULL;
7740
		}
7741
	      op_string++;
7742
 
7743
	      broadcast_op.type = bcst_type;
7744
	      broadcast_op.operand = this_operand;
7745
	      i.broadcast = &broadcast_op;
7746
	    }
7747
	  /* Check masking operation.  */
7748
	  else if ((mask = parse_register (op_string, &end_op)) != NULL)
7749
	    {
7750
	      /* k0 can't be used for write mask.  */
7751
	      if (mask->reg_num == 0)
7752
		{
7753
		  as_bad (_("`%s' can't be used for write mask"),
7754
			  op_string);
7755
		  return NULL;
7756
		}
7757
 
7758
	      if (!i.mask)
7759
		{
7760
		  mask_op.mask = mask;
7761
		  mask_op.zeroing = 0;
7762
		  mask_op.operand = this_operand;
7763
		  i.mask = &mask_op;
7764
		}
7765
	      else
7766
		{
7767
		  if (i.mask->mask)
7768
		    goto duplicated_vec_op;
7769
 
7770
		  i.mask->mask = mask;
7771
 
7772
		  /* Only "{z}" is allowed here.  No need to check
7773
		     zeroing mask explicitly.  */
7774
		  if (i.mask->operand != this_operand)
7775
		    {
7776
		      as_bad (_("invalid write mask `%s'"), saved);
7777
		      return NULL;
7778
		    }
7779
		}
7780
 
7781
	      op_string = end_op;
7782
	    }
7783
	  /* Check zeroing-flag for masking operation.  */
7784
	  else if (*op_string == 'z')
7785
	    {
7786
	      if (!i.mask)
7787
		{
7788
		  mask_op.mask = NULL;
7789
		  mask_op.zeroing = 1;
7790
		  mask_op.operand = this_operand;
7791
		  i.mask = &mask_op;
7792
		}
7793
	      else
7794
		{
7795
		  if (i.mask->zeroing)
7796
		    {
7797
		    duplicated_vec_op:
7798
		      as_bad (_("duplicated `%s'"), saved);
7799
		      return NULL;
7800
		    }
7801
 
7802
		  i.mask->zeroing = 1;
7803
 
7804
		  /* Only "{%k}" is allowed here.  No need to check mask
7805
		     register explicitly.  */
7806
		  if (i.mask->operand != this_operand)
7807
		    {
7808
		      as_bad (_("invalid zeroing-masking `%s'"),
7809
			      saved);
7810
		      return NULL;
7811
		    }
7812
		}
7813
 
7814
	      op_string++;
7815
	    }
7816
	  else
7817
	    goto unknown_vec_op;
7818
 
7819
	  if (*op_string != '}')
7820
	    {
7821
	      as_bad (_("missing `}' in `%s'"), saved);
7822
	      return NULL;
7823
	    }
7824
	  op_string++;
7825
	  continue;
7826
	}
7827
    unknown_vec_op:
7828
      /* We don't know this one.  */
7829
      as_bad (_("unknown vector operation: `%s'"), saved);
7830
      return NULL;
7831
    }
7832
 
7833
  return op_string;
7834
}
7835
 
7836
static int
7837
i386_immediate (char *imm_start)
7838
{
7839
  char *save_input_line_pointer;
7840
  char *gotfree_input_line;
7841
  segT exp_seg = 0;
7842
  expressionS *exp;
7843
  i386_operand_type types;
7844
 
7845
  operand_type_set (&types, ~0);
7846
 
7847
  if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
7848
    {
7849
      as_bad (_("at most %d immediate operands are allowed"),
7850
	      MAX_IMMEDIATE_OPERANDS);
7851
      return 0;
7852
    }
7853
 
7854
  exp = &im_expressions[i.imm_operands++];
7855
  i.op[this_operand].imms = exp;
7856
 
7857
  if (is_space_char (*imm_start))
7858
    ++imm_start;
7859
 
7860
  save_input_line_pointer = input_line_pointer;
7861
  input_line_pointer = imm_start;
7862
 
7863
  gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types,
7864
				(i.bnd_prefix != NULL
7865
				 || add_bnd_prefix));
7866
  if (gotfree_input_line)
7867
    input_line_pointer = gotfree_input_line;
7868
 
7869
  exp_seg = expression (exp);
7870
 
7871
  SKIP_WHITESPACE ();
7872
 
7873
  /* Handle vector operations.  */
7874
  if (*input_line_pointer == '{')
7875
    {
7876
      input_line_pointer = check_VecOperations (input_line_pointer,
7877
						NULL);
7878
      if (input_line_pointer == NULL)
7879
	return 0;
7880
    }
7881
 
7882
  if (*input_line_pointer)
7883
    as_bad (_("junk `%s' after expression"), input_line_pointer);
7884
 
7885
  input_line_pointer = save_input_line_pointer;
7886
  if (gotfree_input_line)
7887
    {
7888
      free (gotfree_input_line);
7889
 
7890
      if (exp->X_op == O_constant || exp->X_op == O_register)
7891
	exp->X_op = O_illegal;
7892
    }
7893
 
7894
  return i386_finalize_immediate (exp_seg, exp, types, imm_start);
7895
}
7896
 
7897
static int
7898
i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
7899
			 i386_operand_type types, const char *imm_start)
7900
{
7901
  if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
7902
    {
7903
      if (imm_start)
7904
	as_bad (_("missing or invalid immediate expression `%s'"),
7905
		imm_start);
7906
      return 0;
7907
    }
7908
  else if (exp->X_op == O_constant)
7909
    {
7910
      /* Size it properly later.  */
7911
      i.types[this_operand].bitfield.imm64 = 1;
7912
      /* If not 64bit, sign extend val.  */
7913
      if (flag_code != CODE_64BIT
7914
	  && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
7915
	exp->X_add_number
7916
	  = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
7917
    }
7918
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
7919
  else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
7920
	   && exp_seg != absolute_section
7921
	   && exp_seg != text_section
7922
	   && exp_seg != data_section
7923
	   && exp_seg != bss_section
7924
	   && exp_seg != undefined_section
7925
	   && !bfd_is_com_section (exp_seg))
7926
    {
7927
      as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
7928
      return 0;
7929
    }
7930
#endif
7931
  else if (!intel_syntax && exp->X_op == O_register)
7932
    {
7933
      if (imm_start)
7934
	as_bad (_("illegal immediate register operand %s"), imm_start);
7935
      return 0;
7936
    }
7937
  else
7938
    {
7939
      /* This is an address.  The size of the address will be
7940
	 determined later, depending on destination register,
7941
	 suffix, or the default for the section.  */
7942
      i.types[this_operand].bitfield.imm8 = 1;
7943
      i.types[this_operand].bitfield.imm16 = 1;
7944
      i.types[this_operand].bitfield.imm32 = 1;
7945
      i.types[this_operand].bitfield.imm32s = 1;
7946
      i.types[this_operand].bitfield.imm64 = 1;
7947
      i.types[this_operand] = operand_type_and (i.types[this_operand],
7948
						types);
7949
    }
7950
 
7951
  return 1;
7952
}
7953
 
7954
static char *
7955
i386_scale (char *scale)
7956
{
7957
  offsetT val;
7958
  char *save = input_line_pointer;
7959
 
7960
  input_line_pointer = scale;
7961
  val = get_absolute_expression ();
7962
 
7963
  switch (val)
7964
    {
7965
    case 1:
7966
      i.log2_scale_factor = 0;
7967
      break;
7968
    case 2:
7969
      i.log2_scale_factor = 1;
7970
      break;
7971
    case 4:
7972
      i.log2_scale_factor = 2;
7973
      break;
7974
    case 8:
7975
      i.log2_scale_factor = 3;
7976
      break;
7977
    default:
7978
      {
7979
	char sep = *input_line_pointer;
7980
 
7981
	*input_line_pointer = '\0';
7982
	as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
7983
		scale);
7984
	*input_line_pointer = sep;
7985
	input_line_pointer = save;
7986
	return NULL;
7987
      }
7988
    }
7989
  if (i.log2_scale_factor != 0 && i.index_reg == 0)
7990
    {
7991
      as_warn (_("scale factor of %d without an index register"),
7992
	       1 << i.log2_scale_factor);
7993
      i.log2_scale_factor = 0;
7994
    }
7995
  scale = input_line_pointer;
7996
  input_line_pointer = save;
7997
  return scale;
7998
}
7999
 
8000
static int
8001
i386_displacement (char *disp_start, char *disp_end)
8002
{
8003
  expressionS *exp;
8004
  segT exp_seg = 0;
8005
  char *save_input_line_pointer;
8006
  char *gotfree_input_line;
8007
  int override;
8008
  i386_operand_type bigdisp, types = anydisp;
8009
  int ret;
8010
 
8011
  if (i.disp_operands == MAX_MEMORY_OPERANDS)
8012
    {
8013
      as_bad (_("at most %d displacement operands are allowed"),
8014
	      MAX_MEMORY_OPERANDS);
8015
      return 0;
8016
    }
8017
 
8018
  operand_type_set (&bigdisp, 0);
8019
  if ((i.types[this_operand].bitfield.jumpabsolute)
8020
      || (!current_templates->start->opcode_modifier.jump
8021
	  && !current_templates->start->opcode_modifier.jumpdword))
8022
    {
8023
      bigdisp.bitfield.disp32 = 1;
8024
      override = (i.prefix[ADDR_PREFIX] != 0);
8025
      if (flag_code == CODE_64BIT)
8026
	{
8027
	  if (!override)
8028
	    {
8029
	      bigdisp.bitfield.disp32s = 1;
8030
	      bigdisp.bitfield.disp64 = 1;
8031
	    }
8032
	}
8033
      else if ((flag_code == CODE_16BIT) ^ override)
8034
	{
8035
	  bigdisp.bitfield.disp32 = 0;
8036
	  bigdisp.bitfield.disp16 = 1;
8037
	}
8038
    }
8039
  else
8040
    {
8041
      /* For PC-relative branches, the width of the displacement
8042
	 is dependent upon data size, not address size.  */
8043
      override = (i.prefix[DATA_PREFIX] != 0);
8044
      if (flag_code == CODE_64BIT)
8045
	{
8046
	  if (override || i.suffix == WORD_MNEM_SUFFIX)
8047
	    bigdisp.bitfield.disp16 = 1;
8048
	  else
8049
	    {
8050
	      bigdisp.bitfield.disp32 = 1;
8051
	      bigdisp.bitfield.disp32s = 1;
8052
	    }
8053
	}
8054
      else
8055
	{
8056
	  if (!override)
8057
	    override = (i.suffix == (flag_code != CODE_16BIT
8058
				     ? WORD_MNEM_SUFFIX
8059
				     : LONG_MNEM_SUFFIX));
8060
	  bigdisp.bitfield.disp32 = 1;
8061
	  if ((flag_code == CODE_16BIT) ^ override)
8062
	    {
8063
	      bigdisp.bitfield.disp32 = 0;
8064
	      bigdisp.bitfield.disp16 = 1;
8065
	    }
8066
	}
8067
    }
8068
  i.types[this_operand] = operand_type_or (i.types[this_operand],
8069
					   bigdisp);
8070
 
8071
  exp = &disp_expressions[i.disp_operands];
8072
  i.op[this_operand].disps = exp;
8073
  i.disp_operands++;
8074
  save_input_line_pointer = input_line_pointer;
8075
  input_line_pointer = disp_start;
8076
  END_STRING_AND_SAVE (disp_end);
8077
 
8078
#ifndef GCC_ASM_O_HACK
8079
#define GCC_ASM_O_HACK 0
8080
#endif
8081
#if GCC_ASM_O_HACK
8082
  END_STRING_AND_SAVE (disp_end + 1);
8083
  if (i.types[this_operand].bitfield.baseIndex
8084
      && displacement_string_end[-1] == '+')
8085
    {
8086
      /* This hack is to avoid a warning when using the "o"
8087
	 constraint within gcc asm statements.
8088
	 For instance:
8089
 
8090
	 #define _set_tssldt_desc(n,addr,limit,type) \
8091
	 __asm__ __volatile__ ( \
8092
	 "movw %w2,%0\n\t" \
8093
	 "movw %w1,2+%0\n\t" \
8094
	 "rorl $16,%1\n\t" \
8095
	 "movb %b1,4+%0\n\t" \
8096
	 "movb %4,5+%0\n\t" \
8097
	 "movb $0,6+%0\n\t" \
8098
	 "movb %h1,7+%0\n\t" \
8099
	 "rorl $16,%1" \
8100
	 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8101
 
8102
	 This works great except that the output assembler ends
8103
	 up looking a bit weird if it turns out that there is
8104
	 no offset.  You end up producing code that looks like:
8105
 
8106
	 #APP
8107
	 movw $235,(%eax)
8108
	 movw %dx,2+(%eax)
8109
	 rorl $16,%edx
8110
	 movb %dl,4+(%eax)
8111
	 movb $137,5+(%eax)
8112
	 movb $0,6+(%eax)
8113
	 movb %dh,7+(%eax)
8114
	 rorl $16,%edx
8115
	 #NO_APP
8116
 
8117
	 So here we provide the missing zero.  */
8118
 
8119
      *displacement_string_end = '0';
8120
    }
8121
#endif
8122
  gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types,
8123
				(i.bnd_prefix != NULL
8124
				 || add_bnd_prefix));
8125
  if (gotfree_input_line)
8126
    input_line_pointer = gotfree_input_line;
8127
 
8128
  exp_seg = expression (exp);
8129
 
8130
  SKIP_WHITESPACE ();
8131
  if (*input_line_pointer)
8132
    as_bad (_("junk `%s' after expression"), input_line_pointer);
8133
#if GCC_ASM_O_HACK
8134
  RESTORE_END_STRING (disp_end + 1);
8135
#endif
8136
  input_line_pointer = save_input_line_pointer;
8137
  if (gotfree_input_line)
8138
    {
8139
      free (gotfree_input_line);
8140
 
8141
      if (exp->X_op == O_constant || exp->X_op == O_register)
8142
	exp->X_op = O_illegal;
8143
    }
8144
 
8145
  ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8146
 
8147
  RESTORE_END_STRING (disp_end);
8148
 
8149
  return ret;
8150
}
8151
 
8152
static int
8153
i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8154
			    i386_operand_type types, const char *disp_start)
8155
{
8156
  i386_operand_type bigdisp;
8157
  int ret = 1;
8158
 
8159
  /* We do this to make sure that the section symbol is in
8160
     the symbol table.  We will ultimately change the relocation
8161
     to be relative to the beginning of the section.  */
8162
  if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8163
      || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8164
      || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8165
    {
8166
      if (exp->X_op != O_symbol)
8167
	goto inv_disp;
8168
 
8169
      if (S_IS_LOCAL (exp->X_add_symbol)
8170
	  && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8171
	  && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8172
	section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8173
      exp->X_op = O_subtract;
8174
      exp->X_op_symbol = GOT_symbol;
8175
      if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8176
	i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8177
      else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8178
	i.reloc[this_operand] = BFD_RELOC_64;
8179
      else
8180
	i.reloc[this_operand] = BFD_RELOC_32;
8181
    }
8182
 
8183
  else if (exp->X_op == O_absent
8184
	   || exp->X_op == O_illegal
8185
	   || exp->X_op == O_big)
8186
    {
8187
    inv_disp:
8188
      as_bad (_("missing or invalid displacement expression `%s'"),
8189
	      disp_start);
8190
      ret = 0;
8191
    }
8192
 
8193
  else if (flag_code == CODE_64BIT
8194
	   && !i.prefix[ADDR_PREFIX]
8195
	   && exp->X_op == O_constant)
8196
    {
8197
      /* Since displacement is signed extended to 64bit, don't allow
8198
	 disp32 and turn off disp32s if they are out of range.  */
8199
      i.types[this_operand].bitfield.disp32 = 0;
8200
      if (!fits_in_signed_long (exp->X_add_number))
8201
	{
8202
	  i.types[this_operand].bitfield.disp32s = 0;
8203
	  if (i.types[this_operand].bitfield.baseindex)
8204
	    {
8205
	      as_bad (_("0x%lx out range of signed 32bit displacement"),
8206
		      (long) exp->X_add_number);
8207
	      ret = 0;
8208
	    }
8209
	}
8210
    }
8211
 
8212
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8213
  else if (exp->X_op != O_constant
8214
	   && OUTPUT_FLAVOR == bfd_target_aout_flavour
8215
	   && exp_seg != absolute_section
8216
	   && exp_seg != text_section
8217
	   && exp_seg != data_section
8218
	   && exp_seg != bss_section
8219
	   && exp_seg != undefined_section
8220
	   && !bfd_is_com_section (exp_seg))
8221
    {
8222
      as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8223
      ret = 0;
8224
    }
8225
#endif
8226
 
8227
  /* Check if this is a displacement only operand.  */
8228
  bigdisp = i.types[this_operand];
8229
  bigdisp.bitfield.disp8 = 0;
8230
  bigdisp.bitfield.disp16 = 0;
8231
  bigdisp.bitfield.disp32 = 0;
8232
  bigdisp.bitfield.disp32s = 0;
8233
  bigdisp.bitfield.disp64 = 0;
8234
  if (operand_type_all_zero (&bigdisp))
8235
    i.types[this_operand] = operand_type_and (i.types[this_operand],
8236
					      types);
8237
 
8238
  return ret;
8239
}
8240
 
8241
/* Make sure the memory operand we've been dealt is valid.
8242
   Return 1 on success, 0 on a failure.  */
8243
 
8244
static int
8245
i386_index_check (const char *operand_string)
8246
{
8247
  const char *kind = "base/index";
8248
  enum flag_code addr_mode;
8249
 
8250
  if (i.prefix[ADDR_PREFIX])
8251
    addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8252
  else
8253
    {
8254
      addr_mode = flag_code;
8255
 
8256
#if INFER_ADDR_PREFIX
8257
      if (i.mem_operands == 0)
8258
	{
8259
	  /* Infer address prefix from the first memory operand.  */
8260
	  const reg_entry *addr_reg = i.base_reg;
8261
 
8262
	  if (addr_reg == NULL)
8263
	    addr_reg = i.index_reg;
8264
 
8265
	  if (addr_reg)
8266
	    {
8267
	      if (addr_reg->reg_num == RegEip
8268
		  || addr_reg->reg_num == RegEiz
8269
		  || addr_reg->reg_type.bitfield.reg32)
8270
		addr_mode = CODE_32BIT;
8271
	      else if (flag_code != CODE_64BIT
8272
		       && addr_reg->reg_type.bitfield.reg16)
8273
		addr_mode = CODE_16BIT;
8274
 
8275
	      if (addr_mode != flag_code)
8276
		{
8277
		  i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8278
		  i.prefixes += 1;
8279
		  /* Change the size of any displacement too.  At most one
8280
		     of Disp16 or Disp32 is set.
8281
		     FIXME.  There doesn't seem to be any real need for
8282
		     separate Disp16 and Disp32 flags.  The same goes for
8283
		     Imm16 and Imm32.  Removing them would probably clean
8284
		     up the code quite a lot.  */
8285
		  if (flag_code != CODE_64BIT
8286
		      && (i.types[this_operand].bitfield.disp16
8287
			  || i.types[this_operand].bitfield.disp32))
8288
		    i.types[this_operand]
8289
		      = operand_type_xor (i.types[this_operand], disp16_32);
8290
		}
8291
	    }
8292
	}
8293
#endif
8294
    }
8295
 
8296
  if (current_templates->start->opcode_modifier.isstring
8297
      && !current_templates->start->opcode_modifier.immext
8298
      && (current_templates->end[-1].opcode_modifier.isstring
8299
	  || i.mem_operands))
8300
    {
8301
      /* Memory operands of string insns are special in that they only allow
8302
	 a single register (rDI, rSI, or rBX) as their memory address.  */
8303
      const reg_entry *expected_reg;
8304
      static const char *di_si[][2] =
8305
	{
8306
	  { "esi", "edi" },
8307
	  { "si", "di" },
8308
	  { "rsi", "rdi" }
8309
	};
8310
      static const char *bx[] = { "ebx", "bx", "rbx" };
8311
 
8312
      kind = "string address";
8313
 
8314
      if (current_templates->start->opcode_modifier.w)
8315
	{
8316
	  i386_operand_type type = current_templates->end[-1].operand_types[0];
8317
 
8318
	  if (!type.bitfield.baseindex
8319
	      || ((!i.mem_operands != !intel_syntax)
8320
		  && current_templates->end[-1].operand_types[1]
8321
		     .bitfield.baseindex))
8322
	    type = current_templates->end[-1].operand_types[1];
8323
	  expected_reg = hash_find (reg_hash,
8324
				    di_si[addr_mode][type.bitfield.esseg]);
8325
 
8326
	}
8327
      else
8328
	expected_reg = hash_find (reg_hash, bx[addr_mode]);
8329
 
8330
      if (i.base_reg != expected_reg
8331
	  || i.index_reg
8332
	  || operand_type_check (i.types[this_operand], disp))
8333
	{
8334
	  /* The second memory operand must have the same size as
8335
	     the first one.  */
8336
	  if (i.mem_operands
8337
	      && i.base_reg
8338
	      && !((addr_mode == CODE_64BIT
8339
		    && i.base_reg->reg_type.bitfield.reg64)
8340
		   || (addr_mode == CODE_32BIT
8341
		       ? i.base_reg->reg_type.bitfield.reg32
8342
		       : i.base_reg->reg_type.bitfield.reg16)))
8343
	    goto bad_address;
8344
 
8345
	  as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8346
		   operand_string,
8347
		   intel_syntax ? '[' : '(',
8348
		   register_prefix,
8349
		   expected_reg->reg_name,
8350
		   intel_syntax ? ']' : ')');
8351
	  return 1;
8352
	}
8353
      else
8354
	return 1;
8355
 
8356
bad_address:
8357
      as_bad (_("`%s' is not a valid %s expression"),
8358
	      operand_string, kind);
8359
      return 0;
8360
    }
8361
  else
8362
    {
8363
      if (addr_mode != CODE_16BIT)
8364
	{
8365
	  /* 32-bit/64-bit checks.  */
8366
	  if ((i.base_reg
8367
	       && (addr_mode == CODE_64BIT
8368
		   ? !i.base_reg->reg_type.bitfield.reg64
8369
		   : !i.base_reg->reg_type.bitfield.reg32)
8370
	       && (i.index_reg
8371
		   || (i.base_reg->reg_num
8372
		       != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8373
	      || (i.index_reg
8374
		  && !i.index_reg->reg_type.bitfield.regxmm
8375
		  && !i.index_reg->reg_type.bitfield.regymm
8376
		  && !i.index_reg->reg_type.bitfield.regzmm
8377
		  && ((addr_mode == CODE_64BIT
8378
		       ? !(i.index_reg->reg_type.bitfield.reg64
8379
			   || i.index_reg->reg_num == RegRiz)
8380
		       : !(i.index_reg->reg_type.bitfield.reg32
8381
			   || i.index_reg->reg_num == RegEiz))
8382
		      || !i.index_reg->reg_type.bitfield.baseindex)))
8383
	    goto bad_address;
8384
	}
8385
      else
8386
	{
8387
	  /* 16-bit checks.  */
8388
	  if ((i.base_reg
8389
	       && (!i.base_reg->reg_type.bitfield.reg16
8390
		   || !i.base_reg->reg_type.bitfield.baseindex))
8391
	      || (i.index_reg
8392
		  && (!i.index_reg->reg_type.bitfield.reg16
8393
		      || !i.index_reg->reg_type.bitfield.baseindex
8394
		      || !(i.base_reg
8395
			   && i.base_reg->reg_num < 6
8396
			   && i.index_reg->reg_num >= 6
8397
			   && i.log2_scale_factor == 0))))
8398
	    goto bad_address;
8399
	}
8400
    }
8401
  return 1;
8402
}
8403
 
8404
/* Handle vector immediates.  */
8405
 
8406
static int
8407
RC_SAE_immediate (const char *imm_start)
8408
{
8409
  unsigned int match_found, j;
8410
  const char *pstr = imm_start;
8411
  expressionS *exp;
8412
 
8413
  if (*pstr != '{')
8414
    return 0;
8415
 
8416
  pstr++;
8417
  match_found = 0;
8418
  for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8419
    {
8420
      if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8421
	{
8422
	  if (!i.rounding)
8423
	    {
8424
	      rc_op.type = RC_NamesTable[j].type;
8425
	      rc_op.operand = this_operand;
8426
	      i.rounding = &rc_op;
8427
	    }
8428
	  else
8429
	    {
8430
	      as_bad (_("duplicated `%s'"), imm_start);
8431
	      return 0;
8432
	    }
8433
	  pstr += RC_NamesTable[j].len;
8434
	  match_found = 1;
8435
	  break;
8436
	}
8437
    }
8438
  if (!match_found)
8439
    return 0;
8440
 
8441
  if (*pstr++ != '}')
8442
    {
8443
      as_bad (_("Missing '}': '%s'"), imm_start);
8444
      return 0;
8445
    }
8446
  /* RC/SAE immediate string should contain nothing more.  */;
8447
  if (*pstr != 0)
8448
    {
8449
      as_bad (_("Junk after '}': '%s'"), imm_start);
8450
      return 0;
8451
    }
8452
 
8453
  exp = &im_expressions[i.imm_operands++];
8454
  i.op[this_operand].imms = exp;
8455
 
8456
  exp->X_op = O_constant;
8457
  exp->X_add_number = 0;
8458
  exp->X_add_symbol = (symbolS *) 0;
8459
  exp->X_op_symbol = (symbolS *) 0;
8460
 
8461
  i.types[this_operand].bitfield.imm8 = 1;
8462
  return 1;
8463
}
8464
 
8465
/* Parse OPERAND_STRING into the i386_insn structure I.  Returns zero
8466
   on error.  */
8467
 
8468
static int
8469
i386_att_operand (char *operand_string)
8470
{
8471
  const reg_entry *r;
8472
  char *end_op;
8473
  char *op_string = operand_string;
8474
 
8475
  if (is_space_char (*op_string))
8476
    ++op_string;
8477
 
8478
  /* We check for an absolute prefix (differentiating,
8479
     for example, 'jmp pc_relative_label' from 'jmp *absolute_label'.  */
8480
  if (*op_string == ABSOLUTE_PREFIX)
8481
    {
8482
      ++op_string;
8483
      if (is_space_char (*op_string))
8484
	++op_string;
8485
      i.types[this_operand].bitfield.jumpabsolute = 1;
8486
    }
8487
 
8488
  /* Check if operand is a register.  */
8489
  if ((r = parse_register (op_string, &end_op)) != NULL)
8490
    {
8491
      i386_operand_type temp;
8492
 
8493
      /* Check for a segment override by searching for ':' after a
8494
	 segment register.  */
8495
      op_string = end_op;
8496
      if (is_space_char (*op_string))
8497
	++op_string;
8498
      if (*op_string == ':'
8499
	  && (r->reg_type.bitfield.sreg2
8500
	      || r->reg_type.bitfield.sreg3))
8501
	{
8502
	  switch (r->reg_num)
8503
	    {
8504
	    case 0:
8505
	      i.seg[i.mem_operands] = &es;
8506
	      break;
8507
	    case 1:
8508
	      i.seg[i.mem_operands] = &cs;
8509
	      break;
8510
	    case 2:
8511
	      i.seg[i.mem_operands] = &ss;
8512
	      break;
8513
	    case 3:
8514
	      i.seg[i.mem_operands] = &ds;
8515
	      break;
8516
	    case 4:
8517
	      i.seg[i.mem_operands] = &fs;
8518
	      break;
8519
	    case 5:
8520
	      i.seg[i.mem_operands] = &gs;
8521
	      break;
8522
	    }
8523
 
8524
	  /* Skip the ':' and whitespace.  */
8525
	  ++op_string;
8526
	  if (is_space_char (*op_string))
8527
	    ++op_string;
8528
 
8529
	  if (!is_digit_char (*op_string)
8530
	      && !is_identifier_char (*op_string)
8531
	      && *op_string != '('
8532
	      && *op_string != ABSOLUTE_PREFIX)
8533
	    {
8534
	      as_bad (_("bad memory operand `%s'"), op_string);
8535
	      return 0;
8536
	    }
8537
	  /* Handle case of %es:*foo.  */
8538
	  if (*op_string == ABSOLUTE_PREFIX)
8539
	    {
8540
	      ++op_string;
8541
	      if (is_space_char (*op_string))
8542
		++op_string;
8543
	      i.types[this_operand].bitfield.jumpabsolute = 1;
8544
	    }
8545
	  goto do_memory_reference;
8546
	}
8547
 
8548
      /* Handle vector operations.  */
8549
      if (*op_string == '{')
8550
	{
8551
	  op_string = check_VecOperations (op_string, NULL);
8552
	  if (op_string == NULL)
8553
	    return 0;
8554
	}
8555
 
8556
      if (*op_string)
8557
	{
8558
	  as_bad (_("junk `%s' after register"), op_string);
8559
	  return 0;
8560
	}
8561
      temp = r->reg_type;
8562
      temp.bitfield.baseindex = 0;
8563
      i.types[this_operand] = operand_type_or (i.types[this_operand],
8564
					       temp);
8565
      i.types[this_operand].bitfield.unspecified = 0;
8566
      i.op[this_operand].regs = r;
8567
      i.reg_operands++;
8568
    }
8569
  else if (*op_string == REGISTER_PREFIX)
8570
    {
8571
      as_bad (_("bad register name `%s'"), op_string);
8572
      return 0;
8573
    }
8574
  else if (*op_string == IMMEDIATE_PREFIX)
8575
    {
8576
      ++op_string;
8577
      if (i.types[this_operand].bitfield.jumpabsolute)
8578
	{
8579
	  as_bad (_("immediate operand illegal with absolute jump"));
8580
	  return 0;
8581
	}
8582
      if (!i386_immediate (op_string))
8583
	return 0;
8584
    }
8585
  else if (RC_SAE_immediate (operand_string))
8586
    {
8587
      /* If it is a RC or SAE immediate, do nothing.  */
8588
      ;
8589
    }
8590
  else if (is_digit_char (*op_string)
8591
	   || is_identifier_char (*op_string)
8592
	   || *op_string == '(')
8593
    {
8594
      /* This is a memory reference of some sort.  */
8595
      char *base_string;
8596
 
8597
      /* Start and end of displacement string expression (if found).  */
8598
      char *displacement_string_start;
8599
      char *displacement_string_end;
8600
      char *vop_start;
8601
 
8602
    do_memory_reference:
8603
      if ((i.mem_operands == 1
8604
	   && !current_templates->start->opcode_modifier.isstring)
8605
	  || i.mem_operands == 2)
8606
	{
8607
	  as_bad (_("too many memory references for `%s'"),
8608
		  current_templates->start->name);
8609
	  return 0;
8610
	}
8611
 
8612
      /* Check for base index form.  We detect the base index form by
8613
	 looking for an ')' at the end of the operand, searching
8614
	 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8615
	 after the '('.  */
8616
      base_string = op_string + strlen (op_string);
8617
 
8618
      /* Handle vector operations.  */
8619
      vop_start = strchr (op_string, '{');
8620
      if (vop_start && vop_start < base_string)
8621
	{
8622
	  if (check_VecOperations (vop_start, base_string) == NULL)
8623
	    return 0;
8624
	  base_string = vop_start;
8625
	}
8626
 
8627
      --base_string;
8628
      if (is_space_char (*base_string))
8629
	--base_string;
8630
 
8631
      /* If we only have a displacement, set-up for it to be parsed later.  */
8632
      displacement_string_start = op_string;
8633
      displacement_string_end = base_string + 1;
8634
 
8635
      if (*base_string == ')')
8636
	{
8637
	  char *temp_string;
8638
	  unsigned int parens_balanced = 1;
8639
	  /* We've already checked that the number of left & right ()'s are
8640
	     equal, so this loop will not be infinite.  */
8641
	  do
8642
	    {
8643
	      base_string--;
8644
	      if (*base_string == ')')
8645
		parens_balanced++;
8646
	      if (*base_string == '(')
8647
		parens_balanced--;
8648
	    }
8649
	  while (parens_balanced);
8650
 
8651
	  temp_string = base_string;
8652
 
8653
	  /* Skip past '(' and whitespace.  */
8654
	  ++base_string;
8655
	  if (is_space_char (*base_string))
8656
	    ++base_string;
8657
 
8658
	  if (*base_string == ','
8659
	      || ((i.base_reg = parse_register (base_string, &end_op))
8660
		  != NULL))
8661
	    {
8662
	      displacement_string_end = temp_string;
8663
 
8664
	      i.types[this_operand].bitfield.baseindex = 1;
8665
 
8666
	      if (i.base_reg)
8667
		{
8668
		  base_string = end_op;
8669
		  if (is_space_char (*base_string))
8670
		    ++base_string;
8671
		}
8672
 
8673
	      /* There may be an index reg or scale factor here.  */
8674
	      if (*base_string == ',')
8675
		{
8676
		  ++base_string;
8677
		  if (is_space_char (*base_string))
8678
		    ++base_string;
8679
 
8680
		  if ((i.index_reg = parse_register (base_string, &end_op))
8681
		      != NULL)
8682
		    {
8683
		      base_string = end_op;
8684
		      if (is_space_char (*base_string))
8685
			++base_string;
8686
		      if (*base_string == ',')
8687
			{
8688
			  ++base_string;
8689
			  if (is_space_char (*base_string))
8690
			    ++base_string;
8691
			}
8692
		      else if (*base_string != ')')
8693
			{
8694
			  as_bad (_("expecting `,' or `)' "
8695
				    "after index register in `%s'"),
8696
				  operand_string);
8697
			  return 0;
8698
			}
8699
		    }
8700
		  else if (*base_string == REGISTER_PREFIX)
8701
		    {
8702
		      end_op = strchr (base_string, ',');
8703
		      if (end_op)
8704
			*end_op = '\0';
8705
		      as_bad (_("bad register name `%s'"), base_string);
8706
		      return 0;
8707
		    }
8708
 
8709
		  /* Check for scale factor.  */
8710
		  if (*base_string != ')')
8711
		    {
8712
		      char *end_scale = i386_scale (base_string);
8713
 
8714
		      if (!end_scale)
8715
			return 0;
8716
 
8717
		      base_string = end_scale;
8718
		      if (is_space_char (*base_string))
8719
			++base_string;
8720
		      if (*base_string != ')')
8721
			{
8722
			  as_bad (_("expecting `)' "
8723
				    "after scale factor in `%s'"),
8724
				  operand_string);
8725
			  return 0;
8726
			}
8727
		    }
8728
		  else if (!i.index_reg)
8729
		    {
8730
		      as_bad (_("expecting index register or scale factor "
8731
				"after `,'; got '%c'"),
8732
			      *base_string);
8733
		      return 0;
8734
		    }
8735
		}
8736
	      else if (*base_string != ')')
8737
		{
8738
		  as_bad (_("expecting `,' or `)' "
8739
			    "after base register in `%s'"),
8740
			  operand_string);
8741
		  return 0;
8742
		}
8743
	    }
8744
	  else if (*base_string == REGISTER_PREFIX)
8745
	    {
8746
	      end_op = strchr (base_string, ',');
8747
	      if (end_op)
8748
		*end_op = '\0';
8749
	      as_bad (_("bad register name `%s'"), base_string);
8750
	      return 0;
8751
	    }
8752
	}
8753
 
8754
      /* If there's an expression beginning the operand, parse it,
8755
	 assuming displacement_string_start and
8756
	 displacement_string_end are meaningful.  */
8757
      if (displacement_string_start != displacement_string_end)
8758
	{
8759
	  if (!i386_displacement (displacement_string_start,
8760
				  displacement_string_end))
8761
	    return 0;
8762
	}
8763
 
8764
      /* Special case for (%dx) while doing input/output op.  */
8765
      if (i.base_reg
8766
	  && operand_type_equal (&i.base_reg->reg_type,
8767
				 ®16_inoutportreg)
8768
	  && i.index_reg == 0
8769
	  && i.log2_scale_factor == 0
8770
	  && i.seg[i.mem_operands] == 0
8771
	  && !operand_type_check (i.types[this_operand], disp))
8772
	{
8773
	  i.types[this_operand] = inoutportreg;
8774
	  return 1;
8775
	}
8776
 
8777
      if (i386_index_check (operand_string) == 0)
8778
	return 0;
8779
      i.types[this_operand].bitfield.mem = 1;
8780
      i.mem_operands++;
8781
    }
8782
  else
8783
    {
8784
      /* It's not a memory operand; argh!  */
8785
      as_bad (_("invalid char %s beginning operand %d `%s'"),
8786
	      output_invalid (*op_string),
8787
	      this_operand + 1,
8788
	      op_string);
8789
      return 0;
8790
    }
8791
  return 1;			/* Normal return.  */
8792
}
8793
 
8794
/* Calculate the maximum variable size (i.e., excluding fr_fix)
8795
   that an rs_machine_dependent frag may reach.  */
8796
 
8797
unsigned int
8798
i386_frag_max_var (fragS *frag)
8799
{
8800
  /* The only relaxable frags are for jumps.
8801
     Unconditional jumps can grow by 4 bytes and others by 5 bytes.  */
8802
  gas_assert (frag->fr_type == rs_machine_dependent);
8803
  return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
8804
}
8805
 
8806
/* md_estimate_size_before_relax()
8807
 
8808
   Called just before relax() for rs_machine_dependent frags.  The x86
8809
   assembler uses these frags to handle variable size jump
8810
   instructions.
8811
 
8812
   Any symbol that is now undefined will not become defined.
8813
   Return the correct fr_subtype in the frag.
8814
   Return the initial "guess for variable size of frag" to caller.
8815
   The guess is actually the growth beyond the fixed part.  Whatever
8816
   we do to grow the fixed or variable part contributes to our
8817
   returned value.  */
8818
 
8819
int
8820
md_estimate_size_before_relax (fragS *fragP, segT segment)
8821
{
8822
  /* We've already got fragP->fr_subtype right;  all we have to do is
8823
     check for un-relaxable symbols.  On an ELF system, we can't relax
8824
     an externally visible symbol, because it may be overridden by a
8825
     shared library.  */
8826
  if (S_GET_SEGMENT (fragP->fr_symbol) != segment
8827
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8828
      || (IS_ELF
8829
	  && (S_IS_EXTERNAL (fragP->fr_symbol)
8830
	      || S_IS_WEAK (fragP->fr_symbol)
8831
	      || ((symbol_get_bfdsym (fragP->fr_symbol)->flags
8832
		   & BSF_GNU_INDIRECT_FUNCTION))))
8833
#endif
8834
#if defined (OBJ_COFF) && defined (TE_PE)
8835
      || (OUTPUT_FLAVOR == bfd_target_coff_flavour
8836
	  && S_IS_WEAK (fragP->fr_symbol))
8837
#endif
8838
      )
8839
    {
8840
      /* Symbol is undefined in this segment, or we need to keep a
8841
	 reloc so that weak symbols can be overridden.  */
8842
      int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
8843
      enum bfd_reloc_code_real reloc_type;
8844
      unsigned char *opcode;
8845
      int old_fr_fix;
8846
 
8847
      if (fragP->fr_var != NO_RELOC)
8848
	reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
8849
      else if (size == 2)
8850
	reloc_type = BFD_RELOC_16_PCREL;
8851
      else
8852
	reloc_type = BFD_RELOC_32_PCREL;
8853
 
8854
      old_fr_fix = fragP->fr_fix;
8855
      opcode = (unsigned char *) fragP->fr_opcode;
8856
 
8857
      switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
8858
	{
8859
	case UNCOND_JUMP:
8860
	  /* Make jmp (0xeb) a (d)word displacement jump.  */
8861
	  opcode[0] = 0xe9;
8862
	  fragP->fr_fix += size;
8863
	  fix_new (fragP, old_fr_fix, size,
8864
		   fragP->fr_symbol,
8865
		   fragP->fr_offset, 1,
8866
		   reloc_type);
8867
	  break;
8868
 
8869
	case COND_JUMP86:
8870
	  if (size == 2
8871
	      && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
8872
	    {
8873
	      /* Negate the condition, and branch past an
8874
		 unconditional jump.  */
8875
	      opcode[0] ^= 1;
8876
	      opcode[1] = 3;
8877
	      /* Insert an unconditional jump.  */
8878
	      opcode[2] = 0xe9;
8879
	      /* We added two extra opcode bytes, and have a two byte
8880
		 offset.  */
8881
	      fragP->fr_fix += 2 + 2;
8882
	      fix_new (fragP, old_fr_fix + 2, 2,
8883
		       fragP->fr_symbol,
8884
		       fragP->fr_offset, 1,
8885
		       reloc_type);
8886
	      break;
8887
	    }
8888
	  /* Fall through.  */
8889
 
8890
	case COND_JUMP:
8891
	  if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
8892
	    {
8893
	      fixS *fixP;
8894
 
8895
	      fragP->fr_fix += 1;
8896
	      fixP = fix_new (fragP, old_fr_fix, 1,
8897
			      fragP->fr_symbol,
8898
			      fragP->fr_offset, 1,
8899
			      BFD_RELOC_8_PCREL);
8900
	      fixP->fx_signed = 1;
8901
	      break;
8902
	    }
8903
 
8904
	  /* This changes the byte-displacement jump 0x7N
8905
	     to the (d)word-displacement jump 0x0f,0x8N.  */
8906
	  opcode[1] = opcode[0] + 0x10;
8907
	  opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8908
	  /* We've added an opcode byte.  */
8909
	  fragP->fr_fix += 1 + size;
8910
	  fix_new (fragP, old_fr_fix + 1, size,
8911
		   fragP->fr_symbol,
8912
		   fragP->fr_offset, 1,
8913
		   reloc_type);
8914
	  break;
8915
 
8916
	default:
8917
	  BAD_CASE (fragP->fr_subtype);
8918
	  break;
8919
	}
8920
      frag_wane (fragP);
8921
      return fragP->fr_fix - old_fr_fix;
8922
    }
8923
 
8924
  /* Guess size depending on current relax state.  Initially the relax
8925
     state will correspond to a short jump and we return 1, because
8926
     the variable part of the frag (the branch offset) is one byte
8927
     long.  However, we can relax a section more than once and in that
8928
     case we must either set fr_subtype back to the unrelaxed state,
8929
     or return the value for the appropriate branch.  */
8930
  return md_relax_table[fragP->fr_subtype].rlx_length;
8931
}
8932
 
8933
/* Called after relax() is finished.
8934
 
8935
   In:	Address of frag.
8936
	fr_type == rs_machine_dependent.
8937
	fr_subtype is what the address relaxed to.
8938
 
8939
   Out:	Any fixSs and constants are set up.
8940
	Caller will turn frag into a ".space 0".  */
8941
 
8942
void
8943
md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
8944
                 fragS *fragP)
8945
{
8946
  unsigned char *opcode;
8947
  unsigned char *where_to_put_displacement = NULL;
8948
  offsetT target_address;
8949
  offsetT opcode_address;
8950
  unsigned int extension = 0;
8951
  offsetT displacement_from_opcode_start;
8952
 
8953
  opcode = (unsigned char *) fragP->fr_opcode;
8954
 
8955
  /* Address we want to reach in file space.  */
8956
  target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
8957
 
8958
  /* Address opcode resides at in file space.  */
8959
  opcode_address = fragP->fr_address + fragP->fr_fix;
8960
 
8961
  /* Displacement from opcode start to fill into instruction.  */
8962
  displacement_from_opcode_start = target_address - opcode_address;
8963
 
8964
  if ((fragP->fr_subtype & BIG) == 0)
8965
    {
8966
      /* Don't have to change opcode.  */
8967
      extension = 1;		/* 1 opcode + 1 displacement  */
8968
      where_to_put_displacement = &opcode[1];
8969
    }
8970
  else
8971
    {
8972
      if (no_cond_jump_promotion
8973
	  && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
8974
	as_warn_where (fragP->fr_file, fragP->fr_line,
8975
		       _("long jump required"));
8976
 
8977
      switch (fragP->fr_subtype)
8978
	{
8979
	case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
8980
	  extension = 4;		/* 1 opcode + 4 displacement  */
8981
	  opcode[0] = 0xe9;
8982
	  where_to_put_displacement = &opcode[1];
8983
	  break;
8984
 
8985
	case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
8986
	  extension = 2;		/* 1 opcode + 2 displacement  */
8987
	  opcode[0] = 0xe9;
8988
	  where_to_put_displacement = &opcode[1];
8989
	  break;
8990
 
8991
	case ENCODE_RELAX_STATE (COND_JUMP, BIG):
8992
	case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
8993
	  extension = 5;		/* 2 opcode + 4 displacement  */
8994
	  opcode[1] = opcode[0] + 0x10;
8995
	  opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8996
	  where_to_put_displacement = &opcode[2];
8997
	  break;
8998
 
8999
	case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9000
	  extension = 3;		/* 2 opcode + 2 displacement  */
9001
	  opcode[1] = opcode[0] + 0x10;
9002
	  opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9003
	  where_to_put_displacement = &opcode[2];
9004
	  break;
9005
 
9006
	case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9007
	  extension = 4;
9008
	  opcode[0] ^= 1;
9009
	  opcode[1] = 3;
9010
	  opcode[2] = 0xe9;
9011
	  where_to_put_displacement = &opcode[3];
9012
	  break;
9013
 
9014
	default:
9015
	  BAD_CASE (fragP->fr_subtype);
9016
	  break;
9017
	}
9018
    }
9019
 
9020
  /* If size if less then four we are sure that the operand fits,
9021
     but if it's 4, then it could be that the displacement is larger
9022
     then -/+ 2GB.  */
9023
  if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9024
      && object_64bit
9025
      && ((addressT) (displacement_from_opcode_start - extension
9026
		      + ((addressT) 1 << 31))
9027
	  > (((addressT) 2 << 31) - 1)))
9028
    {
9029
      as_bad_where (fragP->fr_file, fragP->fr_line,
9030
		    _("jump target out of range"));
9031
      /* Make us emit 0.  */
9032
      displacement_from_opcode_start = extension;
9033
    }
9034
  /* Now put displacement after opcode.  */
9035
  md_number_to_chars ((char *) where_to_put_displacement,
9036
		      (valueT) (displacement_from_opcode_start - extension),
9037
		      DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9038
  fragP->fr_fix += extension;
9039
}
9040
 
9041
/* Apply a fixup (fixP) to segment data, once it has been determined
9042
   by our caller that we have all the info we need to fix it up.
9043
 
9044
   Parameter valP is the pointer to the value of the bits.
9045
 
9046
   On the 386, immediates, displacements, and data pointers are all in
9047
   the same (little-endian) format, so we don't need to care about which
9048
   we are handling.  */
9049
 
9050
void
9051
md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9052
{
9053
  char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9054
  valueT value = *valP;
9055
 
9056
#if !defined (TE_Mach)
9057
  if (fixP->fx_pcrel)
9058
    {
9059
      switch (fixP->fx_r_type)
9060
	{
9061
	default:
9062
	  break;
9063
 
9064
	case BFD_RELOC_64:
9065
	  fixP->fx_r_type = BFD_RELOC_64_PCREL;
9066
	  break;
9067
	case BFD_RELOC_32:
9068
	case BFD_RELOC_X86_64_32S:
9069
	  fixP->fx_r_type = BFD_RELOC_32_PCREL;
9070
	  break;
9071
	case BFD_RELOC_16:
9072
	  fixP->fx_r_type = BFD_RELOC_16_PCREL;
9073
	  break;
9074
	case BFD_RELOC_8:
9075
	  fixP->fx_r_type = BFD_RELOC_8_PCREL;
9076
	  break;
9077
	}
9078
    }
9079
 
9080
  if (fixP->fx_addsy != NULL
9081
      && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9082
	  || fixP->fx_r_type == BFD_RELOC_64_PCREL
9083
	  || fixP->fx_r_type == BFD_RELOC_16_PCREL
9084
	  || fixP->fx_r_type == BFD_RELOC_8_PCREL
9085
	  || fixP->fx_r_type == BFD_RELOC_X86_64_PC32_BND)
9086
      && !use_rela_relocations)
9087
    {
9088
      /* This is a hack.  There should be a better way to handle this.
9089
	 This covers for the fact that bfd_install_relocation will
9090
	 subtract the current location (for partial_inplace, PC relative
9091
	 relocations); see more below.  */
9092
#ifndef OBJ_AOUT
9093
      if (IS_ELF
9094
#ifdef TE_PE
9095
	  || OUTPUT_FLAVOR == bfd_target_coff_flavour
9096
#endif
9097
	  )
9098
	value += fixP->fx_where + fixP->fx_frag->fr_address;
9099
#endif
9100
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9101
      if (IS_ELF)
9102
	{
9103
	  segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9104
 
9105
	  if ((sym_seg == seg
9106
	       || (symbol_section_p (fixP->fx_addsy)
9107
		   && sym_seg != absolute_section))
9108
	      && !generic_force_reloc (fixP))
9109
	    {
9110
	      /* Yes, we add the values in twice.  This is because
9111
		 bfd_install_relocation subtracts them out again.  I think
9112
		 bfd_install_relocation is broken, but I don't dare change
9113
		 it.  FIXME.  */
9114
	      value += fixP->fx_where + fixP->fx_frag->fr_address;
9115
	    }
9116
	}
9117
#endif
9118
#if defined (OBJ_COFF) && defined (TE_PE)
9119
      /* For some reason, the PE format does not store a
9120
	 section address offset for a PC relative symbol.  */
9121
      if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9122
	  || S_IS_WEAK (fixP->fx_addsy))
9123
	value += md_pcrel_from (fixP);
9124
#endif
9125
    }
9126
#if defined (OBJ_COFF) && defined (TE_PE)
9127
  if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9128
    {
9129
      value -= S_GET_VALUE (fixP->fx_addsy);
9130
    }
9131
#endif
9132
 
9133
  /* Fix a few things - the dynamic linker expects certain values here,
9134
     and we must not disappoint it.  */
9135
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9136
  if (IS_ELF && fixP->fx_addsy)
9137
    switch (fixP->fx_r_type)
9138
      {
9139
      case BFD_RELOC_386_PLT32:
9140
      case BFD_RELOC_X86_64_PLT32:
9141
      case BFD_RELOC_X86_64_PLT32_BND:
9142
	/* Make the jump instruction point to the address of the operand.  At
9143
	   runtime we merely add the offset to the actual PLT entry.  */
9144
	value = -4;
9145
	break;
9146
 
9147
      case BFD_RELOC_386_TLS_GD:
9148
      case BFD_RELOC_386_TLS_LDM:
9149
      case BFD_RELOC_386_TLS_IE_32:
9150
      case BFD_RELOC_386_TLS_IE:
9151
      case BFD_RELOC_386_TLS_GOTIE:
9152
      case BFD_RELOC_386_TLS_GOTDESC:
9153
      case BFD_RELOC_X86_64_TLSGD:
9154
      case BFD_RELOC_X86_64_TLSLD:
9155
      case BFD_RELOC_X86_64_GOTTPOFF:
9156
      case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9157
	value = 0; /* Fully resolved at runtime.  No addend.  */
9158
	/* Fallthrough */
9159
      case BFD_RELOC_386_TLS_LE:
9160
      case BFD_RELOC_386_TLS_LDO_32:
9161
      case BFD_RELOC_386_TLS_LE_32:
9162
      case BFD_RELOC_X86_64_DTPOFF32:
9163
      case BFD_RELOC_X86_64_DTPOFF64:
9164
      case BFD_RELOC_X86_64_TPOFF32:
9165
      case BFD_RELOC_X86_64_TPOFF64:
9166
	S_SET_THREAD_LOCAL (fixP->fx_addsy);
9167
	break;
9168
 
9169
      case BFD_RELOC_386_TLS_DESC_CALL:
9170
      case BFD_RELOC_X86_64_TLSDESC_CALL:
9171
	value = 0; /* Fully resolved at runtime.  No addend.  */
9172
	S_SET_THREAD_LOCAL (fixP->fx_addsy);
9173
	fixP->fx_done = 0;
9174
	return;
9175
 
9176
      case BFD_RELOC_386_GOT32:
9177
      case BFD_RELOC_X86_64_GOT32:
9178
	value = 0; /* Fully resolved at runtime.  No addend.  */
9179
	break;
9180
 
9181
      case BFD_RELOC_VTABLE_INHERIT:
9182
      case BFD_RELOC_VTABLE_ENTRY:
9183
	fixP->fx_done = 0;
9184
	return;
9185
 
9186
      default:
9187
	break;
9188
      }
9189
#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)  */
9190
  *valP = value;
9191
#endif /* !defined (TE_Mach)  */
9192
 
9193
  /* Are we finished with this relocation now?  */
9194
  if (fixP->fx_addsy == NULL)
9195
    fixP->fx_done = 1;
9196
#if defined (OBJ_COFF) && defined (TE_PE)
9197
  else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9198
    {
9199
      fixP->fx_done = 0;
9200
      /* Remember value for tc_gen_reloc.  */
9201
      fixP->fx_addnumber = value;
9202
      /* Clear out the frag for now.  */
9203
      value = 0;
9204
    }
9205
#endif
9206
  else if (use_rela_relocations)
9207
    {
9208
      fixP->fx_no_overflow = 1;
9209
      /* Remember value for tc_gen_reloc.  */
9210
      fixP->fx_addnumber = value;
9211
      value = 0;
9212
    }
9213
 
9214
  md_number_to_chars (p, value, fixP->fx_size);
9215
}
9216
 
9217
char *
9218
md_atof (int type, char *litP, int *sizeP)
9219
{
9220
  /* This outputs the LITTLENUMs in REVERSE order;
9221
     in accord with the bigendian 386.  */
9222
  return ieee_md_atof (type, litP, sizeP, FALSE);
9223
}
9224
 
9225
static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9226
 
9227
static char *
9228
output_invalid (int c)
9229
{
9230
  if (ISPRINT (c))
9231
    snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9232
	      "'%c'", c);
9233
  else
9234
    snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9235
	      "(0x%x)", (unsigned char) c);
9236
  return output_invalid_buf;
9237
}
9238
 
9239
/* REG_STRING starts *before* REGISTER_PREFIX.  */
9240
 
9241
static const reg_entry *
9242
parse_real_register (char *reg_string, char **end_op)
9243
{
9244
  char *s = reg_string;
9245
  char *p;
9246
  char reg_name_given[MAX_REG_NAME_SIZE + 1];
9247
  const reg_entry *r;
9248
 
9249
  /* Skip possible REGISTER_PREFIX and possible whitespace.  */
9250
  if (*s == REGISTER_PREFIX)
9251
    ++s;
9252
 
9253
  if (is_space_char (*s))
9254
    ++s;
9255
 
9256
  p = reg_name_given;
9257
  while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9258
    {
9259
      if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9260
	return (const reg_entry *) NULL;
9261
      s++;
9262
    }
9263
 
9264
  /* For naked regs, make sure that we are not dealing with an identifier.
9265
     This prevents confusing an identifier like `eax_var' with register
9266
     `eax'.  */
9267
  if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9268
    return (const reg_entry *) NULL;
9269
 
9270
  *end_op = s;
9271
 
9272
  r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9273
 
9274
  /* Handle floating point regs, allowing spaces in the (i) part.  */
9275
  if (r == i386_regtab /* %st is first entry of table  */)
9276
    {
9277
      if (is_space_char (*s))
9278
	++s;
9279
      if (*s == '(')
9280
	{
9281
	  ++s;
9282
	  if (is_space_char (*s))
9283
	    ++s;
9284
	  if (*s >= '0' && *s <= '7')
9285
	    {
9286
	      int fpr = *s - '0';
9287
	      ++s;
9288
	      if (is_space_char (*s))
9289
		++s;
9290
	      if (*s == ')')
9291
		{
9292
		  *end_op = s + 1;
9293
		  r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9294
		  know (r);
9295
		  return r + fpr;
9296
		}
9297
	    }
9298
	  /* We have "%st(" then garbage.  */
9299
	  return (const reg_entry *) NULL;
9300
	}
9301
    }
9302
 
9303
  if (r == NULL || allow_pseudo_reg)
9304
    return r;
9305
 
9306
  if (operand_type_all_zero (&r->reg_type))
9307
    return (const reg_entry *) NULL;
9308
 
9309
  if ((r->reg_type.bitfield.reg32
9310
       || r->reg_type.bitfield.sreg3
9311
       || r->reg_type.bitfield.control
9312
       || r->reg_type.bitfield.debug
9313
       || r->reg_type.bitfield.test)
9314
      && !cpu_arch_flags.bitfield.cpui386)
9315
    return (const reg_entry *) NULL;
9316
 
9317
  if (r->reg_type.bitfield.floatreg
9318
      && !cpu_arch_flags.bitfield.cpu8087
9319
      && !cpu_arch_flags.bitfield.cpu287
9320
      && !cpu_arch_flags.bitfield.cpu387)
9321
    return (const reg_entry *) NULL;
9322
 
9323
  if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
9324
    return (const reg_entry *) NULL;
9325
 
9326
  if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
9327
    return (const reg_entry *) NULL;
9328
 
9329
  if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
9330
    return (const reg_entry *) NULL;
9331
 
9332
  if ((r->reg_type.bitfield.regzmm || r->reg_type.bitfield.regmask)
9333
       && !cpu_arch_flags.bitfield.cpuavx512f)
9334
    return (const reg_entry *) NULL;
9335
 
9336
  /* Don't allow fake index register unless allow_index_reg isn't 0. */
9337
  if (!allow_index_reg
9338
      && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9339
    return (const reg_entry *) NULL;
9340
 
9341
  /* Upper 16 vector register is only available with VREX in 64bit
9342
     mode.  */
9343
  if ((r->reg_flags & RegVRex))
9344
    {
9345
      if (!cpu_arch_flags.bitfield.cpuvrex
9346
	  || flag_code != CODE_64BIT)
9347
	return (const reg_entry *) NULL;
9348
 
9349
      i.need_vrex = 1;
9350
    }
9351
 
9352
  if (((r->reg_flags & (RegRex64 | RegRex))
9353
       || r->reg_type.bitfield.reg64)
9354
      && (!cpu_arch_flags.bitfield.cpulm
9355
	  || !operand_type_equal (&r->reg_type, &control))
9356
      && flag_code != CODE_64BIT)
9357
    return (const reg_entry *) NULL;
9358
 
9359
  if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9360
    return (const reg_entry *) NULL;
9361
 
9362
  return r;
9363
}
9364
 
9365
/* REG_STRING starts *before* REGISTER_PREFIX.  */
9366
 
9367
static const reg_entry *
9368
parse_register (char *reg_string, char **end_op)
9369
{
9370
  const reg_entry *r;
9371
 
9372
  if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9373
    r = parse_real_register (reg_string, end_op);
9374
  else
9375
    r = NULL;
9376
  if (!r)
9377
    {
9378
      char *save = input_line_pointer;
9379
      char c;
9380
      symbolS *symbolP;
9381
 
9382
      input_line_pointer = reg_string;
9383
      c = get_symbol_end ();
9384
      symbolP = symbol_find (reg_string);
9385
      if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9386
	{
9387
	  const expressionS *e = symbol_get_value_expression (symbolP);
9388
 
9389
	  know (e->X_op == O_register);
9390
	  know (e->X_add_number >= 0
9391
		&& (valueT) e->X_add_number < i386_regtab_size);
9392
	  r = i386_regtab + e->X_add_number;
9393
	  *end_op = input_line_pointer;
9394
	}
9395
      *input_line_pointer = c;
9396
      input_line_pointer = save;
9397
    }
9398
  return r;
9399
}
9400
 
9401
int
9402
i386_parse_name (char *name, expressionS *e, char *nextcharP)
9403
{
9404
  const reg_entry *r;
9405
  char *end = input_line_pointer;
9406
 
9407
  *end = *nextcharP;
9408
  r = parse_register (name, &input_line_pointer);
9409
  if (r && end <= input_line_pointer)
9410
    {
9411
      *nextcharP = *input_line_pointer;
9412
      *input_line_pointer = 0;
9413
      e->X_op = O_register;
9414
      e->X_add_number = r - i386_regtab;
9415
      return 1;
9416
    }
9417
  input_line_pointer = end;
9418
  *end = 0;
9419
  return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9420
}
9421
 
9422
void
9423
md_operand (expressionS *e)
9424
{
9425
  char *end;
9426
  const reg_entry *r;
9427
 
9428
  switch (*input_line_pointer)
9429
    {
9430
    case REGISTER_PREFIX:
9431
      r = parse_real_register (input_line_pointer, &end);
9432
      if (r)
9433
	{
9434
	  e->X_op = O_register;
9435
	  e->X_add_number = r - i386_regtab;
9436
	  input_line_pointer = end;
9437
	}
9438
      break;
9439
 
9440
    case '[':
9441
      gas_assert (intel_syntax);
9442
      end = input_line_pointer++;
9443
      expression (e);
9444
      if (*input_line_pointer == ']')
9445
	{
9446
	  ++input_line_pointer;
9447
	  e->X_op_symbol = make_expr_symbol (e);
9448
	  e->X_add_symbol = NULL;
9449
	  e->X_add_number = 0;
9450
	  e->X_op = O_index;
9451
	}
9452
      else
9453
	{
9454
	  e->X_op = O_absent;
9455
	  input_line_pointer = end;
9456
	}
9457
      break;
9458
    }
9459
}
9460
 
9461
 
9462
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9463
const char *md_shortopts = "kVQ:sqn";
9464
#else
9465
const char *md_shortopts = "qn";
9466
#endif
9467
 
9468
#define OPTION_32 (OPTION_MD_BASE + 0)
9469
#define OPTION_64 (OPTION_MD_BASE + 1)
9470
#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9471
#define OPTION_MARCH (OPTION_MD_BASE + 3)
9472
#define OPTION_MTUNE (OPTION_MD_BASE + 4)
9473
#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9474
#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9475
#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9476
#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9477
#define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9478
#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9479
#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9480
#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9481
#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9482
#define OPTION_X32 (OPTION_MD_BASE + 14)
9483
#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9484
#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9485
#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9486
 
9487
struct option md_longopts[] =
9488
{
9489
  {"32", no_argument, NULL, OPTION_32},
9490
#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9491
     || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9492
  {"64", no_argument, NULL, OPTION_64},
9493
#endif
9494
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9495
  {"x32", no_argument, NULL, OPTION_X32},
9496
#endif
9497
  {"divide", no_argument, NULL, OPTION_DIVIDE},
9498
  {"march", required_argument, NULL, OPTION_MARCH},
9499
  {"mtune", required_argument, NULL, OPTION_MTUNE},
9500
  {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9501
  {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9502
  {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9503
  {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9504
  {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
9505
  {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
9506
  {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
9507
  {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
9508
  {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
9509
  {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
9510
  {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9511
  {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
9512
  {NULL, no_argument, NULL, 0}
9513
};
9514
size_t md_longopts_size = sizeof (md_longopts);
9515
 
9516
int
9517
md_parse_option (int c, char *arg)
9518
{
9519
  unsigned int j;
9520
  char *arch, *next;
9521
 
9522
  switch (c)
9523
    {
9524
    case 'n':
9525
      optimize_align_code = 0;
9526
      break;
9527
 
9528
    case 'q':
9529
      quiet_warnings = 1;
9530
      break;
9531
 
9532
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9533
      /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9534
	 should be emitted or not.  FIXME: Not implemented.  */
9535
    case 'Q':
9536
      break;
9537
 
9538
      /* -V: SVR4 argument to print version ID.  */
9539
    case 'V':
9540
      print_version_id ();
9541
      break;
9542
 
9543
      /* -k: Ignore for FreeBSD compatibility.  */
9544
    case 'k':
9545
      break;
9546
 
9547
    case 's':
9548
      /* -s: On i386 Solaris, this tells the native assembler to use
9549
	 .stab instead of .stab.excl.  We always use .stab anyhow.  */
9550
      break;
9551
#endif
9552
#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9553
     || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9554
    case OPTION_64:
9555
      {
9556
	const char **list, **l;
9557
 
9558
	list = bfd_target_list ();
9559
	for (l = list; *l != NULL; l++)
9560
	  if (CONST_STRNEQ (*l, "elf64-x86-64")
9561
	      || strcmp (*l, "coff-x86-64") == 0
9562
	      || strcmp (*l, "pe-x86-64") == 0
9563
	      || strcmp (*l, "pei-x86-64") == 0
9564
	      || strcmp (*l, "mach-o-x86-64") == 0)
9565
	    {
9566
	      default_arch = "x86_64";
9567
	      break;
9568
	    }
9569
	if (*l == NULL)
9570
	  as_fatal (_("no compiled in support for x86_64"));
9571
	free (list);
9572
      }
9573
      break;
9574
#endif
9575
 
9576
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9577
    case OPTION_X32:
9578
      if (IS_ELF)
9579
	{
9580
	  const char **list, **l;
9581
 
9582
	  list = bfd_target_list ();
9583
	  for (l = list; *l != NULL; l++)
9584
	    if (CONST_STRNEQ (*l, "elf32-x86-64"))
9585
	      {
9586
		default_arch = "x86_64:32";
9587
		break;
9588
	      }
9589
	  if (*l == NULL)
9590
	    as_fatal (_("no compiled in support for 32bit x86_64"));
9591
	  free (list);
9592
	}
9593
      else
9594
	as_fatal (_("32bit x86_64 is only supported for ELF"));
9595
      break;
9596
#endif
9597
 
9598
    case OPTION_32:
9599
      default_arch = "i386";
9600
      break;
9601
 
9602
    case OPTION_DIVIDE:
9603
#ifdef SVR4_COMMENT_CHARS
9604
      {
9605
	char *n, *t;
9606
	const char *s;
9607
 
9608
	n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
9609
	t = n;
9610
	for (s = i386_comment_chars; *s != '\0'; s++)
9611
	  if (*s != '/')
9612
	    *t++ = *s;
9613
	*t = '\0';
9614
	i386_comment_chars = n;
9615
      }
9616
#endif
9617
      break;
9618
 
9619
    case OPTION_MARCH:
9620
      arch = xstrdup (arg);
9621
      do
9622
	{
9623
	  if (*arch == '.')
9624
	    as_fatal (_("invalid -march= option: `%s'"), arg);
9625
	  next = strchr (arch, '+');
9626
	  if (next)
9627
	    *next++ = '\0';
9628
	  for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9629
	    {
9630
	      if (strcmp (arch, cpu_arch [j].name) == 0)
9631
		{
9632
		  /* Processor.  */
9633
		  if (! cpu_arch[j].flags.bitfield.cpui386)
9634
		    continue;
9635
 
9636
		  cpu_arch_name = cpu_arch[j].name;
9637
		  cpu_sub_arch_name = NULL;
9638
		  cpu_arch_flags = cpu_arch[j].flags;
9639
		  cpu_arch_isa = cpu_arch[j].type;
9640
		  cpu_arch_isa_flags = cpu_arch[j].flags;
9641
		  if (!cpu_arch_tune_set)
9642
		    {
9643
		      cpu_arch_tune = cpu_arch_isa;
9644
		      cpu_arch_tune_flags = cpu_arch_isa_flags;
9645
		    }
9646
		  break;
9647
		}
9648
	      else if (*cpu_arch [j].name == '.'
9649
		       && strcmp (arch, cpu_arch [j].name + 1) == 0)
9650
		{
9651
		  /* ISA entension.  */
9652
		  i386_cpu_flags flags;
9653
 
9654
		  if (!cpu_arch[j].negated)
9655
		    flags = cpu_flags_or (cpu_arch_flags,
9656
					  cpu_arch[j].flags);
9657
		  else
9658
		    flags = cpu_flags_and_not (cpu_arch_flags,
9659
					       cpu_arch[j].flags);
9660
		  if (!cpu_flags_equal (&flags, &cpu_arch_flags))
9661
		    {
9662
		      if (cpu_sub_arch_name)
9663
			{
9664
			  char *name = cpu_sub_arch_name;
9665
			  cpu_sub_arch_name = concat (name,
9666
						      cpu_arch[j].name,
9667
						      (const char *) NULL);
9668
			  free (name);
9669
			}
9670
		      else
9671
			cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
9672
		      cpu_arch_flags = flags;
9673
		      cpu_arch_isa_flags = flags;
9674
		    }
9675
		  break;
9676
		}
9677
	    }
9678
 
9679
	  if (j >= ARRAY_SIZE (cpu_arch))
9680
	    as_fatal (_("invalid -march= option: `%s'"), arg);
9681
 
9682
	  arch = next;
9683
	}
9684
      while (next != NULL );
9685
      break;
9686
 
9687
    case OPTION_MTUNE:
9688
      if (*arg == '.')
9689
	as_fatal (_("invalid -mtune= option: `%s'"), arg);
9690
      for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9691
	{
9692
	  if (strcmp (arg, cpu_arch [j].name) == 0)
9693
	    {
9694
	      cpu_arch_tune_set = 1;
9695
	      cpu_arch_tune = cpu_arch [j].type;
9696
	      cpu_arch_tune_flags = cpu_arch[j].flags;
9697
	      break;
9698
	    }
9699
	}
9700
      if (j >= ARRAY_SIZE (cpu_arch))
9701
	as_fatal (_("invalid -mtune= option: `%s'"), arg);
9702
      break;
9703
 
9704
    case OPTION_MMNEMONIC:
9705
      if (strcasecmp (arg, "att") == 0)
9706
	intel_mnemonic = 0;
9707
      else if (strcasecmp (arg, "intel") == 0)
9708
	intel_mnemonic = 1;
9709
      else
9710
	as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
9711
      break;
9712
 
9713
    case OPTION_MSYNTAX:
9714
      if (strcasecmp (arg, "att") == 0)
9715
	intel_syntax = 0;
9716
      else if (strcasecmp (arg, "intel") == 0)
9717
	intel_syntax = 1;
9718
      else
9719
	as_fatal (_("invalid -msyntax= option: `%s'"), arg);
9720
      break;
9721
 
9722
    case OPTION_MINDEX_REG:
9723
      allow_index_reg = 1;
9724
      break;
9725
 
9726
    case OPTION_MNAKED_REG:
9727
      allow_naked_reg = 1;
9728
      break;
9729
 
9730
    case OPTION_MOLD_GCC:
9731
      old_gcc = 1;
9732
      break;
9733
 
9734
    case OPTION_MSSE2AVX:
9735
      sse2avx = 1;
9736
      break;
9737
 
9738
    case OPTION_MSSE_CHECK:
9739
      if (strcasecmp (arg, "error") == 0)
9740
	sse_check = check_error;
9741
      else if (strcasecmp (arg, "warning") == 0)
9742
	sse_check = check_warning;
9743
      else if (strcasecmp (arg, "none") == 0)
9744
	sse_check = check_none;
9745
      else
9746
	as_fatal (_("invalid -msse-check= option: `%s'"), arg);
9747
      break;
9748
 
9749
    case OPTION_MOPERAND_CHECK:
9750
      if (strcasecmp (arg, "error") == 0)
9751
	operand_check = check_error;
9752
      else if (strcasecmp (arg, "warning") == 0)
9753
	operand_check = check_warning;
9754
      else if (strcasecmp (arg, "none") == 0)
9755
	operand_check = check_none;
9756
      else
9757
	as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
9758
      break;
9759
 
9760
    case OPTION_MAVXSCALAR:
9761
      if (strcasecmp (arg, "128") == 0)
9762
	avxscalar = vex128;
9763
      else if (strcasecmp (arg, "256") == 0)
9764
	avxscalar = vex256;
9765
      else
9766
	as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
9767
      break;
9768
 
9769
    case OPTION_MADD_BND_PREFIX:
9770
      add_bnd_prefix = 1;
9771
      break;
9772
 
9773
    case OPTION_MEVEXLIG:
9774
      if (strcmp (arg, "128") == 0)
9775
	evexlig = evexl128;
9776
      else if (strcmp (arg, "256") == 0)
9777
	evexlig = evexl256;
9778
      else  if (strcmp (arg, "512") == 0)
9779
	evexlig = evexl512;
9780
      else
9781
	as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
9782
      break;
9783
 
9784
    case OPTION_MEVEXWIG:
9785
      if (strcmp (arg, "0") == 0)
9786
	evexwig = evexw0;
9787
      else if (strcmp (arg, "1") == 0)
9788
	evexwig = evexw1;
9789
      else
9790
	as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
9791
      break;
9792
 
9793
    default:
9794
      return 0;
9795
    }
9796
  return 1;
9797
}
9798
 
9799
#define MESSAGE_TEMPLATE \
9800
"                                                                                "
9801
 
9802
static void
9803
show_arch (FILE *stream, int ext, int check)
9804
{
9805
  static char message[] = MESSAGE_TEMPLATE;
9806
  char *start = message + 27;
9807
  char *p;
9808
  int size = sizeof (MESSAGE_TEMPLATE);
9809
  int left;
9810
  const char *name;
9811
  int len;
9812
  unsigned int j;
9813
 
9814
  p = start;
9815
  left = size - (start - message);
9816
  for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9817
    {
9818
      /* Should it be skipped?  */
9819
      if (cpu_arch [j].skip)
9820
	continue;
9821
 
9822
      name = cpu_arch [j].name;
9823
      len = cpu_arch [j].len;
9824
      if (*name == '.')
9825
	{
9826
	  /* It is an extension.  Skip if we aren't asked to show it.  */
9827
	  if (ext)
9828
	    {
9829
	      name++;
9830
	      len--;
9831
	    }
9832
	  else
9833
	    continue;
9834
	}
9835
      else if (ext)
9836
	{
9837
	  /* It is an processor.  Skip if we show only extension.  */
9838
	  continue;
9839
	}
9840
      else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
9841
	{
9842
	  /* It is an impossible processor - skip.  */
9843
	  continue;
9844
	}
9845
 
9846
      /* Reserve 2 spaces for ", " or ",\0" */
9847
      left -= len + 2;
9848
 
9849
      /* Check if there is any room.  */
9850
      if (left >= 0)
9851
	{
9852
	  if (p != start)
9853
	    {
9854
	      *p++ = ',';
9855
	      *p++ = ' ';
9856
	    }
9857
	  p = mempcpy (p, name, len);
9858
	}
9859
      else
9860
	{
9861
	  /* Output the current message now and start a new one.  */
9862
	  *p++ = ',';
9863
	  *p = '\0';
9864
	  fprintf (stream, "%s\n", message);
9865
	  p = start;
9866
	  left = size - (start - message) - len - 2;
9867
 
9868
	  gas_assert (left >= 0);
9869
 
9870
	  p = mempcpy (p, name, len);
9871
	}
9872
    }
9873
 
9874
  *p = '\0';
9875
  fprintf (stream, "%s\n", message);
9876
}
9877
 
9878
void
9879
md_show_usage (FILE *stream)
9880
{
9881
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9882
  fprintf (stream, _("\
9883
  -Q                      ignored\n\
9884
  -V                      print assembler version number\n\
9885
  -k                      ignored\n"));
9886
#endif
9887
  fprintf (stream, _("\
9888
  -n                      Do not optimize code alignment\n\
9889
  -q                      quieten some warnings\n"));
9890
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9891
  fprintf (stream, _("\
9892
  -s                      ignored\n"));
9893
#endif
9894
#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9895
     || defined (TE_PE) || defined (TE_PEP))
9896
  fprintf (stream, _("\
9897
  --32/--64/--x32         generate 32bit/64bit/x32 code\n"));
9898
#endif
9899
#ifdef SVR4_COMMENT_CHARS
9900
  fprintf (stream, _("\
9901
  --divide                do not treat `/' as a comment character\n"));
9902
#else
9903
  fprintf (stream, _("\
9904
  --divide                ignored\n"));
9905
#endif
9906
  fprintf (stream, _("\
9907
  -march=CPU[,+EXTENSION...]\n\
9908
                          generate code for CPU and EXTENSION, CPU is one of:\n"));
9909
  show_arch (stream, 0, 1);
9910
  fprintf (stream, _("\
9911
                          EXTENSION is combination of:\n"));
9912
  show_arch (stream, 1, 0);
9913
  fprintf (stream, _("\
9914
  -mtune=CPU              optimize for CPU, CPU is one of:\n"));
9915
  show_arch (stream, 0, 0);
9916
  fprintf (stream, _("\
9917
  -msse2avx               encode SSE instructions with VEX prefix\n"));
9918
  fprintf (stream, _("\
9919
  -msse-check=[none|error|warning]\n\
9920
                          check SSE instructions\n"));
9921
  fprintf (stream, _("\
9922
  -moperand-check=[none|error|warning]\n\
9923
                          check operand combinations for validity\n"));
9924
  fprintf (stream, _("\
9925
  -mavxscalar=[128|256]   encode scalar AVX instructions with specific vector\n\
9926
                           length\n"));
9927
  fprintf (stream, _("\
9928
  -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
9929
                           length\n"));
9930
  fprintf (stream, _("\
9931
  -mevexwig=[0|1]         encode EVEX instructions with specific EVEX.W value\n\
9932
                           for EVEX.W bit ignored instructions\n"));
9933
  fprintf (stream, _("\
9934
  -mmnemonic=[att|intel]  use AT&T/Intel mnemonic\n"));
9935
  fprintf (stream, _("\
9936
  -msyntax=[att|intel]    use AT&T/Intel syntax\n"));
9937
  fprintf (stream, _("\
9938
  -mindex-reg             support pseudo index registers\n"));
9939
  fprintf (stream, _("\
9940
  -mnaked-reg             don't require `%%' prefix for registers\n"));
9941
  fprintf (stream, _("\
9942
  -mold-gcc               support old (<= 2.8.1) versions of gcc\n"));
9943
  fprintf (stream, _("\
9944
  -madd-bnd-prefix        add BND prefix for all valid branches\n"));
9945
}
9946
 
9947
#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
9948
     || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9949
     || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9950
 
9951
/* Pick the target format to use.  */
9952
 
9953
const char *
9954
i386_target_format (void)
9955
{
9956
  if (!strncmp (default_arch, "x86_64", 6))
9957
    {
9958
      update_code_flag (CODE_64BIT, 1);
9959
      if (default_arch[6] == '\0')
9960
	x86_elf_abi = X86_64_ABI;
9961
      else
9962
	x86_elf_abi = X86_64_X32_ABI;
9963
    }
9964
  else if (!strcmp (default_arch, "i386"))
9965
    update_code_flag (CODE_32BIT, 1);
9966
  else
9967
    as_fatal (_("unknown architecture"));
9968
 
9969
  if (cpu_flags_all_zero (&cpu_arch_isa_flags))
9970
    cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
9971
  if (cpu_flags_all_zero (&cpu_arch_tune_flags))
9972
    cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
9973
 
9974
  switch (OUTPUT_FLAVOR)
9975
    {
9976
#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
9977
    case bfd_target_aout_flavour:
9978
      return AOUT_TARGET_FORMAT;
9979
#endif
9980
#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
9981
# if defined (TE_PE) || defined (TE_PEP)
9982
    case bfd_target_coff_flavour:
9983
      return flag_code == CODE_64BIT ? "pe-x86-64" : "pe-i386";
9984
# elif defined (TE_GO32)
9985
    case bfd_target_coff_flavour:
9986
      return "coff-go32";
9987
# else
9988
    case bfd_target_coff_flavour:
9989
      return "coff-i386";
9990
# endif
9991
#endif
9992
#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
9993
    case bfd_target_elf_flavour:
9994
      {
9995
	const char *format;
9996
 
9997
	switch (x86_elf_abi)
9998
	  {
9999
	  default:
10000
	    format = ELF_TARGET_FORMAT;
10001
	    break;
10002
	  case X86_64_ABI:
10003
	    use_rela_relocations = 1;
10004
	    object_64bit = 1;
10005
	    format = ELF_TARGET_FORMAT64;
10006
	    break;
10007
	  case X86_64_X32_ABI:
10008
	    use_rela_relocations = 1;
10009
	    object_64bit = 1;
10010
	    disallow_64bit_reloc = 1;
10011
	    format = ELF_TARGET_FORMAT32;
10012
	    break;
10013
	  }
10014
	if (cpu_arch_isa == PROCESSOR_L1OM)
10015
	  {
10016
	    if (x86_elf_abi != X86_64_ABI)
10017
	      as_fatal (_("Intel L1OM is 64bit only"));
10018
	    return ELF_TARGET_L1OM_FORMAT;
10019
	  }
10020
	if (cpu_arch_isa == PROCESSOR_K1OM)
10021
	  {
10022
	    if (x86_elf_abi != X86_64_ABI)
10023
	      as_fatal (_("Intel K1OM is 64bit only"));
10024
	    return ELF_TARGET_K1OM_FORMAT;
10025
	  }
10026
	else
10027
	  return format;
10028
      }
10029
#endif
10030
#if defined (OBJ_MACH_O)
10031
    case bfd_target_mach_o_flavour:
10032
      if (flag_code == CODE_64BIT)
10033
	{
10034
	  use_rela_relocations = 1;
10035
	  object_64bit = 1;
10036
	  return "mach-o-x86-64";
10037
	}
10038
      else
10039
	return "mach-o-i386";
10040
#endif
10041
    default:
10042
      abort ();
10043
      return NULL;
10044
    }
10045
}
10046
 
10047
#endif /* OBJ_MAYBE_ more than one  */
10048
 
10049
#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
10050
void
10051
i386_elf_emit_arch_note (void)
10052
{
10053
  if (IS_ELF && cpu_arch_name != NULL)
10054
    {
10055
      char *p;
10056
      asection *seg = now_seg;
10057
      subsegT subseg = now_subseg;
10058
      Elf_Internal_Note i_note;
10059
      Elf_External_Note e_note;
10060
      asection *note_secp;
10061
      int len;
10062
 
10063
      /* Create the .note section.  */
10064
      note_secp = subseg_new (".note", 0);
10065
      bfd_set_section_flags (stdoutput,
10066
			     note_secp,
10067
			     SEC_HAS_CONTENTS | SEC_READONLY);
10068
 
10069
      /* Process the arch string.  */
10070
      len = strlen (cpu_arch_name);
10071
 
10072
      i_note.namesz = len + 1;
10073
      i_note.descsz = 0;
10074
      i_note.type = NT_ARCH;
10075
      p = frag_more (sizeof (e_note.namesz));
10076
      md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
10077
      p = frag_more (sizeof (e_note.descsz));
10078
      md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
10079
      p = frag_more (sizeof (e_note.type));
10080
      md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
10081
      p = frag_more (len + 1);
10082
      strcpy (p, cpu_arch_name);
10083
 
10084
      frag_align (2, 0, 0);
10085
 
10086
      subseg_set (seg, subseg);
10087
    }
10088
}
10089
#endif
10090
 
10091
symbolS *
10092
md_undefined_symbol (char *name)
10093
{
10094
  if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10095
      && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10096
      && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10097
      && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10098
    {
10099
      if (!GOT_symbol)
10100
	{
10101
	  if (symbol_find (name))
10102
	    as_bad (_("GOT already in symbol table"));
10103
	  GOT_symbol = symbol_new (name, undefined_section,
10104
				   (valueT) 0, &zero_address_frag);
10105
	};
10106
      return GOT_symbol;
10107
    }
10108
  return 0;
10109
}
10110
 
10111
/* Round up a section size to the appropriate boundary.  */
10112
 
10113
valueT
10114
md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10115
{
10116
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10117
  if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10118
    {
10119
      /* For a.out, force the section size to be aligned.  If we don't do
10120
	 this, BFD will align it for us, but it will not write out the
10121
	 final bytes of the section.  This may be a bug in BFD, but it is
10122
	 easier to fix it here since that is how the other a.out targets
10123
	 work.  */
10124
      int align;
10125
 
10126
      align = bfd_get_section_alignment (stdoutput, segment);
10127
      size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
10128
    }
10129
#endif
10130
 
10131
  return size;
10132
}
10133
 
10134
/* On the i386, PC-relative offsets are relative to the start of the
10135
   next instruction.  That is, the address of the offset, plus its
10136
   size, since the offset is always the last part of the insn.  */
10137
 
10138
long
10139
md_pcrel_from (fixS *fixP)
10140
{
10141
  return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10142
}
10143
 
10144
#ifndef I386COFF
10145
 
10146
static void
10147
s_bss (int ignore ATTRIBUTE_UNUSED)
10148
{
10149
  int temp;
10150
 
10151
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10152
  if (IS_ELF)
10153
    obj_elf_section_change_hook ();
10154
#endif
10155
  temp = get_absolute_expression ();
10156
  subseg_set (bss_section, (subsegT) temp);
10157
  demand_empty_rest_of_line ();
10158
}
10159
 
10160
#endif
10161
 
10162
void
10163
i386_validate_fix (fixS *fixp)
10164
{
10165
  if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
10166
    {
10167
      if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10168
	{
10169
	  if (!object_64bit)
10170
	    abort ();
10171
	  fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10172
	}
10173
      else
10174
	{
10175
	  if (!object_64bit)
10176
	    fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10177
	  else
10178
	    fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10179
	}
10180
      fixp->fx_subsy = 0;
10181
    }
10182
}
10183
 
10184
arelent *
10185
tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10186
{
10187
  arelent *rel;
10188
  bfd_reloc_code_real_type code;
10189
 
10190
  switch (fixp->fx_r_type)
10191
    {
10192
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10193
    case BFD_RELOC_SIZE32:
10194
    case BFD_RELOC_SIZE64:
10195
      if (S_IS_DEFINED (fixp->fx_addsy)
10196
	  && !S_IS_EXTERNAL (fixp->fx_addsy))
10197
	{
10198
	  /* Resolve size relocation against local symbol to size of
10199
	     the symbol plus addend.  */
10200
	  valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10201
	  if (fixp->fx_r_type == BFD_RELOC_SIZE32
10202
	      && !fits_in_unsigned_long (value))
10203
	    as_bad_where (fixp->fx_file, fixp->fx_line,
10204
			  _("symbol size computation overflow"));
10205
	  fixp->fx_addsy = NULL;
10206
	  fixp->fx_subsy = NULL;
10207
	  md_apply_fix (fixp, (valueT *) &value, NULL);
10208
	  return NULL;
10209
	}
10210
#endif
10211
 
10212
    case BFD_RELOC_X86_64_PLT32:
10213
    case BFD_RELOC_X86_64_PLT32_BND:
10214
    case BFD_RELOC_X86_64_GOT32:
10215
    case BFD_RELOC_X86_64_GOTPCREL:
10216
    case BFD_RELOC_386_PLT32:
10217
    case BFD_RELOC_386_GOT32:
10218
    case BFD_RELOC_386_GOTOFF:
10219
    case BFD_RELOC_386_GOTPC:
10220
    case BFD_RELOC_386_TLS_GD:
10221
    case BFD_RELOC_386_TLS_LDM:
10222
    case BFD_RELOC_386_TLS_LDO_32:
10223
    case BFD_RELOC_386_TLS_IE_32:
10224
    case BFD_RELOC_386_TLS_IE:
10225
    case BFD_RELOC_386_TLS_GOTIE:
10226
    case BFD_RELOC_386_TLS_LE_32:
10227
    case BFD_RELOC_386_TLS_LE:
10228
    case BFD_RELOC_386_TLS_GOTDESC:
10229
    case BFD_RELOC_386_TLS_DESC_CALL:
10230
    case BFD_RELOC_X86_64_TLSGD:
10231
    case BFD_RELOC_X86_64_TLSLD:
10232
    case BFD_RELOC_X86_64_DTPOFF32:
10233
    case BFD_RELOC_X86_64_DTPOFF64:
10234
    case BFD_RELOC_X86_64_GOTTPOFF:
10235
    case BFD_RELOC_X86_64_TPOFF32:
10236
    case BFD_RELOC_X86_64_TPOFF64:
10237
    case BFD_RELOC_X86_64_GOTOFF64:
10238
    case BFD_RELOC_X86_64_GOTPC32:
10239
    case BFD_RELOC_X86_64_GOT64:
10240
    case BFD_RELOC_X86_64_GOTPCREL64:
10241
    case BFD_RELOC_X86_64_GOTPC64:
10242
    case BFD_RELOC_X86_64_GOTPLT64:
10243
    case BFD_RELOC_X86_64_PLTOFF64:
10244
    case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10245
    case BFD_RELOC_X86_64_TLSDESC_CALL:
10246
    case BFD_RELOC_RVA:
10247
    case BFD_RELOC_VTABLE_ENTRY:
10248
    case BFD_RELOC_VTABLE_INHERIT:
10249
#ifdef TE_PE
10250
    case BFD_RELOC_32_SECREL:
10251
#endif
10252
      code = fixp->fx_r_type;
10253
      break;
10254
    case BFD_RELOC_X86_64_32S:
10255
      if (!fixp->fx_pcrel)
10256
	{
10257
	  /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32.  */
10258
	  code = fixp->fx_r_type;
10259
	  break;
10260
	}
10261
    default:
10262
      if (fixp->fx_pcrel)
10263
	{
10264
	  switch (fixp->fx_size)
10265
	    {
10266
	    default:
10267
	      as_bad_where (fixp->fx_file, fixp->fx_line,
10268
			    _("can not do %d byte pc-relative relocation"),
10269
			    fixp->fx_size);
10270
	      code = BFD_RELOC_32_PCREL;
10271
	      break;
10272
	    case 1: code = BFD_RELOC_8_PCREL;  break;
10273
	    case 2: code = BFD_RELOC_16_PCREL; break;
10274
	    case 4:
10275
	      code = (fixp->fx_r_type == BFD_RELOC_X86_64_PC32_BND
10276
		      ? fixp-> fx_r_type : BFD_RELOC_32_PCREL);
10277
	      break;
10278
#ifdef BFD64
10279
	    case 8: code = BFD_RELOC_64_PCREL; break;
10280
#endif
10281
	    }
10282
	}
10283
      else
10284
	{
10285
	  switch (fixp->fx_size)
10286
	    {
10287
	    default:
10288
	      as_bad_where (fixp->fx_file, fixp->fx_line,
10289
			    _("can not do %d byte relocation"),
10290
			    fixp->fx_size);
10291
	      code = BFD_RELOC_32;
10292
	      break;
10293
	    case 1: code = BFD_RELOC_8;  break;
10294
	    case 2: code = BFD_RELOC_16; break;
10295
	    case 4: code = BFD_RELOC_32; break;
10296
#ifdef BFD64
10297
	    case 8: code = BFD_RELOC_64; break;
10298
#endif
10299
	    }
10300
	}
10301
      break;
10302
    }
10303
 
10304
  if ((code == BFD_RELOC_32
10305
       || code == BFD_RELOC_32_PCREL
10306
       || code == BFD_RELOC_X86_64_32S)
10307
      && GOT_symbol
10308
      && fixp->fx_addsy == GOT_symbol)
10309
    {
10310
      if (!object_64bit)
10311
	code = BFD_RELOC_386_GOTPC;
10312
      else
10313
	code = BFD_RELOC_X86_64_GOTPC32;
10314
    }
10315
  if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10316
      && GOT_symbol
10317
      && fixp->fx_addsy == GOT_symbol)
10318
    {
10319
      code = BFD_RELOC_X86_64_GOTPC64;
10320
    }
10321
 
10322
  rel = (arelent *) xmalloc (sizeof (arelent));
10323
  rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
10324
  *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10325
 
10326
  rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10327
 
10328
  if (!use_rela_relocations)
10329
    {
10330
      /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10331
	 vtable entry to be used in the relocation's section offset.  */
10332
      if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10333
	rel->address = fixp->fx_offset;
10334
#if defined (OBJ_COFF) && defined (TE_PE)
10335
      else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10336
	rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10337
      else
10338
#endif
10339
      rel->addend = 0;
10340
    }
10341
  /* Use the rela in 64bit mode.  */
10342
  else
10343
    {
10344
      if (disallow_64bit_reloc)
10345
	switch (code)
10346
	  {
10347
	  case BFD_RELOC_X86_64_DTPOFF64:
10348
	  case BFD_RELOC_X86_64_TPOFF64:
10349
	  case BFD_RELOC_64_PCREL:
10350
	  case BFD_RELOC_X86_64_GOTOFF64:
10351
	  case BFD_RELOC_X86_64_GOT64:
10352
	  case BFD_RELOC_X86_64_GOTPCREL64:
10353
	  case BFD_RELOC_X86_64_GOTPC64:
10354
	  case BFD_RELOC_X86_64_GOTPLT64:
10355
	  case BFD_RELOC_X86_64_PLTOFF64:
10356
	    as_bad_where (fixp->fx_file, fixp->fx_line,
10357
			  _("cannot represent relocation type %s in x32 mode"),
10358
			  bfd_get_reloc_code_name (code));
10359
	    break;
10360
	  default:
10361
	    break;
10362
	  }
10363
 
10364
      if (!fixp->fx_pcrel)
10365
	rel->addend = fixp->fx_offset;
10366
      else
10367
	switch (code)
10368
	  {
10369
	  case BFD_RELOC_X86_64_PLT32:
10370
	  case BFD_RELOC_X86_64_PLT32_BND:
10371
	  case BFD_RELOC_X86_64_GOT32:
10372
	  case BFD_RELOC_X86_64_GOTPCREL:
10373
	  case BFD_RELOC_X86_64_TLSGD:
10374
	  case BFD_RELOC_X86_64_TLSLD:
10375
	  case BFD_RELOC_X86_64_GOTTPOFF:
10376
	  case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10377
	  case BFD_RELOC_X86_64_TLSDESC_CALL:
10378
	    rel->addend = fixp->fx_offset - fixp->fx_size;
10379
	    break;
10380
	  default:
10381
	    rel->addend = (section->vma
10382
			   - fixp->fx_size
10383
			   + fixp->fx_addnumber
10384
			   + md_pcrel_from (fixp));
10385
	    break;
10386
	  }
10387
    }
10388
 
10389
  rel->howto = bfd_reloc_type_lookup (stdoutput, code);
10390
  if (rel->howto == NULL)
10391
    {
10392
      as_bad_where (fixp->fx_file, fixp->fx_line,
10393
		    _("cannot represent relocation type %s"),
10394
		    bfd_get_reloc_code_name (code));
10395
      /* Set howto to a garbage value so that we can keep going.  */
10396
      rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
10397
      gas_assert (rel->howto != NULL);
10398
    }
10399
 
10400
  return rel;
10401
}
10402
 
10403
#include "tc-i386-intel.c"
10404
 
10405
void
10406
tc_x86_parse_to_dw2regnum (expressionS *exp)
10407
{
10408
  int saved_naked_reg;
10409
  char saved_register_dot;
10410
 
10411
  saved_naked_reg = allow_naked_reg;
10412
  allow_naked_reg = 1;
10413
  saved_register_dot = register_chars['.'];
10414
  register_chars['.'] = '.';
10415
  allow_pseudo_reg = 1;
10416
  expression_and_evaluate (exp);
10417
  allow_pseudo_reg = 0;
10418
  register_chars['.'] = saved_register_dot;
10419
  allow_naked_reg = saved_naked_reg;
10420
 
10421
  if (exp->X_op == O_register && exp->X_add_number >= 0)
10422
    {
10423
      if ((addressT) exp->X_add_number < i386_regtab_size)
10424
	{
10425
	  exp->X_op = O_constant;
10426
	  exp->X_add_number = i386_regtab[exp->X_add_number]
10427
			      .dw2_regnum[flag_code >> 1];
10428
	}
10429
      else
10430
	exp->X_op = O_illegal;
10431
    }
10432
}
10433
 
10434
void
10435
tc_x86_frame_initial_instructions (void)
10436
{
10437
  static unsigned int sp_regno[2];
10438
 
10439
  if (!sp_regno[flag_code >> 1])
10440
    {
10441
      char *saved_input = input_line_pointer;
10442
      char sp[][4] = {"esp", "rsp"};
10443
      expressionS exp;
10444
 
10445
      input_line_pointer = sp[flag_code >> 1];
10446
      tc_x86_parse_to_dw2regnum (&exp);
10447
      gas_assert (exp.X_op == O_constant);
10448
      sp_regno[flag_code >> 1] = exp.X_add_number;
10449
      input_line_pointer = saved_input;
10450
    }
10451
 
10452
  cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
10453
  cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
10454
}
10455
 
10456
int
10457
x86_dwarf2_addr_size (void)
10458
{
10459
#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10460
  if (x86_elf_abi == X86_64_X32_ABI)
10461
    return 4;
10462
#endif
10463
  return bfd_arch_bits_per_address (stdoutput) / 8;
10464
}
10465
 
10466
int
10467
i386_elf_section_type (const char *str, size_t len)
10468
{
10469
  if (flag_code == CODE_64BIT
10470
      && len == sizeof ("unwind") - 1
10471
      && strncmp (str, "unwind", 6) == 0)
10472
    return SHT_X86_64_UNWIND;
10473
 
10474
  return -1;
10475
}
10476
 
10477
#ifdef TE_SOLARIS
10478
void
10479
i386_solaris_fix_up_eh_frame (segT sec)
10480
{
10481
  if (flag_code == CODE_64BIT)
10482
    elf_section_type (sec) = SHT_X86_64_UNWIND;
10483
}
10484
#endif
10485
 
10486
#ifdef TE_PE
10487
void
10488
tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10489
{
10490
  expressionS exp;
10491
 
10492
  exp.X_op = O_secrel;
10493
  exp.X_add_symbol = symbol;
10494
  exp.X_add_number = 0;
10495
  emit_expr (&exp, size);
10496
}
10497
#endif
10498
 
10499
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10500
/* For ELF on x86-64, add support for SHF_X86_64_LARGE.  */
10501
 
10502
bfd_vma
10503
x86_64_section_letter (int letter, char **ptr_msg)
10504
{
10505
  if (flag_code == CODE_64BIT)
10506
    {
10507
      if (letter == 'l')
10508
	return SHF_X86_64_LARGE;
10509
 
10510
      *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
10511
    }
10512
  else
10513
    *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
10514
  return -1;
10515
}
10516
 
10517
bfd_vma
10518
x86_64_section_word (char *str, size_t len)
10519
{
10520
  if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
10521
    return SHF_X86_64_LARGE;
10522
 
10523
  return -1;
10524
}
10525
 
10526
static void
10527
handle_large_common (int small ATTRIBUTE_UNUSED)
10528
{
10529
  if (flag_code != CODE_64BIT)
10530
    {
10531
      s_comm_internal (0, elf_common_parse);
10532
      as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
10533
    }
10534
  else
10535
    {
10536
      static segT lbss_section;
10537
      asection *saved_com_section_ptr = elf_com_section_ptr;
10538
      asection *saved_bss_section = bss_section;
10539
 
10540
      if (lbss_section == NULL)
10541
	{
10542
	  flagword applicable;
10543
	  segT seg = now_seg;
10544
	  subsegT subseg = now_subseg;
10545
 
10546
	  /* The .lbss section is for local .largecomm symbols.  */
10547
	  lbss_section = subseg_new (".lbss", 0);
10548
	  applicable = bfd_applicable_section_flags (stdoutput);
10549
	  bfd_set_section_flags (stdoutput, lbss_section,
10550
				 applicable & SEC_ALLOC);
10551
	  seg_info (lbss_section)->bss = 1;
10552
 
10553
	  subseg_set (seg, subseg);
10554
	}
10555
 
10556
      elf_com_section_ptr = &_bfd_elf_large_com_section;
10557
      bss_section = lbss_section;
10558
 
10559
      s_comm_internal (0, elf_common_parse);
10560
 
10561
      elf_com_section_ptr = saved_com_section_ptr;
10562
      bss_section = saved_bss_section;
10563
    }
10564
}
10565
#endif /* OBJ_ELF || OBJ_MAYBE_ELF */