Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/* -*- Mode: c; c-basic-offset: 4; tab-width: 8; indent-tabs-mode: t; -*- */
2
/*
3
 * Copyright © 2000 SuSE, Inc.
4
 * Copyright © 2007 Red Hat, Inc.
5
 * Copyright © 2000 Keith Packard, member of The XFree86 Project, Inc.
6
 *             2005 Lars Knoll & Zack Rusin, Trolltech
7
 *
8
 * Permission to use, copy, modify, distribute, and sell this software and its
9
 * documentation for any purpose is hereby granted without fee, provided that
10
 * the above copyright notice appear in all copies and that both that
11
 * copyright notice and this permission notice appear in supporting
12
 * documentation, and that the name of Keith Packard not be used in
13
 * advertising or publicity pertaining to distribution of the software without
14
 * specific, written prior permission.  Keith Packard makes no
15
 * representations about the suitability of this software for any purpose.  It
16
 * is provided "as is" without express or implied warranty.
17
 *
18
 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
19
 * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
20
 * FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
21
 * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
23
 * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
24
 * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
25
 * SOFTWARE.
26
 */
27
 
28
#ifdef HAVE_CONFIG_H
29
#include 
30
#endif
31
#include 
32
#include "pixman-private.h"
33
 
34
static pixman_bool_t
35
linear_gradient_is_horizontal (pixman_image_t *image,
36
			       int             x,
37
			       int             y,
38
			       int             width,
39
			       int             height)
40
{
41
    linear_gradient_t *linear = (linear_gradient_t *)image;
42
    pixman_vector_t v;
43
    pixman_fixed_32_32_t l;
44
    pixman_fixed_48_16_t dx, dy;
45
    double inc;
46
 
47
    if (image->common.transform)
48
    {
49
	/* projective transformation */
50
	if (image->common.transform->matrix[2][0] != 0 ||
51
	    image->common.transform->matrix[2][1] != 0 ||
52
	    image->common.transform->matrix[2][2] == 0)
53
	{
54
	    return FALSE;
55
	}
56
 
57
	v.vector[0] = image->common.transform->matrix[0][1];
58
	v.vector[1] = image->common.transform->matrix[1][1];
59
	v.vector[2] = image->common.transform->matrix[2][2];
60
    }
61
    else
62
    {
63
	v.vector[0] = 0;
64
	v.vector[1] = pixman_fixed_1;
65
	v.vector[2] = pixman_fixed_1;
66
    }
67
 
68
    dx = linear->p2.x - linear->p1.x;
69
    dy = linear->p2.y - linear->p1.y;
70
 
71
    l = dx * dx + dy * dy;
72
 
73
    if (l == 0)
74
	return FALSE;
75
 
76
    /*
77
     * compute how much the input of the gradient walked changes
78
     * when moving vertically through the whole image
79
     */
80
    inc = height * (double) pixman_fixed_1 * pixman_fixed_1 *
81
	(dx * v.vector[0] + dy * v.vector[1]) /
82
	(v.vector[2] * (double) l);
83
 
84
    /* check that casting to integer would result in 0 */
85
    if (-1 < inc && inc < 1)
86
	return TRUE;
87
 
88
    return FALSE;
89
}
90
 
91
static uint32_t *
92
linear_get_scanline_narrow (pixman_iter_t  *iter,
93
			    const uint32_t *mask)
94
{
95
    pixman_image_t *image  = iter->image;
96
    int             x      = iter->x;
97
    int             y      = iter->y;
98
    int             width  = iter->width;
99
    uint32_t *      buffer = iter->buffer;
100
 
101
    pixman_vector_t v, unit;
102
    pixman_fixed_32_32_t l;
103
    pixman_fixed_48_16_t dx, dy;
104
    gradient_t *gradient = (gradient_t *)image;
105
    linear_gradient_t *linear = (linear_gradient_t *)image;
106
    uint32_t *end = buffer + width;
107
    pixman_gradient_walker_t walker;
108
 
109
    _pixman_gradient_walker_init (&walker, gradient, image->common.repeat);
110
 
111
    /* reference point is the center of the pixel */
112
    v.vector[0] = pixman_int_to_fixed (x) + pixman_fixed_1 / 2;
113
    v.vector[1] = pixman_int_to_fixed (y) + pixman_fixed_1 / 2;
114
    v.vector[2] = pixman_fixed_1;
115
 
116
    if (image->common.transform)
117
    {
118
	if (!pixman_transform_point_3d (image->common.transform, &v))
119
	    return iter->buffer;
120
 
121
	unit.vector[0] = image->common.transform->matrix[0][0];
122
	unit.vector[1] = image->common.transform->matrix[1][0];
123
	unit.vector[2] = image->common.transform->matrix[2][0];
124
    }
125
    else
126
    {
127
	unit.vector[0] = pixman_fixed_1;
128
	unit.vector[1] = 0;
129
	unit.vector[2] = 0;
130
    }
131
 
132
    dx = linear->p2.x - linear->p1.x;
133
    dy = linear->p2.y - linear->p1.y;
134
 
135
    l = dx * dx + dy * dy;
136
 
137
    if (l == 0 || unit.vector[2] == 0)
138
    {
139
	/* affine transformation only */
140
        pixman_fixed_32_32_t t, next_inc;
141
	double inc;
142
 
143
	if (l == 0 || v.vector[2] == 0)
144
	{
145
	    t = 0;
146
	    inc = 0;
147
	}
148
	else
149
	{
150
	    double invden, v2;
151
 
152
	    invden = pixman_fixed_1 * (double) pixman_fixed_1 /
153
		(l * (double) v.vector[2]);
154
	    v2 = v.vector[2] * (1. / pixman_fixed_1);
155
	    t = ((dx * v.vector[0] + dy * v.vector[1]) -
156
		 (dx * linear->p1.x + dy * linear->p1.y) * v2) * invden;
157
	    inc = (dx * unit.vector[0] + dy * unit.vector[1]) * invden;
158
	}
159
	next_inc = 0;
160
 
161
	if (((pixman_fixed_32_32_t )(inc * width)) == 0)
162
	{
163
	    register uint32_t color;
164
 
165
	    color = _pixman_gradient_walker_pixel (&walker, t);
166
	    while (buffer < end)
167
		*buffer++ = color;
168
	}
169
	else
170
	{
171
	    int i;
172
 
173
	    i = 0;
174
	    while (buffer < end)
175
	    {
176
		if (!mask || *mask++)
177
		{
178
		    *buffer = _pixman_gradient_walker_pixel (&walker,
179
							     t + next_inc);
180
		}
181
		i++;
182
		next_inc = inc * i;
183
		buffer++;
184
	    }
185
	}
186
    }
187
    else
188
    {
189
	/* projective transformation */
190
        double t;
191
 
192
	t = 0;
193
 
194
	while (buffer < end)
195
	{
196
	    if (!mask || *mask++)
197
	    {
198
	        if (v.vector[2] != 0)
199
		{
200
		    double invden, v2;
201
 
202
		    invden = pixman_fixed_1 * (double) pixman_fixed_1 /
203
			(l * (double) v.vector[2]);
204
		    v2 = v.vector[2] * (1. / pixman_fixed_1);
205
		    t = ((dx * v.vector[0] + dy * v.vector[1]) -
206
			 (dx * linear->p1.x + dy * linear->p1.y) * v2) * invden;
207
		}
208
 
209
		*buffer = _pixman_gradient_walker_pixel (&walker, t);
210
	    }
211
 
212
	    ++buffer;
213
 
214
	    v.vector[0] += unit.vector[0];
215
	    v.vector[1] += unit.vector[1];
216
	    v.vector[2] += unit.vector[2];
217
	}
218
    }
219
 
220
    iter->y++;
221
 
222
    return iter->buffer;
223
}
224
 
225
static uint32_t *
226
linear_get_scanline_wide (pixman_iter_t *iter, const uint32_t *mask)
227
{
228
    uint32_t *buffer = linear_get_scanline_narrow (iter, NULL);
229
 
230
    pixman_expand_to_float (
231
	(argb_t *)buffer, buffer, PIXMAN_a8r8g8b8, iter->width);
232
 
233
    return buffer;
234
}
235
 
236
void
237
_pixman_linear_gradient_iter_init (pixman_image_t *image, pixman_iter_t  *iter)
238
{
239
    if (linear_gradient_is_horizontal (
240
	    iter->image, iter->x, iter->y, iter->width, iter->height))
241
    {
242
	if (iter->iter_flags & ITER_NARROW)
243
	    linear_get_scanline_narrow (iter, NULL);
244
	else
245
	    linear_get_scanline_wide (iter, NULL);
246
 
247
	iter->get_scanline = _pixman_iter_get_scanline_noop;
248
    }
249
    else
250
    {
251
	if (iter->iter_flags & ITER_NARROW)
252
	    iter->get_scanline = linear_get_scanline_narrow;
253
	else
254
	    iter->get_scanline = linear_get_scanline_wide;
255
    }
256
}
257
 
258
PIXMAN_EXPORT pixman_image_t *
259
pixman_image_create_linear_gradient (const pixman_point_fixed_t *  p1,
260
                                     const pixman_point_fixed_t *  p2,
261
                                     const pixman_gradient_stop_t *stops,
262
                                     int                           n_stops)
263
{
264
    pixman_image_t *image;
265
    linear_gradient_t *linear;
266
 
267
    image = _pixman_image_allocate ();
268
 
269
    if (!image)
270
	return NULL;
271
 
272
    linear = &image->linear;
273
 
274
    if (!_pixman_init_gradient (&linear->common, stops, n_stops))
275
    {
276
	free (image);
277
	return NULL;
278
    }
279
 
280
    linear->p1 = *p1;
281
    linear->p2 = *p2;
282
 
283
    image->type = LINEAR;
284
 
285
    return image;
286
}
287