Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5134 serge 1
// Special functions -*- C++ -*-
2
 
3
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
4
//
5
// This file is part of the GNU ISO C++ Library.  This library is free
6
// software; you can redistribute it and/or modify it under the
7
// terms of the GNU General Public License as published by the
8
// Free Software Foundation; either version 3, or (at your option)
9
// any later version.
10
//
11
// This library is distributed in the hope that it will be useful,
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
// GNU General Public License for more details.
15
//
16
// Under Section 7 of GPL version 3, you are granted additional
17
// permissions described in the GCC Runtime Library Exception, version
18
// 3.1, as published by the Free Software Foundation.
19
 
20
// You should have received a copy of the GNU General Public License and
21
// a copy of the GCC Runtime Library Exception along with this program;
22
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23
// .
24
 
25
/** @file tr1/poly_laguerre.tcc
26
 *  This is an internal header file, included by other library headers.
27
 *  Do not attempt to use it directly. @headername{tr1/cmath}
28
 */
29
 
30
//
31
// ISO C++ 14882 TR1: 5.2  Special functions
32
//
33
 
34
// Written by Edward Smith-Rowland based on:
35
//   (1) Handbook of Mathematical Functions,
36
//       Ed. Milton Abramowitz and Irene A. Stegun,
37
//       Dover Publications,
38
//       Section 13, pp. 509-510, Section 22 pp. 773-802
39
//   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
40
 
41
#ifndef _GLIBCXX_TR1_POLY_LAGUERRE_TCC
42
#define _GLIBCXX_TR1_POLY_LAGUERRE_TCC 1
43
 
44
namespace std _GLIBCXX_VISIBILITY(default)
45
{
46
namespace tr1
47
{
48
  // [5.2] Special functions
49
 
50
  // Implementation-space details.
51
  namespace __detail
52
  {
53
  _GLIBCXX_BEGIN_NAMESPACE_VERSION
54
 
55
    /**
56
     *   @brief This routine returns the associated Laguerre polynomial
57
     *          of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
58
     *   Abramowitz & Stegun, 13.5.21
59
     *
60
     *   @param __n The order of the Laguerre function.
61
     *   @param __alpha The degree of the Laguerre function.
62
     *   @param __x The argument of the Laguerre function.
63
     *   @return The value of the Laguerre function of order n,
64
     *           degree @f$ \alpha @f$, and argument x.
65
     *
66
     *  This is from the GNU Scientific Library.
67
     */
68
    template
69
    _Tp
70
    __poly_laguerre_large_n(unsigned __n, _Tpa __alpha1, _Tp __x)
71
    {
72
      const _Tp __a = -_Tp(__n);
73
      const _Tp __b = _Tp(__alpha1) + _Tp(1);
74
      const _Tp __eta = _Tp(2) * __b - _Tp(4) * __a;
75
      const _Tp __cos2th = __x / __eta;
76
      const _Tp __sin2th = _Tp(1) - __cos2th;
77
      const _Tp __th = std::acos(std::sqrt(__cos2th));
78
      const _Tp __pre_h = __numeric_constants<_Tp>::__pi_2()
79
                        * __numeric_constants<_Tp>::__pi_2()
80
                        * __eta * __eta * __cos2th * __sin2th;
81
 
82
#if _GLIBCXX_USE_C99_MATH_TR1
83
      const _Tp __lg_b = std::tr1::lgamma(_Tp(__n) + __b);
84
      const _Tp __lnfact = std::tr1::lgamma(_Tp(__n + 1));
85
#else
86
      const _Tp __lg_b = __log_gamma(_Tp(__n) + __b);
87
      const _Tp __lnfact = __log_gamma(_Tp(__n + 1));
88
#endif
89
 
90
      _Tp __pre_term1 = _Tp(0.5L) * (_Tp(1) - __b)
91
                      * std::log(_Tp(0.25L) * __x * __eta);
92
      _Tp __pre_term2 = _Tp(0.25L) * std::log(__pre_h);
93
      _Tp __lnpre = __lg_b - __lnfact + _Tp(0.5L) * __x
94
                      + __pre_term1 - __pre_term2;
95
      _Tp __ser_term1 = std::sin(__a * __numeric_constants<_Tp>::__pi());
96
      _Tp __ser_term2 = std::sin(_Tp(0.25L) * __eta
97
                              * (_Tp(2) * __th
98
                               - std::sin(_Tp(2) * __th))
99
                               + __numeric_constants<_Tp>::__pi_4());
100
      _Tp __ser = __ser_term1 + __ser_term2;
101
 
102
      return std::exp(__lnpre) * __ser;
103
    }
104
 
105
 
106
    /**
107
     *  @brief  Evaluate the polynomial based on the confluent hypergeometric
108
     *          function in a safe way, with no restriction on the arguments.
109
     *
110
     *   The associated Laguerre function is defined by
111
     *   @f[
112
     *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
113
     *                       _1F_1(-n; \alpha + 1; x)
114
     *   @f]
115
     *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
116
     *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
117
     *
118
     *  This function assumes x != 0.
119
     *
120
     *  This is from the GNU Scientific Library.
121
     */
122
    template
123
    _Tp
124
    __poly_laguerre_hyperg(unsigned int __n, _Tpa __alpha1, _Tp __x)
125
    {
126
      const _Tp __b = _Tp(__alpha1) + _Tp(1);
127
      const _Tp __mx = -__x;
128
      const _Tp __tc_sgn = (__x < _Tp(0) ? _Tp(1)
129
                         : ((__n % 2 == 1) ? -_Tp(1) : _Tp(1)));
130
      //  Get |x|^n/n!
131
      _Tp __tc = _Tp(1);
132
      const _Tp __ax = std::abs(__x);
133
      for (unsigned int __k = 1; __k <= __n; ++__k)
134
        __tc *= (__ax / __k);
135
 
136
      _Tp __term = __tc * __tc_sgn;
137
      _Tp __sum = __term;
138
      for (int __k = int(__n) - 1; __k >= 0; --__k)
139
        {
140
          __term *= ((__b + _Tp(__k)) / _Tp(int(__n) - __k))
141
                  * _Tp(__k + 1) / __mx;
142
          __sum += __term;
143
        }
144
 
145
      return __sum;
146
    }
147
 
148
 
149
    /**
150
     *   @brief This routine returns the associated Laguerre polynomial
151
     *          of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
152
     *          by recursion.
153
     *
154
     *   The associated Laguerre function is defined by
155
     *   @f[
156
     *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
157
     *                       _1F_1(-n; \alpha + 1; x)
158
     *   @f]
159
     *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
160
     *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
161
     *
162
     *   The associated Laguerre polynomial is defined for integral
163
     *   @f$ \alpha = m @f$ by:
164
     *   @f[
165
     *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
166
     *   @f]
167
     *   where the Laguerre polynomial is defined by:
168
     *   @f[
169
     *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
170
     *   @f]
171
     *
172
     *   @param __n The order of the Laguerre function.
173
     *   @param __alpha The degree of the Laguerre function.
174
     *   @param __x The argument of the Laguerre function.
175
     *   @return The value of the Laguerre function of order n,
176
     *           degree @f$ \alpha @f$, and argument x.
177
     */
178
    template
179
    _Tp
180
    __poly_laguerre_recursion(unsigned int __n, _Tpa __alpha1, _Tp __x)
181
    {
182
      //   Compute l_0.
183
      _Tp __l_0 = _Tp(1);
184
      if  (__n == 0)
185
        return __l_0;
186
 
187
      //  Compute l_1^alpha.
188
      _Tp __l_1 = -__x + _Tp(1) + _Tp(__alpha1);
189
      if  (__n == 1)
190
        return __l_1;
191
 
192
      //  Compute l_n^alpha by recursion on n.
193
      _Tp __l_n2 = __l_0;
194
      _Tp __l_n1 = __l_1;
195
      _Tp __l_n = _Tp(0);
196
      for  (unsigned int __nn = 2; __nn <= __n; ++__nn)
197
        {
198
            __l_n = (_Tp(2 * __nn - 1) + _Tp(__alpha1) - __x)
199
                  * __l_n1 / _Tp(__nn)
200
                  - (_Tp(__nn - 1) + _Tp(__alpha1)) * __l_n2 / _Tp(__nn);
201
            __l_n2 = __l_n1;
202
            __l_n1 = __l_n;
203
        }
204
 
205
      return __l_n;
206
    }
207
 
208
 
209
    /**
210
     *   @brief This routine returns the associated Laguerre polynomial
211
     *          of order n, degree @f$ \alpha @f$: @f$ L_n^alpha(x) @f$.
212
     *
213
     *   The associated Laguerre function is defined by
214
     *   @f[
215
     *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
216
     *                       _1F_1(-n; \alpha + 1; x)
217
     *   @f]
218
     *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
219
     *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
220
     *
221
     *   The associated Laguerre polynomial is defined for integral
222
     *   @f$ \alpha = m @f$ by:
223
     *   @f[
224
     *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
225
     *   @f]
226
     *   where the Laguerre polynomial is defined by:
227
     *   @f[
228
     *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
229
     *   @f]
230
     *
231
     *   @param __n The order of the Laguerre function.
232
     *   @param __alpha The degree of the Laguerre function.
233
     *   @param __x The argument of the Laguerre function.
234
     *   @return The value of the Laguerre function of order n,
235
     *           degree @f$ \alpha @f$, and argument x.
236
     */
237
    template
238
    _Tp
239
    __poly_laguerre(unsigned int __n, _Tpa __alpha1, _Tp __x)
240
    {
241
      if (__x < _Tp(0))
242
        std::__throw_domain_error(__N("Negative argument "
243
                                      "in __poly_laguerre."));
244
      //  Return NaN on NaN input.
245
      else if (__isnan(__x))
246
        return std::numeric_limits<_Tp>::quiet_NaN();
247
      else if (__n == 0)
248
        return _Tp(1);
249
      else if (__n == 1)
250
        return _Tp(1) + _Tp(__alpha1) - __x;
251
      else if (__x == _Tp(0))
252
        {
253
          _Tp __prod = _Tp(__alpha1) + _Tp(1);
254
          for (unsigned int __k = 2; __k <= __n; ++__k)
255
            __prod *= (_Tp(__alpha1) + _Tp(__k)) / _Tp(__k);
256
          return __prod;
257
        }
258
      else if (__n > 10000000 && _Tp(__alpha1) > -_Tp(1)
259
            && __x < _Tp(2) * (_Tp(__alpha1) + _Tp(1)) + _Tp(4 * __n))
260
        return __poly_laguerre_large_n(__n, __alpha1, __x);
261
      else if (_Tp(__alpha1) >= _Tp(0)
262
           || (__x > _Tp(0) && _Tp(__alpha1) < -_Tp(__n + 1)))
263
        return __poly_laguerre_recursion(__n, __alpha1, __x);
264
      else
265
        return __poly_laguerre_hyperg(__n, __alpha1, __x);
266
    }
267
 
268
 
269
    /**
270
     *   @brief This routine returns the associated Laguerre polynomial
271
     *          of order n, degree m: @f$ L_n^m(x) @f$.
272
     *
273
     *   The associated Laguerre polynomial is defined for integral
274
     *   @f$ \alpha = m @f$ by:
275
     *   @f[
276
     *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
277
     *   @f]
278
     *   where the Laguerre polynomial is defined by:
279
     *   @f[
280
     *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
281
     *   @f]
282
     *
283
     *   @param __n The order of the Laguerre polynomial.
284
     *   @param __m The degree of the Laguerre polynomial.
285
     *   @param __x The argument of the Laguerre polynomial.
286
     *   @return The value of the associated Laguerre polynomial of order n,
287
     *           degree m, and argument x.
288
     */
289
    template
290
    inline _Tp
291
    __assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x)
292
    { return __poly_laguerre(__n, __m, __x); }
293
 
294
 
295
    /**
296
     *   @brief This routine returns the Laguerre polynomial
297
     *          of order n: @f$ L_n(x) @f$.
298
     *
299
     *   The Laguerre polynomial is defined by:
300
     *   @f[
301
     *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
302
     *   @f]
303
     *
304
     *   @param __n The order of the Laguerre polynomial.
305
     *   @param __x The argument of the Laguerre polynomial.
306
     *   @return The value of the Laguerre polynomial of order n
307
     *           and argument x.
308
     */
309
    template
310
    inline _Tp
311
    __laguerre(unsigned int __n, _Tp __x)
312
    { return __poly_laguerre(__n, 0, __x); }
313
 
314
  _GLIBCXX_END_NAMESPACE_VERSION
315
  } // namespace std::tr1::__detail
316
}
317
}
318
 
319
#endif // _GLIBCXX_TR1_POLY_LAGUERRE_TCC