Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5134 serge 1
// Special functions -*- C++ -*-
2
 
3
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
4
//
5
// This file is part of the GNU ISO C++ Library.  This library is free
6
// software; you can redistribute it and/or modify it under the
7
// terms of the GNU General Public License as published by the
8
// Free Software Foundation; either version 3, or (at your option)
9
// any later version.
10
//
11
// This library is distributed in the hope that it will be useful,
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
// GNU General Public License for more details.
15
//
16
// Under Section 7 of GPL version 3, you are granted additional
17
// permissions described in the GCC Runtime Library Exception, version
18
// 3.1, as published by the Free Software Foundation.
19
 
20
// You should have received a copy of the GNU General Public License and
21
// a copy of the GCC Runtime Library Exception along with this program;
22
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23
// .
24
 
25
/** @file tr1/modified_bessel_func.tcc
26
 *  This is an internal header file, included by other library headers.
27
 *  Do not attempt to use it directly. @headername{tr1/cmath}
28
 */
29
 
30
//
31
// ISO C++ 14882 TR1: 5.2  Special functions
32
//
33
 
34
// Written by Edward Smith-Rowland.
35
//
36
// References:
37
//   (1) Handbook of Mathematical Functions,
38
//       Ed. Milton Abramowitz and Irene A. Stegun,
39
//       Dover Publications,
40
//       Section 9, pp. 355-434, Section 10 pp. 435-478
41
//   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
42
//   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
43
//       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
44
//       2nd ed, pp. 246-249.
45
 
46
#ifndef _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC
47
#define _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC 1
48
 
49
#include "special_function_util.h"
50
 
51
namespace std _GLIBCXX_VISIBILITY(default)
52
{
53
namespace tr1
54
{
55
  // [5.2] Special functions
56
 
57
  // Implementation-space details.
58
  namespace __detail
59
  {
60
  _GLIBCXX_BEGIN_NAMESPACE_VERSION
61
 
62
    /**
63
     *   @brief  Compute the modified Bessel functions @f$ I_\nu(x) @f$ and
64
     *           @f$ K_\nu(x) @f$ and their first derivatives
65
     *           @f$ I'_\nu(x) @f$ and @f$ K'_\nu(x) @f$ respectively.
66
     *           These four functions are computed together for numerical
67
     *           stability.
68
     *
69
     *   @param  __nu  The order of the Bessel functions.
70
     *   @param  __x   The argument of the Bessel functions.
71
     *   @param  __Inu  The output regular modified Bessel function.
72
     *   @param  __Knu  The output irregular modified Bessel function.
73
     *   @param  __Ipnu  The output derivative of the regular
74
     *                   modified Bessel function.
75
     *   @param  __Kpnu  The output derivative of the irregular
76
     *                   modified Bessel function.
77
     */
78
    template 
79
    void
80
    __bessel_ik(_Tp __nu, _Tp __x,
81
                _Tp & __Inu, _Tp & __Knu, _Tp & __Ipnu, _Tp & __Kpnu)
82
    {
83
      if (__x == _Tp(0))
84
        {
85
          if (__nu == _Tp(0))
86
            {
87
              __Inu = _Tp(1);
88
              __Ipnu = _Tp(0);
89
            }
90
          else if (__nu == _Tp(1))
91
            {
92
              __Inu = _Tp(0);
93
              __Ipnu = _Tp(0.5L);
94
            }
95
          else
96
            {
97
              __Inu = _Tp(0);
98
              __Ipnu = _Tp(0);
99
            }
100
          __Knu = std::numeric_limits<_Tp>::infinity();
101
          __Kpnu = -std::numeric_limits<_Tp>::infinity();
102
          return;
103
        }
104
 
105
      const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
106
      const _Tp __fp_min = _Tp(10) * std::numeric_limits<_Tp>::epsilon();
107
      const int __max_iter = 15000;
108
      const _Tp __x_min = _Tp(2);
109
 
110
      const int __nl = static_cast(__nu + _Tp(0.5L));
111
 
112
      const _Tp __mu = __nu - __nl;
113
      const _Tp __mu2 = __mu * __mu;
114
      const _Tp __xi = _Tp(1) / __x;
115
      const _Tp __xi2 = _Tp(2) * __xi;
116
      _Tp __h = __nu * __xi;
117
      if ( __h < __fp_min )
118
        __h = __fp_min;
119
      _Tp __b = __xi2 * __nu;
120
      _Tp __d = _Tp(0);
121
      _Tp __c = __h;
122
      int __i;
123
      for ( __i = 1; __i <= __max_iter; ++__i )
124
        {
125
          __b += __xi2;
126
          __d = _Tp(1) / (__b + __d);
127
          __c = __b + _Tp(1) / __c;
128
          const _Tp __del = __c * __d;
129
          __h *= __del;
130
          if (std::abs(__del - _Tp(1)) < __eps)
131
            break;
132
        }
133
      if (__i > __max_iter)
134
        std::__throw_runtime_error(__N("Argument x too large "
135
                                       "in __bessel_ik; "
136
                                       "try asymptotic expansion."));
137
      _Tp __Inul = __fp_min;
138
      _Tp __Ipnul = __h * __Inul;
139
      _Tp __Inul1 = __Inul;
140
      _Tp __Ipnu1 = __Ipnul;
141
      _Tp __fact = __nu * __xi;
142
      for (int __l = __nl; __l >= 1; --__l)
143
        {
144
          const _Tp __Inutemp = __fact * __Inul + __Ipnul;
145
          __fact -= __xi;
146
          __Ipnul = __fact * __Inutemp + __Inul;
147
          __Inul = __Inutemp;
148
        }
149
      _Tp __f = __Ipnul / __Inul;
150
      _Tp __Kmu, __Knu1;
151
      if (__x < __x_min)
152
        {
153
          const _Tp __x2 = __x / _Tp(2);
154
          const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;
155
          const _Tp __fact = (std::abs(__pimu) < __eps
156
                            ? _Tp(1) : __pimu / std::sin(__pimu));
157
          _Tp __d = -std::log(__x2);
158
          _Tp __e = __mu * __d;
159
          const _Tp __fact2 = (std::abs(__e) < __eps
160
                            ? _Tp(1) : std::sinh(__e) / __e);
161
          _Tp __gam1, __gam2, __gampl, __gammi;
162
          __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);
163
          _Tp __ff = __fact
164
                   * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);
165
          _Tp __sum = __ff;
166
          __e = std::exp(__e);
167
          _Tp __p = __e / (_Tp(2) * __gampl);
168
          _Tp __q = _Tp(1) / (_Tp(2) * __e * __gammi);
169
          _Tp __c = _Tp(1);
170
          __d = __x2 * __x2;
171
          _Tp __sum1 = __p;
172
          int __i;
173
          for (__i = 1; __i <= __max_iter; ++__i)
174
            {
175
              __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);
176
              __c *= __d / __i;
177
              __p /= __i - __mu;
178
              __q /= __i + __mu;
179
              const _Tp __del = __c * __ff;
180
              __sum += __del;
181
              const _Tp __del1 = __c * (__p - __i * __ff);
182
              __sum1 += __del1;
183
              if (std::abs(__del) < __eps * std::abs(__sum))
184
                break;
185
            }
186
          if (__i > __max_iter)
187
            std::__throw_runtime_error(__N("Bessel k series failed to converge "
188
                                           "in __bessel_ik."));
189
          __Kmu = __sum;
190
          __Knu1 = __sum1 * __xi2;
191
        }
192
      else
193
        {
194
          _Tp __b = _Tp(2) * (_Tp(1) + __x);
195
          _Tp __d = _Tp(1) / __b;
196
          _Tp __delh = __d;
197
          _Tp __h = __delh;
198
          _Tp __q1 = _Tp(0);
199
          _Tp __q2 = _Tp(1);
200
          _Tp __a1 = _Tp(0.25L) - __mu2;
201
          _Tp __q = __c = __a1;
202
          _Tp __a = -__a1;
203
          _Tp __s = _Tp(1) + __q * __delh;
204
          int __i;
205
          for (__i = 2; __i <= __max_iter; ++__i)
206
            {
207
              __a -= 2 * (__i - 1);
208
              __c = -__a * __c / __i;
209
              const _Tp __qnew = (__q1 - __b * __q2) / __a;
210
              __q1 = __q2;
211
              __q2 = __qnew;
212
              __q += __c * __qnew;
213
              __b += _Tp(2);
214
              __d = _Tp(1) / (__b + __a * __d);
215
              __delh = (__b * __d - _Tp(1)) * __delh;
216
              __h += __delh;
217
              const _Tp __dels = __q * __delh;
218
              __s += __dels;
219
              if ( std::abs(__dels / __s) < __eps )
220
                break;
221
            }
222
          if (__i > __max_iter)
223
            std::__throw_runtime_error(__N("Steed's method failed "
224
                                           "in __bessel_ik."));
225
          __h = __a1 * __h;
226
          __Kmu = std::sqrt(__numeric_constants<_Tp>::__pi() / (_Tp(2) * __x))
227
                * std::exp(-__x) / __s;
228
          __Knu1 = __Kmu * (__mu + __x + _Tp(0.5L) - __h) * __xi;
229
        }
230
 
231
      _Tp __Kpmu = __mu * __xi * __Kmu - __Knu1;
232
      _Tp __Inumu = __xi / (__f * __Kmu - __Kpmu);
233
      __Inu = __Inumu * __Inul1 / __Inul;
234
      __Ipnu = __Inumu * __Ipnu1 / __Inul;
235
      for ( __i = 1; __i <= __nl; ++__i )
236
        {
237
          const _Tp __Knutemp = (__mu + __i) * __xi2 * __Knu1 + __Kmu;
238
          __Kmu = __Knu1;
239
          __Knu1 = __Knutemp;
240
        }
241
      __Knu = __Kmu;
242
      __Kpnu = __nu * __xi * __Kmu - __Knu1;
243
 
244
      return;
245
    }
246
 
247
 
248
    /**
249
     *   @brief  Return the regular modified Bessel function of order
250
     *           \f$ \nu \f$: \f$ I_{\nu}(x) \f$.
251
     *
252
     *   The regular modified cylindrical Bessel function is:
253
     *   @f[
254
     *    I_{\nu}(x) = \sum_{k=0}^{\infty}
255
     *              \frac{(x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
256
     *   @f]
257
     *
258
     *   @param  __nu  The order of the regular modified Bessel function.
259
     *   @param  __x   The argument of the regular modified Bessel function.
260
     *   @return  The output regular modified Bessel function.
261
     */
262
    template
263
    _Tp
264
    __cyl_bessel_i(_Tp __nu, _Tp __x)
265
    {
266
      if (__nu < _Tp(0) || __x < _Tp(0))
267
        std::__throw_domain_error(__N("Bad argument "
268
                                      "in __cyl_bessel_i."));
269
      else if (__isnan(__nu) || __isnan(__x))
270
        return std::numeric_limits<_Tp>::quiet_NaN();
271
      else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))
272
        return __cyl_bessel_ij_series(__nu, __x, +_Tp(1), 200);
273
      else
274
        {
275
          _Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu;
276
          __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
277
          return __I_nu;
278
        }
279
    }
280
 
281
 
282
    /**
283
     *   @brief  Return the irregular modified Bessel function
284
     *           \f$ K_{\nu}(x) \f$ of order \f$ \nu \f$.
285
     *
286
     *   The irregular modified Bessel function is defined by:
287
     *   @f[
288
     *      K_{\nu}(x) = \frac{\pi}{2}
289
     *                   \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu\pi}
290
     *   @f]
291
     *   where for integral \f$ \nu = n \f$ a limit is taken:
292
     *   \f$ lim_{\nu \to n} \f$.
293
     *
294
     *   @param  __nu  The order of the irregular modified Bessel function.
295
     *   @param  __x   The argument of the irregular modified Bessel function.
296
     *   @return  The output irregular modified Bessel function.
297
     */
298
    template
299
    _Tp
300
    __cyl_bessel_k(_Tp __nu, _Tp __x)
301
    {
302
      if (__nu < _Tp(0) || __x < _Tp(0))
303
        std::__throw_domain_error(__N("Bad argument "
304
                                      "in __cyl_bessel_k."));
305
      else if (__isnan(__nu) || __isnan(__x))
306
        return std::numeric_limits<_Tp>::quiet_NaN();
307
      else
308
        {
309
          _Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu;
310
          __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
311
          return __K_nu;
312
        }
313
    }
314
 
315
 
316
    /**
317
     *   @brief  Compute the spherical modified Bessel functions
318
     *           @f$ i_n(x) @f$ and @f$ k_n(x) @f$ and their first
319
     *           derivatives @f$ i'_n(x) @f$ and @f$ k'_n(x) @f$
320
     *           respectively.
321
     *
322
     *   @param  __n  The order of the modified spherical Bessel function.
323
     *   @param  __x  The argument of the modified spherical Bessel function.
324
     *   @param  __i_n  The output regular modified spherical Bessel function.
325
     *   @param  __k_n  The output irregular modified spherical
326
     *                  Bessel function.
327
     *   @param  __ip_n  The output derivative of the regular modified
328
     *                   spherical Bessel function.
329
     *   @param  __kp_n  The output derivative of the irregular modified
330
     *                   spherical Bessel function.
331
     */
332
    template 
333
    void
334
    __sph_bessel_ik(unsigned int __n, _Tp __x,
335
                    _Tp & __i_n, _Tp & __k_n, _Tp & __ip_n, _Tp & __kp_n)
336
    {
337
      const _Tp __nu = _Tp(__n) + _Tp(0.5L);
338
 
339
      _Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu;
340
      __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
341
 
342
      const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()
343
                         / std::sqrt(__x);
344
 
345
      __i_n = __factor * __I_nu;
346
      __k_n = __factor * __K_nu;
347
      __ip_n = __factor * __Ip_nu - __i_n / (_Tp(2) * __x);
348
      __kp_n = __factor * __Kp_nu - __k_n / (_Tp(2) * __x);
349
 
350
      return;
351
    }
352
 
353
 
354
    /**
355
     *   @brief  Compute the Airy functions
356
     *           @f$ Ai(x) @f$ and @f$ Bi(x) @f$ and their first
357
     *           derivatives @f$ Ai'(x) @f$ and @f$ Bi(x) @f$
358
     *           respectively.
359
     *
360
     *   @param  __n  The order of the Airy functions.
361
     *   @param  __x  The argument of the Airy functions.
362
     *   @param  __i_n  The output Airy function.
363
     *   @param  __k_n  The output Airy function.
364
     *   @param  __ip_n  The output derivative of the Airy function.
365
     *   @param  __kp_n  The output derivative of the Airy function.
366
     */
367
    template 
368
    void
369
    __airy(_Tp __x, _Tp & __Ai, _Tp & __Bi, _Tp & __Aip, _Tp & __Bip)
370
    {
371
      const _Tp __absx = std::abs(__x);
372
      const _Tp __rootx = std::sqrt(__absx);
373
      const _Tp __z = _Tp(2) * __absx * __rootx / _Tp(3);
374
 
375
      if (__isnan(__x))
376
        return std::numeric_limits<_Tp>::quiet_NaN();
377
      else if (__x > _Tp(0))
378
        {
379
          _Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu;
380
 
381
          __bessel_ik(_Tp(1) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
382
          __Ai = __rootx * __K_nu
383
               / (__numeric_constants<_Tp>::__sqrt3()
384
                * __numeric_constants<_Tp>::__pi());
385
          __Bi = __rootx * (__K_nu / __numeric_constants<_Tp>::__pi()
386
                 + _Tp(2) * __I_nu / __numeric_constants<_Tp>::__sqrt3());
387
 
388
          __bessel_ik(_Tp(2) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
389
          __Aip = -__x * __K_nu
390
                / (__numeric_constants<_Tp>::__sqrt3()
391
                 * __numeric_constants<_Tp>::__pi());
392
          __Bip = __x * (__K_nu / __numeric_constants<_Tp>::__pi()
393
                      + _Tp(2) * __I_nu
394
                      / __numeric_constants<_Tp>::__sqrt3());
395
        }
396
      else if (__x < _Tp(0))
397
        {
398
          _Tp __J_nu, __Jp_nu, __N_nu, __Np_nu;
399
 
400
          __bessel_jn(_Tp(1) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu);
401
          __Ai = __rootx * (__J_nu
402
                    - __N_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2);
403
          __Bi = -__rootx * (__N_nu
404
                    + __J_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2);
405
 
406
          __bessel_jn(_Tp(2) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu);
407
          __Aip = __absx * (__N_nu / __numeric_constants<_Tp>::__sqrt3()
408
                          + __J_nu) / _Tp(2);
409
          __Bip = __absx * (__J_nu / __numeric_constants<_Tp>::__sqrt3()
410
                          - __N_nu) / _Tp(2);
411
        }
412
      else
413
        {
414
          //  Reference:
415
          //    Abramowitz & Stegun, page 446 section 10.4.4 on Airy functions.
416
          //  The number is Ai(0) = 3^{-2/3}/\Gamma(2/3).
417
          __Ai = _Tp(0.35502805388781723926L);
418
          __Bi = __Ai * __numeric_constants<_Tp>::__sqrt3();
419
 
420
          //  Reference:
421
          //    Abramowitz & Stegun, page 446 section 10.4.5 on Airy functions.
422
          //  The number is Ai'(0) = -3^{-1/3}/\Gamma(1/3).
423
          __Aip = -_Tp(0.25881940379280679840L);
424
          __Bip = -__Aip * __numeric_constants<_Tp>::__sqrt3();
425
        }
426
 
427
      return;
428
    }
429
 
430
  _GLIBCXX_END_NAMESPACE_VERSION
431
  } // namespace std::tr1::__detail
432
}
433
}
434
 
435
#endif // _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC