Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5134 serge 1
// Special functions -*- C++ -*-
2
 
3
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
4
//
5
// This file is part of the GNU ISO C++ Library.  This library is free
6
// software; you can redistribute it and/or modify it under the
7
// terms of the GNU General Public License as published by the
8
// Free Software Foundation; either version 3, or (at your option)
9
// any later version.
10
//
11
// This library is distributed in the hope that it will be useful,
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
// GNU General Public License for more details.
15
//
16
// Under Section 7 of GPL version 3, you are granted additional
17
// permissions described in the GCC Runtime Library Exception, version
18
// 3.1, as published by the Free Software Foundation.
19
 
20
// You should have received a copy of the GNU General Public License and
21
// a copy of the GCC Runtime Library Exception along with this program;
22
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23
// .
24
 
25
/** @file tr1/riemann_zeta.tcc
26
 *  This is an internal header file, included by other library headers.
27
 *  Do not attempt to use it directly. @headername{tr1/cmath}
28
 */
29
 
30
//
31
// ISO C++ 14882 TR1: 5.2  Special functions
32
//
33
 
34
// Written by Edward Smith-Rowland based on:
35
//   (1) Handbook of Mathematical Functions,
36
//       Ed. by Milton Abramowitz and Irene A. Stegun,
37
//       Dover Publications, New-York, Section 5, pp. 807-808.
38
//   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
39
//   (3) Gamma, Exploring Euler's Constant, Julian Havil,
40
//       Princeton, 2003.
41
 
42
#ifndef _GLIBCXX_TR1_RIEMANN_ZETA_TCC
43
#define _GLIBCXX_TR1_RIEMANN_ZETA_TCC 1
44
 
45
#include "special_function_util.h"
46
 
47
namespace std _GLIBCXX_VISIBILITY(default)
48
{
49
namespace tr1
50
{
51
  // [5.2] Special functions
52
 
53
  // Implementation-space details.
54
  namespace __detail
55
  {
56
  _GLIBCXX_BEGIN_NAMESPACE_VERSION
57
 
58
    /**
59
     *   @brief  Compute the Riemann zeta function @f$ \zeta(s) @f$
60
     *           by summation for s > 1.
61
     *
62
     *   The Riemann zeta function is defined by:
63
     *    \f[
64
     *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
65
     *    \f]
66
     *   For s < 1 use the reflection formula:
67
     *    \f[
68
     *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
69
     *    \f]
70
     */
71
    template
72
    _Tp
73
    __riemann_zeta_sum(_Tp __s)
74
    {
75
      //  A user shouldn't get to this.
76
      if (__s < _Tp(1))
77
        std::__throw_domain_error(__N("Bad argument in zeta sum."));
78
 
79
      const unsigned int max_iter = 10000;
80
      _Tp __zeta = _Tp(0);
81
      for (unsigned int __k = 1; __k < max_iter; ++__k)
82
        {
83
          _Tp __term = std::pow(static_cast<_Tp>(__k), -__s);
84
          if (__term < std::numeric_limits<_Tp>::epsilon())
85
            {
86
              break;
87
            }
88
          __zeta += __term;
89
        }
90
 
91
      return __zeta;
92
    }
93
 
94
 
95
    /**
96
     *   @brief  Evaluate the Riemann zeta function @f$ \zeta(s) @f$
97
     *           by an alternate series for s > 0.
98
     *
99
     *   The Riemann zeta function is defined by:
100
     *    \f[
101
     *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
102
     *    \f]
103
     *   For s < 1 use the reflection formula:
104
     *    \f[
105
     *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
106
     *    \f]
107
     */
108
    template
109
    _Tp
110
    __riemann_zeta_alt(_Tp __s)
111
    {
112
      _Tp __sgn = _Tp(1);
113
      _Tp __zeta = _Tp(0);
114
      for (unsigned int __i = 1; __i < 10000000; ++__i)
115
        {
116
          _Tp __term = __sgn / std::pow(__i, __s);
117
          if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon())
118
            break;
119
          __zeta += __term;
120
          __sgn *= _Tp(-1);
121
        }
122
      __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);
123
 
124
      return __zeta;
125
    }
126
 
127
 
128
    /**
129
     *   @brief  Evaluate the Riemann zeta function by series for all s != 1.
130
     *           Convergence is great until largish negative numbers.
131
     *           Then the convergence of the > 0 sum gets better.
132
     *
133
     *   The series is:
134
     *    \f[
135
     *      \zeta(s) = \frac{1}{1-2^{1-s}}
136
     *                 \sum_{n=0}^{\infty} \frac{1}{2^{n+1}}
137
     *                 \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s}
138
     *    \f]
139
     *   Havil 2003, p. 206.
140
     *
141
     *   The Riemann zeta function is defined by:
142
     *    \f[
143
     *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
144
     *    \f]
145
     *   For s < 1 use the reflection formula:
146
     *    \f[
147
     *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
148
     *    \f]
149
     */
150
    template
151
    _Tp
152
    __riemann_zeta_glob(_Tp __s)
153
    {
154
      _Tp __zeta = _Tp(0);
155
 
156
      const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
157
      //  Max e exponent before overflow.
158
      const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
159
                               * std::log(_Tp(10)) - _Tp(1);
160
 
161
      //  This series works until the binomial coefficient blows up
162
      //  so use reflection.
163
      if (__s < _Tp(0))
164
        {
165
#if _GLIBCXX_USE_C99_MATH_TR1
166
          if (std::tr1::fmod(__s,_Tp(2)) == _Tp(0))
167
            return _Tp(0);
168
          else
169
#endif
170
            {
171
              _Tp __zeta = __riemann_zeta_glob(_Tp(1) - __s);
172
              __zeta *= std::pow(_Tp(2)
173
                     * __numeric_constants<_Tp>::__pi(), __s)
174
                     * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
175
#if _GLIBCXX_USE_C99_MATH_TR1
176
                     * std::exp(std::tr1::lgamma(_Tp(1) - __s))
177
#else
178
                     * std::exp(__log_gamma(_Tp(1) - __s))
179
#endif
180
                     / __numeric_constants<_Tp>::__pi();
181
              return __zeta;
182
            }
183
        }
184
 
185
      _Tp __num = _Tp(0.5L);
186
      const unsigned int __maxit = 10000;
187
      for (unsigned int __i = 0; __i < __maxit; ++__i)
188
        {
189
          bool __punt = false;
190
          _Tp __sgn = _Tp(1);
191
          _Tp __term = _Tp(0);
192
          for (unsigned int __j = 0; __j <= __i; ++__j)
193
            {
194
#if _GLIBCXX_USE_C99_MATH_TR1
195
              _Tp __bincoeff =  std::tr1::lgamma(_Tp(1 + __i))
196
                              - std::tr1::lgamma(_Tp(1 + __j))
197
                              - std::tr1::lgamma(_Tp(1 + __i - __j));
198
#else
199
              _Tp __bincoeff =  __log_gamma(_Tp(1 + __i))
200
                              - __log_gamma(_Tp(1 + __j))
201
                              - __log_gamma(_Tp(1 + __i - __j));
202
#endif
203
              if (__bincoeff > __max_bincoeff)
204
                {
205
                  //  This only gets hit for x << 0.
206
                  __punt = true;
207
                  break;
208
                }
209
              __bincoeff = std::exp(__bincoeff);
210
              __term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s);
211
              __sgn *= _Tp(-1);
212
            }
213
          if (__punt)
214
            break;
215
          __term *= __num;
216
          __zeta += __term;
217
          if (std::abs(__term/__zeta) < __eps)
218
            break;
219
          __num *= _Tp(0.5L);
220
        }
221
 
222
      __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);
223
 
224
      return __zeta;
225
    }
226
 
227
 
228
    /**
229
     *   @brief  Compute the Riemann zeta function @f$ \zeta(s) @f$
230
     *           using the product over prime factors.
231
     *    \f[
232
     *      \zeta(s) = \Pi_{i=1}^\infty \frac{1}{1 - p_i^{-s}}
233
     *    \f]
234
     *    where @f$ {p_i} @f$ are the prime numbers.
235
     *
236
     *   The Riemann zeta function is defined by:
237
     *    \f[
238
     *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
239
     *    \f]
240
     *   For s < 1 use the reflection formula:
241
     *    \f[
242
     *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
243
     *    \f]
244
     */
245
    template
246
    _Tp
247
    __riemann_zeta_product(_Tp __s)
248
    {
249
      static const _Tp __prime[] = {
250
        _Tp(2), _Tp(3), _Tp(5), _Tp(7), _Tp(11), _Tp(13), _Tp(17), _Tp(19),
251
        _Tp(23), _Tp(29), _Tp(31), _Tp(37), _Tp(41), _Tp(43), _Tp(47),
252
        _Tp(53), _Tp(59), _Tp(61), _Tp(67), _Tp(71), _Tp(73), _Tp(79),
253
        _Tp(83), _Tp(89), _Tp(97), _Tp(101), _Tp(103), _Tp(107), _Tp(109)
254
      };
255
      static const unsigned int __num_primes = sizeof(__prime) / sizeof(_Tp);
256
 
257
      _Tp __zeta = _Tp(1);
258
      for (unsigned int __i = 0; __i < __num_primes; ++__i)
259
        {
260
          const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s);
261
          __zeta *= __fact;
262
          if (_Tp(1) - __fact < std::numeric_limits<_Tp>::epsilon())
263
            break;
264
        }
265
 
266
      __zeta = _Tp(1) / __zeta;
267
 
268
      return __zeta;
269
    }
270
 
271
 
272
    /**
273
     *   @brief  Return the Riemann zeta function @f$ \zeta(s) @f$.
274
     *
275
     *   The Riemann zeta function is defined by:
276
     *    \f[
277
     *      \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1
278
     *                 \frac{(2\pi)^s}{pi} sin(\frac{\pi s}{2})
279
     *                 \Gamma (1 - s) \zeta (1 - s) for s < 1
280
     *    \f]
281
     *   For s < 1 use the reflection formula:
282
     *    \f[
283
     *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
284
     *    \f]
285
     */
286
    template
287
    _Tp
288
    __riemann_zeta(_Tp __s)
289
    {
290
      if (__isnan(__s))
291
        return std::numeric_limits<_Tp>::quiet_NaN();
292
      else if (__s == _Tp(1))
293
        return std::numeric_limits<_Tp>::infinity();
294
      else if (__s < -_Tp(19))
295
        {
296
          _Tp __zeta = __riemann_zeta_product(_Tp(1) - __s);
297
          __zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s)
298
                 * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
299
#if _GLIBCXX_USE_C99_MATH_TR1
300
                 * std::exp(std::tr1::lgamma(_Tp(1) - __s))
301
#else
302
                 * std::exp(__log_gamma(_Tp(1) - __s))
303
#endif
304
                 / __numeric_constants<_Tp>::__pi();
305
          return __zeta;
306
        }
307
      else if (__s < _Tp(20))
308
        {
309
          //  Global double sum or McLaurin?
310
          bool __glob = true;
311
          if (__glob)
312
            return __riemann_zeta_glob(__s);
313
          else
314
            {
315
              if (__s > _Tp(1))
316
                return __riemann_zeta_sum(__s);
317
              else
318
                {
319
                  _Tp __zeta = std::pow(_Tp(2)
320
                                * __numeric_constants<_Tp>::__pi(), __s)
321
                         * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
322
#if _GLIBCXX_USE_C99_MATH_TR1
323
                             * std::tr1::tgamma(_Tp(1) - __s)
324
#else
325
                             * std::exp(__log_gamma(_Tp(1) - __s))
326
#endif
327
                             * __riemann_zeta_sum(_Tp(1) - __s);
328
                  return __zeta;
329
                }
330
            }
331
        }
332
      else
333
        return __riemann_zeta_product(__s);
334
    }
335
 
336
 
337
    /**
338
     *   @brief  Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
339
     *           for all s != 1 and x > -1.
340
     *
341
     *   The Hurwitz zeta function is defined by:
342
     *   @f[
343
     *     \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
344
     *   @f]
345
     *   The Riemann zeta function is a special case:
346
     *   @f[
347
     *     \zeta(s) = \zeta(1,s)
348
     *   @f]
349
     *
350
     *   This functions uses the double sum that converges for s != 1
351
     *   and x > -1:
352
     *   @f[
353
     *     \zeta(x,s) = \frac{1}{s-1}
354
     *                \sum_{n=0}^{\infty} \frac{1}{n + 1}
355
     *                \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s}
356
     *   @f]
357
     */
358
    template
359
    _Tp
360
    __hurwitz_zeta_glob(_Tp __a, _Tp __s)
361
    {
362
      _Tp __zeta = _Tp(0);
363
 
364
      const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
365
      //  Max e exponent before overflow.
366
      const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
367
                               * std::log(_Tp(10)) - _Tp(1);
368
 
369
      const unsigned int __maxit = 10000;
370
      for (unsigned int __i = 0; __i < __maxit; ++__i)
371
        {
372
          bool __punt = false;
373
          _Tp __sgn = _Tp(1);
374
          _Tp __term = _Tp(0);
375
          for (unsigned int __j = 0; __j <= __i; ++__j)
376
            {
377
#if _GLIBCXX_USE_C99_MATH_TR1
378
              _Tp __bincoeff =  std::tr1::lgamma(_Tp(1 + __i))
379
                              - std::tr1::lgamma(_Tp(1 + __j))
380
                              - std::tr1::lgamma(_Tp(1 + __i - __j));
381
#else
382
              _Tp __bincoeff =  __log_gamma(_Tp(1 + __i))
383
                              - __log_gamma(_Tp(1 + __j))
384
                              - __log_gamma(_Tp(1 + __i - __j));
385
#endif
386
              if (__bincoeff > __max_bincoeff)
387
                {
388
                  //  This only gets hit for x << 0.
389
                  __punt = true;
390
                  break;
391
                }
392
              __bincoeff = std::exp(__bincoeff);
393
              __term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s);
394
              __sgn *= _Tp(-1);
395
            }
396
          if (__punt)
397
            break;
398
          __term /= _Tp(__i + 1);
399
          if (std::abs(__term / __zeta) < __eps)
400
            break;
401
          __zeta += __term;
402
        }
403
 
404
      __zeta /= __s - _Tp(1);
405
 
406
      return __zeta;
407
    }
408
 
409
 
410
    /**
411
     *   @brief  Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
412
     *           for all s != 1 and x > -1.
413
     *
414
     *   The Hurwitz zeta function is defined by:
415
     *   @f[
416
     *     \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
417
     *   @f]
418
     *   The Riemann zeta function is a special case:
419
     *   @f[
420
     *     \zeta(s) = \zeta(1,s)
421
     *   @f]
422
     */
423
    template
424
    inline _Tp
425
    __hurwitz_zeta(_Tp __a, _Tp __s)
426
    { return __hurwitz_zeta_glob(__a, __s); }
427
 
428
  _GLIBCXX_END_NAMESPACE_VERSION
429
  } // namespace std::tr1::__detail
430
}
431
}
432
 
433
#endif // _GLIBCXX_TR1_RIEMANN_ZETA_TCC