Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5197 serge 1
/* Object file "section" support for the BFD library.
2
   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
4
   2012, 2013
5
   Free Software Foundation, Inc.
6
   Written by Cygnus Support.
7
 
8
   This file is part of BFD, the Binary File Descriptor library.
9
 
10
   This program is free software; you can redistribute it and/or modify
11
   it under the terms of the GNU General Public License as published by
12
   the Free Software Foundation; either version 3 of the License, or
13
   (at your option) any later version.
14
 
15
   This program is distributed in the hope that it will be useful,
16
   but WITHOUT ANY WARRANTY; without even the implied warranty of
17
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18
   GNU General Public License for more details.
19
 
20
   You should have received a copy of the GNU General Public License
21
   along with this program; if not, write to the Free Software
22
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23
   MA 02110-1301, USA.  */
24
 
25
/*
26
SECTION
27
	Sections
28
 
29
	The raw data contained within a BFD is maintained through the
30
	section abstraction.  A single BFD may have any number of
31
	sections.  It keeps hold of them by pointing to the first;
32
	each one points to the next in the list.
33
 
34
	Sections are supported in BFD in <>.
35
 
36
@menu
37
@* Section Input::
38
@* Section Output::
39
@* typedef asection::
40
@* section prototypes::
41
@end menu
42
 
43
INODE
44
Section Input, Section Output, Sections, Sections
45
SUBSECTION
46
	Section input
47
 
48
	When a BFD is opened for reading, the section structures are
49
	created and attached to the BFD.
50
 
51
	Each section has a name which describes the section in the
52
	outside world---for example, <> would contain at least
53
	three sections, called <<.text>>, <<.data>> and <<.bss>>.
54
 
55
	Names need not be unique; for example a COFF file may have several
56
	sections named <<.data>>.
57
 
58
	Sometimes a BFD will contain more than the ``natural'' number of
59
	sections. A back end may attach other sections containing
60
	constructor data, or an application may add a section (using
61
	<>) to the sections attached to an already open
62
	BFD. For example, the linker creates an extra section
63
	<> for each input file's BFD to hold information about
64
	common storage.
65
 
66
	The raw data is not necessarily read in when
67
	the section descriptor is created. Some targets may leave the
68
	data in place until a <> call is
69
	made. Other back ends may read in all the data at once.  For
70
	example, an S-record file has to be read once to determine the
71
	size of the data. An IEEE-695 file doesn't contain raw data in
72
	sections, but data and relocation expressions intermixed, so
73
	the data area has to be parsed to get out the data and
74
	relocations.
75
 
76
INODE
77
Section Output, typedef asection, Section Input, Sections
78
 
79
SUBSECTION
80
	Section output
81
 
82
	To write a new object style BFD, the various sections to be
83
	written have to be created. They are attached to the BFD in
84
	the same way as input sections; data is written to the
85
	sections using <>.
86
 
87
	Any program that creates or combines sections (e.g., the assembler
88
	and linker) must use the <> fields <> and
89
	<> to indicate the file sections to which each
90
	section must be written.  (If the section is being created from
91
	scratch, <> should probably point to the section
92
	itself and <> should probably be zero.)
93
 
94
	The data to be written comes from input sections attached
95
	(via <> pointers) to
96
	the output sections.  The output section structure can be
97
	considered a filter for the input section: the output section
98
	determines the vma of the output data and the name, but the
99
	input section determines the offset into the output section of
100
	the data to be written.
101
 
102
	E.g., to create a section "O", starting at 0x100, 0x123 long,
103
	containing two subsections, "A" at offset 0x0 (i.e., at vma
104
	0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <>
105
	structures would look like:
106
 
107
|   section name          "A"
108
|     output_offset   0x00
109
|     size            0x20
110
|     output_section ----------->  section name    "O"
111
|                             |    vma             0x100
112
|   section name          "B" |    size            0x123
113
|     output_offset   0x20    |
114
|     size            0x103   |
115
|     output_section  --------|
116
 
117
SUBSECTION
118
	Link orders
119
 
120
	The data within a section is stored in a @dfn{link_order}.
121
	These are much like the fixups in <>.  The link_order
122
	abstraction allows a section to grow and shrink within itself.
123
 
124
	A link_order knows how big it is, and which is the next
125
	link_order and where the raw data for it is; it also points to
126
	a list of relocations which apply to it.
127
 
128
	The link_order is used by the linker to perform relaxing on
129
	final code.  The compiler creates code which is as big as
130
	necessary to make it work without relaxing, and the user can
131
	select whether to relax.  Sometimes relaxing takes a lot of
132
	time.  The linker runs around the relocations to see if any
133
	are attached to data which can be shrunk, if so it does it on
134
	a link_order by link_order basis.
135
 
136
*/
137
 
138
#include "sysdep.h"
139
#include "bfd.h"
140
#include "libbfd.h"
141
#include "bfdlink.h"
142
 
143
/*
144
DOCDD
145
INODE
146
typedef asection, section prototypes, Section Output, Sections
147
SUBSECTION
148
	typedef asection
149
 
150
	Here is the section structure:
151
 
152
CODE_FRAGMENT
153
.
154
.typedef struct bfd_section
155
.{
156
.  {* The name of the section; the name isn't a copy, the pointer is
157
.     the same as that passed to bfd_make_section.  *}
158
.  const char *name;
159
.
160
.  {* A unique sequence number.  *}
161
.  int id;
162
.
163
.  {* Which section in the bfd; 0..n-1 as sections are created in a bfd.  *}
164
.  int index;
165
.
166
.  {* The next section in the list belonging to the BFD, or NULL.  *}
167
.  struct bfd_section *next;
168
.
169
.  {* The previous section in the list belonging to the BFD, or NULL.  *}
170
.  struct bfd_section *prev;
171
.
172
.  {* The field flags contains attributes of the section. Some
173
.     flags are read in from the object file, and some are
174
.     synthesized from other information.  *}
175
.  flagword flags;
176
.
177
.#define SEC_NO_FLAGS   0x000
178
.
179
.  {* Tells the OS to allocate space for this section when loading.
180
.     This is clear for a section containing debug information only.  *}
181
.#define SEC_ALLOC      0x001
182
.
183
.  {* Tells the OS to load the section from the file when loading.
184
.     This is clear for a .bss section.  *}
185
.#define SEC_LOAD       0x002
186
.
187
.  {* The section contains data still to be relocated, so there is
188
.     some relocation information too.  *}
189
.#define SEC_RELOC      0x004
190
.
191
.  {* A signal to the OS that the section contains read only data.  *}
192
.#define SEC_READONLY   0x008
193
.
194
.  {* The section contains code only.  *}
195
.#define SEC_CODE       0x010
196
.
197
.  {* The section contains data only.  *}
198
.#define SEC_DATA       0x020
199
.
200
.  {* The section will reside in ROM.  *}
201
.#define SEC_ROM        0x040
202
.
203
.  {* The section contains constructor information. This section
204
.     type is used by the linker to create lists of constructors and
205
.     destructors used by <>. When a back end sees a symbol
206
.     which should be used in a constructor list, it creates a new
207
.     section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
208
.     the symbol to it, and builds a relocation. To build the lists
209
.     of constructors, all the linker has to do is catenate all the
210
.     sections called <<__CTOR_LIST__>> and relocate the data
211
.     contained within - exactly the operations it would peform on
212
.     standard data.  *}
213
.#define SEC_CONSTRUCTOR 0x080
214
.
215
.  {* The section has contents - a data section could be
216
.     <> | <>; a debug section could be
217
.     <>  *}
218
.#define SEC_HAS_CONTENTS 0x100
219
.
220
.  {* An instruction to the linker to not output the section
221
.     even if it has information which would normally be written.  *}
222
.#define SEC_NEVER_LOAD 0x200
223
.
224
.  {* The section contains thread local data.  *}
225
.#define SEC_THREAD_LOCAL 0x400
226
.
227
.  {* The section has GOT references.  This flag is only for the
228
.     linker, and is currently only used by the elf32-hppa back end.
229
.     It will be set if global offset table references were detected
230
.     in this section, which indicate to the linker that the section
231
.     contains PIC code, and must be handled specially when doing a
232
.     static link.  *}
233
.#define SEC_HAS_GOT_REF 0x800
234
.
235
.  {* The section contains common symbols (symbols may be defined
236
.     multiple times, the value of a symbol is the amount of
237
.     space it requires, and the largest symbol value is the one
238
.     used).  Most targets have exactly one of these (which we
239
.     translate to bfd_com_section_ptr), but ECOFF has two.  *}
240
.#define SEC_IS_COMMON 0x1000
241
.
242
.  {* The section contains only debugging information.  For
243
.     example, this is set for ELF .debug and .stab sections.
244
.     strip tests this flag to see if a section can be
245
.     discarded.  *}
246
.#define SEC_DEBUGGING 0x2000
247
.
248
.  {* The contents of this section are held in memory pointed to
249
.     by the contents field.  This is checked by bfd_get_section_contents,
250
.     and the data is retrieved from memory if appropriate.  *}
251
.#define SEC_IN_MEMORY 0x4000
252
.
253
.  {* The contents of this section are to be excluded by the
254
.     linker for executable and shared objects unless those
255
.     objects are to be further relocated.  *}
256
.#define SEC_EXCLUDE 0x8000
257
.
258
.  {* The contents of this section are to be sorted based on the sum of
259
.     the symbol and addend values specified by the associated relocation
260
.     entries.  Entries without associated relocation entries will be
261
.     appended to the end of the section in an unspecified order.  *}
262
.#define SEC_SORT_ENTRIES 0x10000
263
.
264
.  {* When linking, duplicate sections of the same name should be
265
.     discarded, rather than being combined into a single section as
266
.     is usually done.  This is similar to how common symbols are
267
.     handled.  See SEC_LINK_DUPLICATES below.  *}
268
.#define SEC_LINK_ONCE 0x20000
269
.
270
.  {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
271
.     should handle duplicate sections.  *}
272
.#define SEC_LINK_DUPLICATES 0xc0000
273
.
274
.  {* This value for SEC_LINK_DUPLICATES means that duplicate
275
.     sections with the same name should simply be discarded.  *}
276
.#define SEC_LINK_DUPLICATES_DISCARD 0x0
277
.
278
.  {* This value for SEC_LINK_DUPLICATES means that the linker
279
.     should warn if there are any duplicate sections, although
280
.     it should still only link one copy.  *}
281
.#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
282
.
283
.  {* This value for SEC_LINK_DUPLICATES means that the linker
284
.     should warn if any duplicate sections are a different size.  *}
285
.#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
286
.
287
.  {* This value for SEC_LINK_DUPLICATES means that the linker
288
.     should warn if any duplicate sections contain different
289
.     contents.  *}
290
.#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
291
.  (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
292
.
293
.  {* This section was created by the linker as part of dynamic
294
.     relocation or other arcane processing.  It is skipped when
295
.     going through the first-pass output, trusting that someone
296
.     else up the line will take care of it later.  *}
297
.#define SEC_LINKER_CREATED 0x100000
298
.
299
.  {* This section should not be subject to garbage collection.
300
.     Also set to inform the linker that this section should not be
301
.     listed in the link map as discarded.  *}
302
.#define SEC_KEEP 0x200000
303
.
304
.  {* This section contains "short" data, and should be placed
305
.     "near" the GP.  *}
306
.#define SEC_SMALL_DATA 0x400000
307
.
308
.  {* Attempt to merge identical entities in the section.
309
.     Entity size is given in the entsize field.  *}
310
.#define SEC_MERGE 0x800000
311
.
312
.  {* If given with SEC_MERGE, entities to merge are zero terminated
313
.     strings where entsize specifies character size instead of fixed
314
.     size entries.  *}
315
.#define SEC_STRINGS 0x1000000
316
.
317
.  {* This section contains data about section groups.  *}
318
.#define SEC_GROUP 0x2000000
319
.
320
.  {* The section is a COFF shared library section.  This flag is
321
.     only for the linker.  If this type of section appears in
322
.     the input file, the linker must copy it to the output file
323
.     without changing the vma or size.  FIXME: Although this
324
.     was originally intended to be general, it really is COFF
325
.     specific (and the flag was renamed to indicate this).  It
326
.     might be cleaner to have some more general mechanism to
327
.     allow the back end to control what the linker does with
328
.     sections.  *}
329
.#define SEC_COFF_SHARED_LIBRARY 0x4000000
330
.
331
.  {* This input section should be copied to output in reverse order
332
.     as an array of pointers.  This is for ELF linker internal use
333
.     only.  *}
334
.#define SEC_ELF_REVERSE_COPY 0x4000000
335
.
336
.  {* This section contains data which may be shared with other
337
.     executables or shared objects. This is for COFF only.  *}
338
.#define SEC_COFF_SHARED 0x8000000
339
.
340
.  {* When a section with this flag is being linked, then if the size of
341
.     the input section is less than a page, it should not cross a page
342
.     boundary.  If the size of the input section is one page or more,
343
.     it should be aligned on a page boundary.  This is for TI
344
.     TMS320C54X only.  *}
345
.#define SEC_TIC54X_BLOCK 0x10000000
346
.
347
.  {* Conditionally link this section; do not link if there are no
348
.     references found to any symbol in the section.  This is for TI
349
.     TMS320C54X only.  *}
350
.#define SEC_TIC54X_CLINK 0x20000000
351
.
352
.  {* Indicate that section has the no read flag set. This happens
353
.     when memory read flag isn't set. *}
354
.#define SEC_COFF_NOREAD 0x40000000
355
.
356
.  {*  End of section flags.  *}
357
.
358
.  {* Some internal packed boolean fields.  *}
359
.
360
.  {* See the vma field.  *}
361
.  unsigned int user_set_vma : 1;
362
.
363
.  {* A mark flag used by some of the linker backends.  *}
364
.  unsigned int linker_mark : 1;
365
.
366
.  {* Another mark flag used by some of the linker backends.  Set for
367
.     output sections that have an input section.  *}
368
.  unsigned int linker_has_input : 1;
369
.
370
.  {* Mark flag used by some linker backends for garbage collection.  *}
371
.  unsigned int gc_mark : 1;
372
.
373
.  {* Section compression status.  *}
374
.  unsigned int compress_status : 2;
375
.#define COMPRESS_SECTION_NONE    0
376
.#define COMPRESS_SECTION_DONE    1
377
.#define DECOMPRESS_SECTION_SIZED 2
378
.
379
.  {* The following flags are used by the ELF linker. *}
380
.
381
.  {* Mark sections which have been allocated to segments.  *}
382
.  unsigned int segment_mark : 1;
383
.
384
.  {* Type of sec_info information.  *}
385
.  unsigned int sec_info_type:3;
386
.#define SEC_INFO_TYPE_NONE      0
387
.#define SEC_INFO_TYPE_STABS     1
388
.#define SEC_INFO_TYPE_MERGE     2
389
.#define SEC_INFO_TYPE_EH_FRAME  3
390
.#define SEC_INFO_TYPE_JUST_SYMS 4
391
.
392
.  {* Nonzero if this section uses RELA relocations, rather than REL.  *}
393
.  unsigned int use_rela_p:1;
394
.
395
.  {* Bits used by various backends.  The generic code doesn't touch
396
.     these fields.  *}
397
.
398
.  unsigned int sec_flg0:1;
399
.  unsigned int sec_flg1:1;
400
.  unsigned int sec_flg2:1;
401
.  unsigned int sec_flg3:1;
402
.  unsigned int sec_flg4:1;
403
.  unsigned int sec_flg5:1;
404
.
405
.  {* End of internal packed boolean fields.  *}
406
.
407
.  {*  The virtual memory address of the section - where it will be
408
.      at run time.  The symbols are relocated against this.  The
409
.      user_set_vma flag is maintained by bfd; if it's not set, the
410
.      backend can assign addresses (for example, in <>, where
411
.      the default address for <<.data>> is dependent on the specific
412
.      target and various flags).  *}
413
.  bfd_vma vma;
414
.
415
.  {*  The load address of the section - where it would be in a
416
.      rom image; really only used for writing section header
417
.      information.  *}
418
.  bfd_vma lma;
419
.
420
.  {* The size of the section in octets, as it will be output.
421
.     Contains a value even if the section has no contents (e.g., the
422
.     size of <<.bss>>).  *}
423
.  bfd_size_type size;
424
.
425
.  {* For input sections, the original size on disk of the section, in
426
.     octets.  This field should be set for any section whose size is
427
.     changed by linker relaxation.  It is required for sections where
428
.     the linker relaxation scheme doesn't cache altered section and
429
.     reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
430
.     targets), and thus the original size needs to be kept to read the
431
.     section multiple times.  For output sections, rawsize holds the
432
.     section size calculated on a previous linker relaxation pass.  *}
433
.  bfd_size_type rawsize;
434
.
435
.  {* The compressed size of the section in octets.  *}
436
.  bfd_size_type compressed_size;
437
.
438
.  {* Relaxation table. *}
439
.  struct relax_table *relax;
440
.
441
.  {* Count of used relaxation table entries. *}
442
.  int relax_count;
443
.
444
.
445
.  {* If this section is going to be output, then this value is the
446
.     offset in *bytes* into the output section of the first byte in the
447
.     input section (byte ==> smallest addressable unit on the
448
.     target).  In most cases, if this was going to start at the
449
.     100th octet (8-bit quantity) in the output section, this value
450
.     would be 100.  However, if the target byte size is 16 bits
451
.     (bfd_octets_per_byte is "2"), this value would be 50.  *}
452
.  bfd_vma output_offset;
453
.
454
.  {* The output section through which to map on output.  *}
455
.  struct bfd_section *output_section;
456
.
457
.  {* The alignment requirement of the section, as an exponent of 2 -
458
.     e.g., 3 aligns to 2^3 (or 8).  *}
459
.  unsigned int alignment_power;
460
.
461
.  {* If an input section, a pointer to a vector of relocation
462
.     records for the data in this section.  *}
463
.  struct reloc_cache_entry *relocation;
464
.
465
.  {* If an output section, a pointer to a vector of pointers to
466
.     relocation records for the data in this section.  *}
467
.  struct reloc_cache_entry **orelocation;
468
.
469
.  {* The number of relocation records in one of the above.  *}
470
.  unsigned reloc_count;
471
.
472
.  {* Information below is back end specific - and not always used
473
.     or updated.  *}
474
.
475
.  {* File position of section data.  *}
476
.  file_ptr filepos;
477
.
478
.  {* File position of relocation info.  *}
479
.  file_ptr rel_filepos;
480
.
481
.  {* File position of line data.  *}
482
.  file_ptr line_filepos;
483
.
484
.  {* Pointer to data for applications.  *}
485
.  void *userdata;
486
.
487
.  {* If the SEC_IN_MEMORY flag is set, this points to the actual
488
.     contents.  *}
489
.  unsigned char *contents;
490
.
491
.  {* Attached line number information.  *}
492
.  alent *lineno;
493
.
494
.  {* Number of line number records.  *}
495
.  unsigned int lineno_count;
496
.
497
.  {* Entity size for merging purposes.  *}
498
.  unsigned int entsize;
499
.
500
.  {* Points to the kept section if this section is a link-once section,
501
.     and is discarded.  *}
502
.  struct bfd_section *kept_section;
503
.
504
.  {* When a section is being output, this value changes as more
505
.     linenumbers are written out.  *}
506
.  file_ptr moving_line_filepos;
507
.
508
.  {* What the section number is in the target world.  *}
509
.  int target_index;
510
.
511
.  void *used_by_bfd;
512
.
513
.  {* If this is a constructor section then here is a list of the
514
.     relocations created to relocate items within it.  *}
515
.  struct relent_chain *constructor_chain;
516
.
517
.  {* The BFD which owns the section.  *}
518
.  bfd *owner;
519
.
520
.  {* A symbol which points at this section only.  *}
521
.  struct bfd_symbol *symbol;
522
.  struct bfd_symbol **symbol_ptr_ptr;
523
.
524
.  {* Early in the link process, map_head and map_tail are used to build
525
.     a list of input sections attached to an output section.  Later,
526
.     output sections use these fields for a list of bfd_link_order
527
.     structs.  *}
528
.  union {
529
.    struct bfd_link_order *link_order;
530
.    struct bfd_section *s;
531
.  } map_head, map_tail;
532
.} asection;
533
.
534
.{* Relax table contains information about instructions which can
535
.   be removed by relaxation -- replacing a long address with a
536
.   short address.  *}
537
.struct relax_table {
538
.  {* Address where bytes may be deleted. *}
539
.  bfd_vma addr;
540
.
541
.  {* Number of bytes to be deleted.  *}
542
.  int size;
543
.};
544
.
545
.{* These sections are global, and are managed by BFD.  The application
546
.   and target back end are not permitted to change the values in
547
.   these sections.  *}
548
.extern asection _bfd_std_section[4];
549
.
550
.#define BFD_ABS_SECTION_NAME "*ABS*"
551
.#define BFD_UND_SECTION_NAME "*UND*"
552
.#define BFD_COM_SECTION_NAME "*COM*"
553
.#define BFD_IND_SECTION_NAME "*IND*"
554
.
555
.{* Pointer to the common section.  *}
556
.#define bfd_com_section_ptr (&_bfd_std_section[0])
557
.{* Pointer to the undefined section.  *}
558
.#define bfd_und_section_ptr (&_bfd_std_section[1])
559
.{* Pointer to the absolute section.  *}
560
.#define bfd_abs_section_ptr (&_bfd_std_section[2])
561
.{* Pointer to the indirect section.  *}
562
.#define bfd_ind_section_ptr (&_bfd_std_section[3])
563
.
564
.#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
565
.#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
566
.#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
567
.
568
.#define bfd_is_const_section(SEC)		\
569
. (   ((SEC) == bfd_abs_section_ptr)		\
570
.  || ((SEC) == bfd_und_section_ptr)		\
571
.  || ((SEC) == bfd_com_section_ptr)		\
572
.  || ((SEC) == bfd_ind_section_ptr))
573
.
574
.{* Macros to handle insertion and deletion of a bfd's sections.  These
575
.   only handle the list pointers, ie. do not adjust section_count,
576
.   target_index etc.  *}
577
.#define bfd_section_list_remove(ABFD, S) \
578
.  do							\
579
.    {							\
580
.      asection *_s = S;				\
581
.      asection *_next = _s->next;			\
582
.      asection *_prev = _s->prev;			\
583
.      if (_prev)					\
584
.        _prev->next = _next;				\
585
.      else						\
586
.        (ABFD)->sections = _next;			\
587
.      if (_next)					\
588
.        _next->prev = _prev;				\
589
.      else						\
590
.        (ABFD)->section_last = _prev;			\
591
.    }							\
592
.  while (0)
593
.#define bfd_section_list_append(ABFD, S) \
594
.  do							\
595
.    {							\
596
.      asection *_s = S;				\
597
.      bfd *_abfd = ABFD;				\
598
.      _s->next = NULL;					\
599
.      if (_abfd->section_last)				\
600
.        {						\
601
.          _s->prev = _abfd->section_last;		\
602
.          _abfd->section_last->next = _s;		\
603
.        }						\
604
.      else						\
605
.        {						\
606
.          _s->prev = NULL;				\
607
.          _abfd->sections = _s;			\
608
.        }						\
609
.      _abfd->section_last = _s;			\
610
.    }							\
611
.  while (0)
612
.#define bfd_section_list_prepend(ABFD, S) \
613
.  do							\
614
.    {							\
615
.      asection *_s = S;				\
616
.      bfd *_abfd = ABFD;				\
617
.      _s->prev = NULL;					\
618
.      if (_abfd->sections)				\
619
.        {						\
620
.          _s->next = _abfd->sections;			\
621
.          _abfd->sections->prev = _s;			\
622
.        }						\
623
.      else						\
624
.        {						\
625
.          _s->next = NULL;				\
626
.          _abfd->section_last = _s;			\
627
.        }						\
628
.      _abfd->sections = _s;				\
629
.    }							\
630
.  while (0)
631
.#define bfd_section_list_insert_after(ABFD, A, S) \
632
.  do							\
633
.    {							\
634
.      asection *_a = A;				\
635
.      asection *_s = S;				\
636
.      asection *_next = _a->next;			\
637
.      _s->next = _next;				\
638
.      _s->prev = _a;					\
639
.      _a->next = _s;					\
640
.      if (_next)					\
641
.        _next->prev = _s;				\
642
.      else						\
643
.        (ABFD)->section_last = _s;			\
644
.    }							\
645
.  while (0)
646
.#define bfd_section_list_insert_before(ABFD, B, S) \
647
.  do							\
648
.    {							\
649
.      asection *_b = B;				\
650
.      asection *_s = S;				\
651
.      asection *_prev = _b->prev;			\
652
.      _s->prev = _prev;				\
653
.      _s->next = _b;					\
654
.      _b->prev = _s;					\
655
.      if (_prev)					\
656
.        _prev->next = _s;				\
657
.      else						\
658
.        (ABFD)->sections = _s;				\
659
.    }							\
660
.  while (0)
661
.#define bfd_section_removed_from_list(ABFD, S) \
662
.  ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
663
.
664
.#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX)			\
665
.  {* name, id,  index, next, prev, flags, user_set_vma,            *}	\
666
.  { NAME,  IDX, 0,     NULL, NULL, FLAGS, 0,				\
667
.									\
668
.  {* linker_mark, linker_has_input, gc_mark, decompress_status,    *}	\
669
.     0,           0,                1,       0,			\
670
.									\
671
.  {* segment_mark, sec_info_type, use_rela_p,                      *}	\
672
.     0,            0,             0,					\
673
.									\
674
.  {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5,   *}	\
675
.     0,        0,        0,        0,        0,        0,		\
676
.									\
677
.  {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *}	\
678
.     0,   0,   0,    0,       0,               0,     0,		\
679
.									\
680
.  {* output_offset, output_section, alignment_power,               *}	\
681
.     0,             &SEC,           0,					\
682
.									\
683
.  {* relocation, orelocation, reloc_count, filepos, rel_filepos,   *}	\
684
.     NULL,       NULL,        0,           0,       0,			\
685
.									\
686
.  {* line_filepos, userdata, contents, lineno, lineno_count,       *}	\
687
.     0,            NULL,     NULL,     NULL,   0,			\
688
.									\
689
.  {* entsize, kept_section, moving_line_filepos,		     *}	\
690
.     0,       NULL,	      0,					\
691
.									\
692
.  {* target_index, used_by_bfd, constructor_chain, owner,          *}	\
693
.     0,            NULL,        NULL,              NULL,		\
694
.									\
695
.  {* symbol,                    symbol_ptr_ptr,                    *}	\
696
.     (struct bfd_symbol *) SYM, &SEC.symbol,				\
697
.									\
698
.  {* map_head, map_tail                                            *}	\
699
.     { NULL }, { NULL }						\
700
.    }
701
.
702
*/
703
 
704
/* We use a macro to initialize the static asymbol structures because
705
   traditional C does not permit us to initialize a union member while
706
   gcc warns if we don't initialize it.  */
707
 /* the_bfd, name, value, attr, section [, udata] */
708
#ifdef __STDC__
709
#define GLOBAL_SYM_INIT(NAME, SECTION) \
710
  { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
711
#else
712
#define GLOBAL_SYM_INIT(NAME, SECTION) \
713
  { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
714
#endif
715
 
716
/* These symbols are global, not specific to any BFD.  Therefore, anything
717
   that tries to change them is broken, and should be repaired.  */
718
 
719
static const asymbol global_syms[] =
720
{
721
  GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr),
722
  GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr),
723
  GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr),
724
  GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr)
725
};
726
 
727
#define STD_SECTION(NAME, IDX, FLAGS) \
728
  BFD_FAKE_SECTION(_bfd_std_section[IDX], FLAGS, &global_syms[IDX], NAME, IDX)
729
 
730
asection _bfd_std_section[] = {
731
  STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON),
732
  STD_SECTION (BFD_UND_SECTION_NAME, 1, 0),
733
  STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0),
734
  STD_SECTION (BFD_IND_SECTION_NAME, 3, 0)
735
};
736
#undef STD_SECTION
737
 
738
/* Initialize an entry in the section hash table.  */
739
 
740
struct bfd_hash_entry *
741
bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
742
			  struct bfd_hash_table *table,
743
			  const char *string)
744
{
745
  /* Allocate the structure if it has not already been allocated by a
746
     subclass.  */
747
  if (entry == NULL)
748
    {
749
      entry = (struct bfd_hash_entry *)
750
	bfd_hash_allocate (table, sizeof (struct section_hash_entry));
751
      if (entry == NULL)
752
	return entry;
753
    }
754
 
755
  /* Call the allocation method of the superclass.  */
756
  entry = bfd_hash_newfunc (entry, table, string);
757
  if (entry != NULL)
758
    memset (&((struct section_hash_entry *) entry)->section, 0,
759
	    sizeof (asection));
760
 
761
  return entry;
762
}
763
 
764
#define section_hash_lookup(table, string, create, copy) \
765
  ((struct section_hash_entry *) \
766
   bfd_hash_lookup ((table), (string), (create), (copy)))
767
 
768
/* Create a symbol whose only job is to point to this section.  This
769
   is useful for things like relocs which are relative to the base
770
   of a section.  */
771
 
772
bfd_boolean
773
_bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
774
{
775
  newsect->symbol = bfd_make_empty_symbol (abfd);
776
  if (newsect->symbol == NULL)
777
    return FALSE;
778
 
779
  newsect->symbol->name = newsect->name;
780
  newsect->symbol->value = 0;
781
  newsect->symbol->section = newsect;
782
  newsect->symbol->flags = BSF_SECTION_SYM;
783
 
784
  newsect->symbol_ptr_ptr = &newsect->symbol;
785
  return TRUE;
786
}
787
 
788
/* Initializes a new section.  NEWSECT->NAME is already set.  */
789
 
790
static asection *
791
bfd_section_init (bfd *abfd, asection *newsect)
792
{
793
  static int section_id = 0x10;  /* id 0 to 3 used by STD_SECTION.  */
794
 
795
  newsect->id = section_id;
796
  newsect->index = abfd->section_count;
797
  newsect->owner = abfd;
798
 
799
  if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
800
    return NULL;
801
 
802
  section_id++;
803
  abfd->section_count++;
804
  bfd_section_list_append (abfd, newsect);
805
  return newsect;
806
}
807
 
808
/*
809
DOCDD
810
INODE
811
section prototypes,  , typedef asection, Sections
812
SUBSECTION
813
	Section prototypes
814
 
815
These are the functions exported by the section handling part of BFD.
816
*/
817
 
818
/*
819
FUNCTION
820
	bfd_section_list_clear
821
 
822
SYNOPSIS
823
	void bfd_section_list_clear (bfd *);
824
 
825
DESCRIPTION
826
	Clears the section list, and also resets the section count and
827
	hash table entries.
828
*/
829
 
830
void
831
bfd_section_list_clear (bfd *abfd)
832
{
833
  abfd->sections = NULL;
834
  abfd->section_last = NULL;
835
  abfd->section_count = 0;
836
  memset (abfd->section_htab.table, 0,
837
	  abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
838
  abfd->section_htab.count = 0;
839
}
840
 
841
/*
842
FUNCTION
843
	bfd_get_section_by_name
844
 
845
SYNOPSIS
846
	asection *bfd_get_section_by_name (bfd *abfd, const char *name);
847
 
848
DESCRIPTION
849
	Return the most recently created section attached to @var{abfd}
850
	named @var{name}.  Return NULL if no such section exists.
851
*/
852
 
853
asection *
854
bfd_get_section_by_name (bfd *abfd, const char *name)
855
{
856
  struct section_hash_entry *sh;
857
 
858
  sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
859
  if (sh != NULL)
860
    return &sh->section;
861
 
862
  return NULL;
863
}
864
 
865
/*
866
FUNCTION
867
       bfd_get_next_section_by_name
868
 
869
SYNOPSIS
870
       asection *bfd_get_next_section_by_name (asection *sec);
871
 
872
DESCRIPTION
873
       Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
874
       return the next most recently created section attached to the same
875
       BFD with the same name.  Return NULL if no such section exists.
876
*/
877
 
878
asection *
879
bfd_get_next_section_by_name (asection *sec)
880
{
881
  struct section_hash_entry *sh;
882
  const char *name;
883
  unsigned long hash;
884
 
885
  sh = ((struct section_hash_entry *)
886
	((char *) sec - offsetof (struct section_hash_entry, section)));
887
 
888
  hash = sh->root.hash;
889
  name = sec->name;
890
  for (sh = (struct section_hash_entry *) sh->root.next;
891
       sh != NULL;
892
       sh = (struct section_hash_entry *) sh->root.next)
893
    if (sh->root.hash == hash
894
       && strcmp (sh->root.string, name) == 0)
895
      return &sh->section;
896
 
897
  return NULL;
898
}
899
 
900
/*
901
FUNCTION
902
	bfd_get_linker_section
903
 
904
SYNOPSIS
905
	asection *bfd_get_linker_section (bfd *abfd, const char *name);
906
 
907
DESCRIPTION
908
	Return the linker created section attached to @var{abfd}
909
	named @var{name}.  Return NULL if no such section exists.
910
*/
911
 
912
asection *
913
bfd_get_linker_section (bfd *abfd, const char *name)
914
{
915
  asection *sec = bfd_get_section_by_name (abfd, name);
916
 
917
  while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0)
918
    sec = bfd_get_next_section_by_name (sec);
919
  return sec;
920
}
921
 
922
/*
923
FUNCTION
924
	bfd_get_section_by_name_if
925
 
926
SYNOPSIS
927
	asection *bfd_get_section_by_name_if
928
	  (bfd *abfd,
929
	   const char *name,
930
	   bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
931
	   void *obj);
932
 
933
DESCRIPTION
934
	Call the provided function @var{func} for each section
935
	attached to the BFD @var{abfd} whose name matches @var{name},
936
	passing @var{obj} as an argument. The function will be called
937
	as if by
938
 
939
|	func (abfd, the_section, obj);
940
 
941
	It returns the first section for which @var{func} returns true,
942
	otherwise <>.
943
 
944
*/
945
 
946
asection *
947
bfd_get_section_by_name_if (bfd *abfd, const char *name,
948
			    bfd_boolean (*operation) (bfd *,
949
						      asection *,
950
						      void *),
951
			    void *user_storage)
952
{
953
  struct section_hash_entry *sh;
954
  unsigned long hash;
955
 
956
  sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
957
  if (sh == NULL)
958
    return NULL;
959
 
960
  hash = sh->root.hash;
961
  do
962
    {
963
      if ((*operation) (abfd, &sh->section, user_storage))
964
	return &sh->section;
965
      sh = (struct section_hash_entry *) sh->root.next;
966
    }
967
  while (sh != NULL && sh->root.hash == hash
968
	 && strcmp (sh->root.string, name) == 0);
969
 
970
  return NULL;
971
}
972
 
973
/*
974
FUNCTION
975
	bfd_get_unique_section_name
976
 
977
SYNOPSIS
978
	char *bfd_get_unique_section_name
979
	  (bfd *abfd, const char *templat, int *count);
980
 
981
DESCRIPTION
982
	Invent a section name that is unique in @var{abfd} by tacking
983
	a dot and a digit suffix onto the original @var{templat}.  If
984
	@var{count} is non-NULL, then it specifies the first number
985
	tried as a suffix to generate a unique name.  The value
986
	pointed to by @var{count} will be incremented in this case.
987
*/
988
 
989
char *
990
bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
991
{
992
  int num;
993
  unsigned int len;
994
  char *sname;
995
 
996
  len = strlen (templat);
997
  sname = (char *) bfd_malloc (len + 8);
998
  if (sname == NULL)
999
    return NULL;
1000
  memcpy (sname, templat, len);
1001
  num = 1;
1002
  if (count != NULL)
1003
    num = *count;
1004
 
1005
  do
1006
    {
1007
      /* If we have a million sections, something is badly wrong.  */
1008
      if (num > 999999)
1009
	abort ();
1010
      sprintf (sname + len, ".%d", num++);
1011
    }
1012
  while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
1013
 
1014
  if (count != NULL)
1015
    *count = num;
1016
  return sname;
1017
}
1018
 
1019
/*
1020
FUNCTION
1021
	bfd_make_section_old_way
1022
 
1023
SYNOPSIS
1024
	asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1025
 
1026
DESCRIPTION
1027
	Create a new empty section called @var{name}
1028
	and attach it to the end of the chain of sections for the
1029
	BFD @var{abfd}. An attempt to create a section with a name which
1030
	is already in use returns its pointer without changing the
1031
	section chain.
1032
 
1033
	It has the funny name since this is the way it used to be
1034
	before it was rewritten....
1035
 
1036
	Possible errors are:
1037
	o <> -
1038
	If output has already started for this BFD.
1039
	o <> -
1040
	If memory allocation fails.
1041
 
1042
*/
1043
 
1044
asection *
1045
bfd_make_section_old_way (bfd *abfd, const char *name)
1046
{
1047
  asection *newsect;
1048
 
1049
  if (abfd->output_has_begun)
1050
    {
1051
      bfd_set_error (bfd_error_invalid_operation);
1052
      return NULL;
1053
    }
1054
 
1055
  if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1056
    newsect = bfd_abs_section_ptr;
1057
  else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1058
    newsect = bfd_com_section_ptr;
1059
  else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1060
    newsect = bfd_und_section_ptr;
1061
  else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1062
    newsect = bfd_ind_section_ptr;
1063
  else
1064
    {
1065
      struct section_hash_entry *sh;
1066
 
1067
      sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1068
      if (sh == NULL)
1069
	return NULL;
1070
 
1071
      newsect = &sh->section;
1072
      if (newsect->name != NULL)
1073
	{
1074
	  /* Section already exists.  */
1075
	  return newsect;
1076
	}
1077
 
1078
      newsect->name = name;
1079
      return bfd_section_init (abfd, newsect);
1080
    }
1081
 
1082
  /* Call new_section_hook when "creating" the standard abs, com, und
1083
     and ind sections to tack on format specific section data.
1084
     Also, create a proper section symbol.  */
1085
  if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1086
    return NULL;
1087
  return newsect;
1088
}
1089
 
1090
/*
1091
FUNCTION
1092
	bfd_make_section_anyway_with_flags
1093
 
1094
SYNOPSIS
1095
	asection *bfd_make_section_anyway_with_flags
1096
	  (bfd *abfd, const char *name, flagword flags);
1097
 
1098
DESCRIPTION
1099
   Create a new empty section called @var{name} and attach it to the end of
1100
   the chain of sections for @var{abfd}.  Create a new section even if there
1101
   is already a section with that name.  Also set the attributes of the
1102
   new section to the value @var{flags}.
1103
 
1104
   Return <> and set <> on error; possible errors are:
1105
   o <> - If output has already started for @var{abfd}.
1106
   o <> - If memory allocation fails.
1107
*/
1108
 
1109
sec_ptr
1110
bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1111
				    flagword flags)
1112
{
1113
  struct section_hash_entry *sh;
1114
  asection *newsect;
1115
 
1116
  if (abfd->output_has_begun)
1117
    {
1118
      bfd_set_error (bfd_error_invalid_operation);
1119
      return NULL;
1120
    }
1121
 
1122
  sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1123
  if (sh == NULL)
1124
    return NULL;
1125
 
1126
  newsect = &sh->section;
1127
  if (newsect->name != NULL)
1128
    {
1129
      /* We are making a section of the same name.  Put it in the
1130
	 section hash table.  Even though we can't find it directly by a
1131
	 hash lookup, we'll be able to find the section by traversing
1132
	 sh->root.next quicker than looking at all the bfd sections.  */
1133
      struct section_hash_entry *new_sh;
1134
      new_sh = (struct section_hash_entry *)
1135
	bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1136
      if (new_sh == NULL)
1137
	return NULL;
1138
 
1139
      new_sh->root = sh->root;
1140
      sh->root.next = &new_sh->root;
1141
      newsect = &new_sh->section;
1142
    }
1143
 
1144
  newsect->flags = flags;
1145
  newsect->name = name;
1146
  return bfd_section_init (abfd, newsect);
1147
}
1148
 
1149
/*
1150
FUNCTION
1151
	bfd_make_section_anyway
1152
 
1153
SYNOPSIS
1154
	asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1155
 
1156
DESCRIPTION
1157
   Create a new empty section called @var{name} and attach it to the end of
1158
   the chain of sections for @var{abfd}.  Create a new section even if there
1159
   is already a section with that name.
1160
 
1161
   Return <> and set <> on error; possible errors are:
1162
   o <> - If output has already started for @var{abfd}.
1163
   o <> - If memory allocation fails.
1164
*/
1165
 
1166
sec_ptr
1167
bfd_make_section_anyway (bfd *abfd, const char *name)
1168
{
1169
  return bfd_make_section_anyway_with_flags (abfd, name, 0);
1170
}
1171
 
1172
/*
1173
FUNCTION
1174
	bfd_make_section_with_flags
1175
 
1176
SYNOPSIS
1177
	asection *bfd_make_section_with_flags
1178
	  (bfd *, const char *name, flagword flags);
1179
 
1180
DESCRIPTION
1181
   Like <>, but return <> (without calling
1182
   bfd_set_error ()) without changing the section chain if there is already a
1183
   section named @var{name}.  Also set the attributes of the new section to
1184
   the value @var{flags}.  If there is an error, return <> and set
1185
   <>.
1186
*/
1187
 
1188
asection *
1189
bfd_make_section_with_flags (bfd *abfd, const char *name,
1190
			     flagword flags)
1191
{
1192
  struct section_hash_entry *sh;
1193
  asection *newsect;
1194
 
1195
  if (abfd->output_has_begun)
1196
    {
1197
      bfd_set_error (bfd_error_invalid_operation);
1198
      return NULL;
1199
    }
1200
 
1201
  if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1202
      || strcmp (name, BFD_COM_SECTION_NAME) == 0
1203
      || strcmp (name, BFD_UND_SECTION_NAME) == 0
1204
      || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1205
    return NULL;
1206
 
1207
  sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1208
  if (sh == NULL)
1209
    return NULL;
1210
 
1211
  newsect = &sh->section;
1212
  if (newsect->name != NULL)
1213
    {
1214
      /* Section already exists.  */
1215
      return NULL;
1216
    }
1217
 
1218
  newsect->name = name;
1219
  newsect->flags = flags;
1220
  return bfd_section_init (abfd, newsect);
1221
}
1222
 
1223
/*
1224
FUNCTION
1225
	bfd_make_section
1226
 
1227
SYNOPSIS
1228
	asection *bfd_make_section (bfd *, const char *name);
1229
 
1230
DESCRIPTION
1231
   Like <>, but return <> (without calling
1232
   bfd_set_error ()) without changing the section chain if there is already a
1233
   section named @var{name}.  If there is an error, return <> and set
1234
   <>.
1235
*/
1236
 
1237
asection *
1238
bfd_make_section (bfd *abfd, const char *name)
1239
{
1240
  return bfd_make_section_with_flags (abfd, name, 0);
1241
}
1242
 
1243
/*
1244
FUNCTION
1245
	bfd_set_section_flags
1246
 
1247
SYNOPSIS
1248
	bfd_boolean bfd_set_section_flags
1249
	  (bfd *abfd, asection *sec, flagword flags);
1250
 
1251
DESCRIPTION
1252
	Set the attributes of the section @var{sec} in the BFD
1253
	@var{abfd} to the value @var{flags}. Return <> on success,
1254
	<> on error. Possible error returns are:
1255
 
1256
	o <> -
1257
	The section cannot have one or more of the attributes
1258
	requested. For example, a .bss section in <> may not
1259
	have the <> field set.
1260
 
1261
*/
1262
 
1263
bfd_boolean
1264
bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1265
		       sec_ptr section,
1266
		       flagword flags)
1267
{
1268
  section->flags = flags;
1269
  return TRUE;
1270
}
1271
 
1272
/*
1273
FUNCTION
1274
	bfd_rename_section
1275
 
1276
SYNOPSIS
1277
	void bfd_rename_section
1278
	  (bfd *abfd, asection *sec, const char *newname);
1279
 
1280
DESCRIPTION
1281
	Rename section @var{sec} in @var{abfd} to @var{newname}.
1282
*/
1283
 
1284
void
1285
bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname)
1286
{
1287
  struct section_hash_entry *sh;
1288
 
1289
  sh = (struct section_hash_entry *)
1290
    ((char *) sec - offsetof (struct section_hash_entry, section));
1291
  sh->section.name = newname;
1292
  bfd_hash_rename (&abfd->section_htab, newname, &sh->root);
1293
}
1294
 
1295
/*
1296
FUNCTION
1297
	bfd_map_over_sections
1298
 
1299
SYNOPSIS
1300
	void bfd_map_over_sections
1301
	  (bfd *abfd,
1302
	   void (*func) (bfd *abfd, asection *sect, void *obj),
1303
	   void *obj);
1304
 
1305
DESCRIPTION
1306
	Call the provided function @var{func} for each section
1307
	attached to the BFD @var{abfd}, passing @var{obj} as an
1308
	argument. The function will be called as if by
1309
 
1310
|	func (abfd, the_section, obj);
1311
 
1312
	This is the preferred method for iterating over sections; an
1313
	alternative would be to use a loop:
1314
 
1315
|	   asection *p;
1316
|	   for (p = abfd->sections; p != NULL; p = p->next)
1317
|	      func (abfd, p, ...)
1318
 
1319
*/
1320
 
1321
void
1322
bfd_map_over_sections (bfd *abfd,
1323
		       void (*operation) (bfd *, asection *, void *),
1324
		       void *user_storage)
1325
{
1326
  asection *sect;
1327
  unsigned int i = 0;
1328
 
1329
  for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1330
    (*operation) (abfd, sect, user_storage);
1331
 
1332
  if (i != abfd->section_count)	/* Debugging */
1333
    abort ();
1334
}
1335
 
1336
/*
1337
FUNCTION
1338
	bfd_sections_find_if
1339
 
1340
SYNOPSIS
1341
	asection *bfd_sections_find_if
1342
	  (bfd *abfd,
1343
	   bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1344
	   void *obj);
1345
 
1346
DESCRIPTION
1347
	Call the provided function @var{operation} for each section
1348
	attached to the BFD @var{abfd}, passing @var{obj} as an
1349
	argument. The function will be called as if by
1350
 
1351
|	operation (abfd, the_section, obj);
1352
 
1353
	It returns the first section for which @var{operation} returns true.
1354
 
1355
*/
1356
 
1357
asection *
1358
bfd_sections_find_if (bfd *abfd,
1359
		      bfd_boolean (*operation) (bfd *, asection *, void *),
1360
		      void *user_storage)
1361
{
1362
  asection *sect;
1363
 
1364
  for (sect = abfd->sections; sect != NULL; sect = sect->next)
1365
    if ((*operation) (abfd, sect, user_storage))
1366
      break;
1367
 
1368
  return sect;
1369
}
1370
 
1371
/*
1372
FUNCTION
1373
	bfd_set_section_size
1374
 
1375
SYNOPSIS
1376
	bfd_boolean bfd_set_section_size
1377
	  (bfd *abfd, asection *sec, bfd_size_type val);
1378
 
1379
DESCRIPTION
1380
	Set @var{sec} to the size @var{val}. If the operation is
1381
	ok, then <> is returned, else <>.
1382
 
1383
	Possible error returns:
1384
	o <> -
1385
	Writing has started to the BFD, so setting the size is invalid.
1386
 
1387
*/
1388
 
1389
bfd_boolean
1390
bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1391
{
1392
  /* Once you've started writing to any section you cannot create or change
1393
     the size of any others.  */
1394
 
1395
  if (abfd->output_has_begun)
1396
    {
1397
      bfd_set_error (bfd_error_invalid_operation);
1398
      return FALSE;
1399
    }
1400
 
1401
  ptr->size = val;
1402
  return TRUE;
1403
}
1404
 
1405
/*
1406
FUNCTION
1407
	bfd_set_section_contents
1408
 
1409
SYNOPSIS
1410
	bfd_boolean bfd_set_section_contents
1411
	  (bfd *abfd, asection *section, const void *data,
1412
	   file_ptr offset, bfd_size_type count);
1413
 
1414
DESCRIPTION
1415
	Sets the contents of the section @var{section} in BFD
1416
	@var{abfd} to the data starting in memory at @var{data}. The
1417
	data is written to the output section starting at offset
1418
	@var{offset} for @var{count} octets.
1419
 
1420
	Normally <> is returned, else <>. Possible error
1421
	returns are:
1422
	o <> -
1423
	The output section does not have the <>
1424
	attribute, so nothing can be written to it.
1425
	o and some more too
1426
 
1427
	This routine is front end to the back end function
1428
	<<_bfd_set_section_contents>>.
1429
 
1430
*/
1431
 
1432
bfd_boolean
1433
bfd_set_section_contents (bfd *abfd,
1434
			  sec_ptr section,
1435
			  const void *location,
1436
			  file_ptr offset,
1437
			  bfd_size_type count)
1438
{
1439
  bfd_size_type sz;
1440
 
1441
  if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1442
    {
1443
      bfd_set_error (bfd_error_no_contents);
1444
      return FALSE;
1445
    }
1446
 
1447
  sz = section->size;
1448
  if ((bfd_size_type) offset > sz
1449
      || count > sz
1450
      || offset + count > sz
1451
      || count != (size_t) count)
1452
    {
1453
      bfd_set_error (bfd_error_bad_value);
1454
      return FALSE;
1455
    }
1456
 
1457
  if (!bfd_write_p (abfd))
1458
    {
1459
      bfd_set_error (bfd_error_invalid_operation);
1460
      return FALSE;
1461
    }
1462
 
1463
  /* Record a copy of the data in memory if desired.  */
1464
  if (section->contents
1465
      && location != section->contents + offset)
1466
    memcpy (section->contents + offset, location, (size_t) count);
1467
 
1468
  if (BFD_SEND (abfd, _bfd_set_section_contents,
1469
		(abfd, section, location, offset, count)))
1470
    {
1471
      abfd->output_has_begun = TRUE;
1472
      return TRUE;
1473
    }
1474
 
1475
  return FALSE;
1476
}
1477
 
1478
/*
1479
FUNCTION
1480
	bfd_get_section_contents
1481
 
1482
SYNOPSIS
1483
	bfd_boolean bfd_get_section_contents
1484
	  (bfd *abfd, asection *section, void *location, file_ptr offset,
1485
	   bfd_size_type count);
1486
 
1487
DESCRIPTION
1488
	Read data from @var{section} in BFD @var{abfd}
1489
	into memory starting at @var{location}. The data is read at an
1490
	offset of @var{offset} from the start of the input section,
1491
	and is read for @var{count} bytes.
1492
 
1493
	If the contents of a constructor with the <>
1494
	flag set are requested or if the section does not have the
1495
	<> flag set, then the @var{location} is filled
1496
	with zeroes. If no errors occur, <> is returned, else
1497
	<>.
1498
 
1499
*/
1500
bfd_boolean
1501
bfd_get_section_contents (bfd *abfd,
1502
			  sec_ptr section,
1503
			  void *location,
1504
			  file_ptr offset,
1505
			  bfd_size_type count)
1506
{
1507
  bfd_size_type sz;
1508
 
1509
  if (section->flags & SEC_CONSTRUCTOR)
1510
    {
1511
      memset (location, 0, (size_t) count);
1512
      return TRUE;
1513
    }
1514
 
1515
  if (abfd->direction != write_direction && section->rawsize != 0)
1516
    sz = section->rawsize;
1517
  else
1518
    sz = section->size;
1519
  if ((bfd_size_type) offset > sz
1520
      || count > sz
1521
      || offset + count > sz
1522
      || count != (size_t) count)
1523
    {
1524
      bfd_set_error (bfd_error_bad_value);
1525
      return FALSE;
1526
    }
1527
 
1528
  if (count == 0)
1529
    /* Don't bother.  */
1530
    return TRUE;
1531
 
1532
  if ((section->flags & SEC_HAS_CONTENTS) == 0)
1533
    {
1534
      memset (location, 0, (size_t) count);
1535
      return TRUE;
1536
    }
1537
 
1538
  if ((section->flags & SEC_IN_MEMORY) != 0)
1539
    {
1540
      if (section->contents == NULL)
1541
	{
1542
	  /* This can happen because of errors earlier on in the linking process.
1543
	     We do not want to seg-fault here, so clear the flag and return an
1544
	     error code.  */
1545
	  section->flags &= ~ SEC_IN_MEMORY;
1546
	  bfd_set_error (bfd_error_invalid_operation);
1547
	  return FALSE;
1548
	}
1549
 
1550
      memmove (location, section->contents + offset, (size_t) count);
1551
      return TRUE;
1552
    }
1553
 
1554
  return BFD_SEND (abfd, _bfd_get_section_contents,
1555
		   (abfd, section, location, offset, count));
1556
}
1557
 
1558
/*
1559
FUNCTION
1560
	bfd_malloc_and_get_section
1561
 
1562
SYNOPSIS
1563
	bfd_boolean bfd_malloc_and_get_section
1564
	  (bfd *abfd, asection *section, bfd_byte **buf);
1565
 
1566
DESCRIPTION
1567
	Read all data from @var{section} in BFD @var{abfd}
1568
	into a buffer, *@var{buf}, malloc'd by this function.
1569
*/
1570
 
1571
bfd_boolean
1572
bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1573
{
1574
  *buf = NULL;
1575
  return bfd_get_full_section_contents (abfd, sec, buf);
1576
}
1577
/*
1578
FUNCTION
1579
	bfd_copy_private_section_data
1580
 
1581
SYNOPSIS
1582
	bfd_boolean bfd_copy_private_section_data
1583
	  (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1584
 
1585
DESCRIPTION
1586
	Copy private section information from @var{isec} in the BFD
1587
	@var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1588
	Return <> on success, <> on error.  Possible error
1589
	returns are:
1590
 
1591
	o <> -
1592
	Not enough memory exists to create private data for @var{osec}.
1593
 
1594
.#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1595
.     BFD_SEND (obfd, _bfd_copy_private_section_data, \
1596
.		(ibfd, isection, obfd, osection))
1597
*/
1598
 
1599
/*
1600
FUNCTION
1601
	bfd_generic_is_group_section
1602
 
1603
SYNOPSIS
1604
	bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1605
 
1606
DESCRIPTION
1607
	Returns TRUE if @var{sec} is a member of a group.
1608
*/
1609
 
1610
bfd_boolean
1611
bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1612
			      const asection *sec ATTRIBUTE_UNUSED)
1613
{
1614
  return FALSE;
1615
}
1616
 
1617
/*
1618
FUNCTION
1619
	bfd_generic_discard_group
1620
 
1621
SYNOPSIS
1622
	bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1623
 
1624
DESCRIPTION
1625
	Remove all members of @var{group} from the output.
1626
*/
1627
 
1628
bfd_boolean
1629
bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1630
			   asection *group ATTRIBUTE_UNUSED)
1631
{
1632
  return TRUE;
1633
}