Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5134 serge 1
// Deque implementation -*- C++ -*-
2
 
3
// Copyright (C) 2001-2013 Free Software Foundation, Inc.
4
//
5
// This file is part of the GNU ISO C++ Library.  This library is free
6
// software; you can redistribute it and/or modify it under the
7
// terms of the GNU General Public License as published by the
8
// Free Software Foundation; either version 3, or (at your option)
9
// any later version.
10
 
11
// This library is distributed in the hope that it will be useful,
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
// GNU General Public License for more details.
15
 
16
// Under Section 7 of GPL version 3, you are granted additional
17
// permissions described in the GCC Runtime Library Exception, version
18
// 3.1, as published by the Free Software Foundation.
19
 
20
// You should have received a copy of the GNU General Public License and
21
// a copy of the GCC Runtime Library Exception along with this program;
22
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23
// .
24
 
25
/*
26
 *
27
 * Copyright (c) 1994
28
 * Hewlett-Packard Company
29
 *
30
 * Permission to use, copy, modify, distribute and sell this software
31
 * and its documentation for any purpose is hereby granted without fee,
32
 * provided that the above copyright notice appear in all copies and
33
 * that both that copyright notice and this permission notice appear
34
 * in supporting documentation.  Hewlett-Packard Company makes no
35
 * representations about the suitability of this software for any
36
 * purpose.  It is provided "as is" without express or implied warranty.
37
 *
38
 *
39
 * Copyright (c) 1997
40
 * Silicon Graphics Computer Systems, Inc.
41
 *
42
 * Permission to use, copy, modify, distribute and sell this software
43
 * and its documentation for any purpose is hereby granted without fee,
44
 * provided that the above copyright notice appear in all copies and
45
 * that both that copyright notice and this permission notice appear
46
 * in supporting documentation.  Silicon Graphics makes no
47
 * representations about the suitability of this software for any
48
 * purpose.  It is provided "as is" without express or implied warranty.
49
 */
50
 
51
/** @file bits/stl_deque.h
52
 *  This is an internal header file, included by other library headers.
53
 *  Do not attempt to use it directly. @headername{deque}
54
 */
55
 
56
#ifndef _STL_DEQUE_H
57
#define _STL_DEQUE_H 1
58
 
59
#include 
60
#include 
61
#include 
62
#if __cplusplus >= 201103L
63
#include 
64
#endif
65
 
66
namespace std _GLIBCXX_VISIBILITY(default)
67
{
68
_GLIBCXX_BEGIN_NAMESPACE_CONTAINER
69
 
70
  /**
71
   *  @brief This function controls the size of memory nodes.
72
   *  @param  __size  The size of an element.
73
   *  @return   The number (not byte size) of elements per node.
74
   *
75
   *  This function started off as a compiler kludge from SGI, but
76
   *  seems to be a useful wrapper around a repeated constant
77
   *  expression.  The @b 512 is tunable (and no other code needs to
78
   *  change), but no investigation has been done since inheriting the
79
   *  SGI code.  Touch _GLIBCXX_DEQUE_BUF_SIZE only if you know what
80
   *  you are doing, however: changing it breaks the binary
81
   *  compatibility!!
82
  */
83
 
84
#ifndef _GLIBCXX_DEQUE_BUF_SIZE
85
#define _GLIBCXX_DEQUE_BUF_SIZE 512
86
#endif
87
 
88
  inline size_t
89
  __deque_buf_size(size_t __size)
90
  { return (__size < _GLIBCXX_DEQUE_BUF_SIZE
91
	    ? size_t(_GLIBCXX_DEQUE_BUF_SIZE / __size) : size_t(1)); }
92
 
93
 
94
  /**
95
   *  @brief A deque::iterator.
96
   *
97
   *  Quite a bit of intelligence here.  Much of the functionality of
98
   *  deque is actually passed off to this class.  A deque holds two
99
   *  of these internally, marking its valid range.  Access to
100
   *  elements is done as offsets of either of those two, relying on
101
   *  operator overloading in this class.
102
   *
103
   *  All the functions are op overloads except for _M_set_node.
104
  */
105
  template
106
    struct _Deque_iterator
107
    {
108
      typedef _Deque_iterator<_Tp, _Tp&, _Tp*>             iterator;
109
      typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
110
 
111
      static size_t _S_buffer_size()
112
      { return __deque_buf_size(sizeof(_Tp)); }
113
 
114
      typedef std::random_access_iterator_tag iterator_category;
115
      typedef _Tp                             value_type;
116
      typedef _Ptr                            pointer;
117
      typedef _Ref                            reference;
118
      typedef size_t                          size_type;
119
      typedef ptrdiff_t                       difference_type;
120
      typedef _Tp**                           _Map_pointer;
121
      typedef _Deque_iterator                 _Self;
122
 
123
      _Tp* _M_cur;
124
      _Tp* _M_first;
125
      _Tp* _M_last;
126
      _Map_pointer _M_node;
127
 
128
      _Deque_iterator(_Tp* __x, _Map_pointer __y)
129
      : _M_cur(__x), _M_first(*__y),
130
        _M_last(*__y + _S_buffer_size()), _M_node(__y) { }
131
 
132
      _Deque_iterator()
133
      : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) { }
134
 
135
      _Deque_iterator(const iterator& __x)
136
      : _M_cur(__x._M_cur), _M_first(__x._M_first),
137
        _M_last(__x._M_last), _M_node(__x._M_node) { }
138
 
139
      reference
140
      operator*() const
141
      { return *_M_cur; }
142
 
143
      pointer
144
      operator->() const
145
      { return _M_cur; }
146
 
147
      _Self&
148
      operator++()
149
      {
150
	++_M_cur;
151
	if (_M_cur == _M_last)
152
	  {
153
	    _M_set_node(_M_node + 1);
154
	    _M_cur = _M_first;
155
	  }
156
	return *this;
157
      }
158
 
159
      _Self
160
      operator++(int)
161
      {
162
	_Self __tmp = *this;
163
	++*this;
164
	return __tmp;
165
      }
166
 
167
      _Self&
168
      operator--()
169
      {
170
	if (_M_cur == _M_first)
171
	  {
172
	    _M_set_node(_M_node - 1);
173
	    _M_cur = _M_last;
174
	  }
175
	--_M_cur;
176
	return *this;
177
      }
178
 
179
      _Self
180
      operator--(int)
181
      {
182
	_Self __tmp = *this;
183
	--*this;
184
	return __tmp;
185
      }
186
 
187
      _Self&
188
      operator+=(difference_type __n)
189
      {
190
	const difference_type __offset = __n + (_M_cur - _M_first);
191
	if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
192
	  _M_cur += __n;
193
	else
194
	  {
195
	    const difference_type __node_offset =
196
	      __offset > 0 ? __offset / difference_type(_S_buffer_size())
197
	                   : -difference_type((-__offset - 1)
198
					      / _S_buffer_size()) - 1;
199
	    _M_set_node(_M_node + __node_offset);
200
	    _M_cur = _M_first + (__offset - __node_offset
201
				 * difference_type(_S_buffer_size()));
202
	  }
203
	return *this;
204
      }
205
 
206
      _Self
207
      operator+(difference_type __n) const
208
      {
209
	_Self __tmp = *this;
210
	return __tmp += __n;
211
      }
212
 
213
      _Self&
214
      operator-=(difference_type __n)
215
      { return *this += -__n; }
216
 
217
      _Self
218
      operator-(difference_type __n) const
219
      {
220
	_Self __tmp = *this;
221
	return __tmp -= __n;
222
      }
223
 
224
      reference
225
      operator[](difference_type __n) const
226
      { return *(*this + __n); }
227
 
228
      /**
229
       *  Prepares to traverse new_node.  Sets everything except
230
       *  _M_cur, which should therefore be set by the caller
231
       *  immediately afterwards, based on _M_first and _M_last.
232
       */
233
      void
234
      _M_set_node(_Map_pointer __new_node)
235
      {
236
	_M_node = __new_node;
237
	_M_first = *__new_node;
238
	_M_last = _M_first + difference_type(_S_buffer_size());
239
      }
240
    };
241
 
242
  // Note: we also provide overloads whose operands are of the same type in
243
  // order to avoid ambiguous overload resolution when std::rel_ops operators
244
  // are in scope (for additional details, see libstdc++/3628)
245
  template
246
    inline bool
247
    operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
248
	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
249
    { return __x._M_cur == __y._M_cur; }
250
 
251
  template
252
	   typename _RefR, typename _PtrR>
253
    inline bool
254
    operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
255
	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
256
    { return __x._M_cur == __y._M_cur; }
257
 
258
  template
259
    inline bool
260
    operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
261
	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
262
    { return !(__x == __y); }
263
 
264
  template
265
	   typename _RefR, typename _PtrR>
266
    inline bool
267
    operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
268
	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
269
    { return !(__x == __y); }
270
 
271
  template
272
    inline bool
273
    operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
274
	      const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
275
    { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
276
                                          : (__x._M_node < __y._M_node); }
277
 
278
  template
279
	   typename _RefR, typename _PtrR>
280
    inline bool
281
    operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
282
	      const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
283
    { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
284
	                                  : (__x._M_node < __y._M_node); }
285
 
286
  template
287
    inline bool
288
    operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
289
	      const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
290
    { return __y < __x; }
291
 
292
  template
293
	   typename _RefR, typename _PtrR>
294
    inline bool
295
    operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
296
	      const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
297
    { return __y < __x; }
298
 
299
  template
300
    inline bool
301
    operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
302
	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
303
    { return !(__y < __x); }
304
 
305
  template
306
	   typename _RefR, typename _PtrR>
307
    inline bool
308
    operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
309
	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
310
    { return !(__y < __x); }
311
 
312
  template
313
    inline bool
314
    operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
315
	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
316
    { return !(__x < __y); }
317
 
318
  template
319
	   typename _RefR, typename _PtrR>
320
    inline bool
321
    operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
322
	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
323
    { return !(__x < __y); }
324
 
325
  // _GLIBCXX_RESOLVE_LIB_DEFECTS
326
  // According to the resolution of DR179 not only the various comparison
327
  // operators but also operator- must accept mixed iterator/const_iterator
328
  // parameters.
329
  template
330
    inline typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
331
    operator-(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
332
	      const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
333
    {
334
      return typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
335
	(_Deque_iterator<_Tp, _Ref, _Ptr>::_S_buffer_size())
336
	* (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
337
	+ (__y._M_last - __y._M_cur);
338
    }
339
 
340
  template
341
	   typename _RefR, typename _PtrR>
342
    inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
343
    operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
344
	      const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
345
    {
346
      return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
347
	(_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size())
348
	* (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
349
	+ (__y._M_last - __y._M_cur);
350
    }
351
 
352
  template
353
    inline _Deque_iterator<_Tp, _Ref, _Ptr>
354
    operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
355
    { return __x + __n; }
356
 
357
  template
358
    void
359
    fill(const _Deque_iterator<_Tp, _Tp&, _Tp*>&,
360
	 const _Deque_iterator<_Tp, _Tp&, _Tp*>&, const _Tp&);
361
 
362
  template
363
    _Deque_iterator<_Tp, _Tp&, _Tp*>
364
    copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
365
	 _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
366
	 _Deque_iterator<_Tp, _Tp&, _Tp*>);
367
 
368
  template
369
    inline _Deque_iterator<_Tp, _Tp&, _Tp*>
370
    copy(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
371
	 _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
372
	 _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
373
    { return std::copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),
374
		       _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),
375
		       __result); }
376
 
377
  template
378
    _Deque_iterator<_Tp, _Tp&, _Tp*>
379
    copy_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
380
		  _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
381
		  _Deque_iterator<_Tp, _Tp&, _Tp*>);
382
 
383
  template
384
    inline _Deque_iterator<_Tp, _Tp&, _Tp*>
385
    copy_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
386
		  _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
387
		  _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
388
    { return std::copy_backward(_Deque_iterator<_Tp,
389
				const _Tp&, const _Tp*>(__first),
390
				_Deque_iterator<_Tp,
391
				const _Tp&, const _Tp*>(__last),
392
				__result); }
393
 
394
#if __cplusplus >= 201103L
395
  template
396
    _Deque_iterator<_Tp, _Tp&, _Tp*>
397
    move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
398
	 _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
399
	 _Deque_iterator<_Tp, _Tp&, _Tp*>);
400
 
401
  template
402
    inline _Deque_iterator<_Tp, _Tp&, _Tp*>
403
    move(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
404
	 _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
405
	 _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
406
    { return std::move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),
407
		       _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),
408
		       __result); }
409
 
410
  template
411
    _Deque_iterator<_Tp, _Tp&, _Tp*>
412
    move_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
413
		  _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
414
		  _Deque_iterator<_Tp, _Tp&, _Tp*>);
415
 
416
  template
417
    inline _Deque_iterator<_Tp, _Tp&, _Tp*>
418
    move_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
419
		  _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
420
		  _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
421
    { return std::move_backward(_Deque_iterator<_Tp,
422
				const _Tp&, const _Tp*>(__first),
423
				_Deque_iterator<_Tp,
424
				const _Tp&, const _Tp*>(__last),
425
				__result); }
426
#endif
427
 
428
  /**
429
   *  Deque base class.  This class provides the unified face for %deque's
430
   *  allocation.  This class's constructor and destructor allocate and
431
   *  deallocate (but do not initialize) storage.  This makes %exception
432
   *  safety easier.
433
   *
434
   *  Nothing in this class ever constructs or destroys an actual Tp element.
435
   *  (Deque handles that itself.)  Only/All memory management is performed
436
   *  here.
437
  */
438
  template
439
    class _Deque_base
440
    {
441
    public:
442
      typedef _Alloc                  allocator_type;
443
 
444
      allocator_type
445
      get_allocator() const _GLIBCXX_NOEXCEPT
446
      { return allocator_type(_M_get_Tp_allocator()); }
447
 
448
      typedef _Deque_iterator<_Tp, _Tp&, _Tp*>             iterator;
449
      typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
450
 
451
      _Deque_base()
452
      : _M_impl()
453
      { _M_initialize_map(0); }
454
 
455
      _Deque_base(size_t __num_elements)
456
      : _M_impl()
457
      { _M_initialize_map(__num_elements); }
458
 
459
      _Deque_base(const allocator_type& __a, size_t __num_elements)
460
      : _M_impl(__a)
461
      { _M_initialize_map(__num_elements); }
462
 
463
      _Deque_base(const allocator_type& __a)
464
      : _M_impl(__a)
465
      { }
466
 
467
#if __cplusplus >= 201103L
468
      _Deque_base(_Deque_base&& __x)
469
      : _M_impl(std::move(__x._M_get_Tp_allocator()))
470
      {
471
	_M_initialize_map(0);
472
	if (__x._M_impl._M_map)
473
	  {
474
	    std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
475
	    std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
476
	    std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
477
	    std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
478
	  }
479
      }
480
#endif
481
 
482
      ~_Deque_base();
483
 
484
    protected:
485
      //This struct encapsulates the implementation of the std::deque
486
      //standard container and at the same time makes use of the EBO
487
      //for empty allocators.
488
      typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type;
489
 
490
      typedef typename _Alloc::template rebind<_Tp>::other  _Tp_alloc_type;
491
 
492
      struct _Deque_impl
493
      : public _Tp_alloc_type
494
      {
495
	_Tp** _M_map;
496
	size_t _M_map_size;
497
	iterator _M_start;
498
	iterator _M_finish;
499
 
500
	_Deque_impl()
501
	: _Tp_alloc_type(), _M_map(0), _M_map_size(0),
502
	  _M_start(), _M_finish()
503
	{ }
504
 
505
	_Deque_impl(const _Tp_alloc_type& __a)
506
	: _Tp_alloc_type(__a), _M_map(0), _M_map_size(0),
507
	  _M_start(), _M_finish()
508
	{ }
509
 
510
#if __cplusplus >= 201103L
511
	_Deque_impl(_Tp_alloc_type&& __a)
512
	: _Tp_alloc_type(std::move(__a)), _M_map(0), _M_map_size(0),
513
	  _M_start(), _M_finish()
514
	{ }
515
#endif
516
      };
517
 
518
      _Tp_alloc_type&
519
      _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT
520
      { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
521
 
522
      const _Tp_alloc_type&
523
      _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
524
      { return *static_cast(&this->_M_impl); }
525
 
526
      _Map_alloc_type
527
      _M_get_map_allocator() const _GLIBCXX_NOEXCEPT
528
      { return _Map_alloc_type(_M_get_Tp_allocator()); }
529
 
530
      _Tp*
531
      _M_allocate_node()
532
      {
533
	return _M_impl._Tp_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));
534
      }
535
 
536
      void
537
      _M_deallocate_node(_Tp* __p)
538
      {
539
	_M_impl._Tp_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));
540
      }
541
 
542
      _Tp**
543
      _M_allocate_map(size_t __n)
544
      { return _M_get_map_allocator().allocate(__n); }
545
 
546
      void
547
      _M_deallocate_map(_Tp** __p, size_t __n)
548
      { _M_get_map_allocator().deallocate(__p, __n); }
549
 
550
    protected:
551
      void _M_initialize_map(size_t);
552
      void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
553
      void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
554
      enum { _S_initial_map_size = 8 };
555
 
556
      _Deque_impl _M_impl;
557
    };
558
 
559
  template
560
    _Deque_base<_Tp, _Alloc>::
561
    ~_Deque_base()
562
    {
563
      if (this->_M_impl._M_map)
564
	{
565
	  _M_destroy_nodes(this->_M_impl._M_start._M_node,
566
			   this->_M_impl._M_finish._M_node + 1);
567
	  _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
568
	}
569
    }
570
 
571
  /**
572
   *  @brief Layout storage.
573
   *  @param  __num_elements  The count of T's for which to allocate space
574
   *                        at first.
575
   *  @return   Nothing.
576
   *
577
   *  The initial underlying memory layout is a bit complicated...
578
  */
579
  template
580
    void
581
    _Deque_base<_Tp, _Alloc>::
582
    _M_initialize_map(size_t __num_elements)
583
    {
584
      const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp))
585
				  + 1);
586
 
587
      this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size,
588
					   size_t(__num_nodes + 2));
589
      this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size);
590
 
591
      // For "small" maps (needing less than _M_map_size nodes), allocation
592
      // starts in the middle elements and grows outwards.  So nstart may be
593
      // the beginning of _M_map, but for small maps it may be as far in as
594
      // _M_map+3.
595
 
596
      _Tp** __nstart = (this->_M_impl._M_map
597
			+ (this->_M_impl._M_map_size - __num_nodes) / 2);
598
      _Tp** __nfinish = __nstart + __num_nodes;
599
 
600
      __try
601
	{ _M_create_nodes(__nstart, __nfinish); }
602
      __catch(...)
603
	{
604
	  _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
605
	  this->_M_impl._M_map = 0;
606
	  this->_M_impl._M_map_size = 0;
607
	  __throw_exception_again;
608
	}
609
 
610
      this->_M_impl._M_start._M_set_node(__nstart);
611
      this->_M_impl._M_finish._M_set_node(__nfinish - 1);
612
      this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first;
613
      this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first
614
					+ __num_elements
615
					% __deque_buf_size(sizeof(_Tp)));
616
    }
617
 
618
  template
619
    void
620
    _Deque_base<_Tp, _Alloc>::
621
    _M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
622
    {
623
      _Tp** __cur;
624
      __try
625
	{
626
	  for (__cur = __nstart; __cur < __nfinish; ++__cur)
627
	    *__cur = this->_M_allocate_node();
628
	}
629
      __catch(...)
630
	{
631
	  _M_destroy_nodes(__nstart, __cur);
632
	  __throw_exception_again;
633
	}
634
    }
635
 
636
  template
637
    void
638
    _Deque_base<_Tp, _Alloc>::
639
    _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish)
640
    {
641
      for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
642
	_M_deallocate_node(*__n);
643
    }
644
 
645
  /**
646
   *  @brief  A standard container using fixed-size memory allocation and
647
   *  constant-time manipulation of elements at either end.
648
   *
649
   *  @ingroup sequences
650
   *
651
   *  @tparam _Tp  Type of element.
652
   *  @tparam _Alloc  Allocator type, defaults to allocator<_Tp>.
653
   *
654
   *  Meets the requirements of a container, a
655
   *  reversible container, and a
656
   *  sequence, including the
657
   *  optional sequence requirements.
658
   *
659
   *  In previous HP/SGI versions of deque, there was an extra template
660
   *  parameter so users could control the node size.  This extension turned
661
   *  out to violate the C++ standard (it can be detected using template
662
   *  template parameters), and it was removed.
663
   *
664
   *  Here's how a deque manages memory.  Each deque has 4 members:
665
   *
666
   *  - Tp**        _M_map
667
   *  - size_t      _M_map_size
668
   *  - iterator    _M_start, _M_finish
669
   *
670
   *  map_size is at least 8.  %map is an array of map_size
671
   *  pointers-to-@a nodes.  (The name %map has nothing to do with the
672
   *  std::map class, and @b nodes should not be confused with
673
   *  std::list's usage of @a node.)
674
   *
675
   *  A @a node has no specific type name as such, but it is referred
676
   *  to as @a node in this file.  It is a simple array-of-Tp.  If Tp
677
   *  is very large, there will be one Tp element per node (i.e., an
678
   *  @a array of one).  For non-huge Tp's, node size is inversely
679
   *  related to Tp size: the larger the Tp, the fewer Tp's will fit
680
   *  in a node.  The goal here is to keep the total size of a node
681
   *  relatively small and constant over different Tp's, to improve
682
   *  allocator efficiency.
683
   *
684
   *  Not every pointer in the %map array will point to a node.  If
685
   *  the initial number of elements in the deque is small, the
686
   *  /middle/ %map pointers will be valid, and the ones at the edges
687
   *  will be unused.  This same situation will arise as the %map
688
   *  grows: available %map pointers, if any, will be on the ends.  As
689
   *  new nodes are created, only a subset of the %map's pointers need
690
   *  to be copied @a outward.
691
   *
692
   *  Class invariants:
693
   * - For any nonsingular iterator i:
694
   *    - i.node points to a member of the %map array.  (Yes, you read that
695
   *      correctly:  i.node does not actually point to a node.)  The member of
696
   *      the %map array is what actually points to the node.
697
   *    - i.first == *(i.node)    (This points to the node (first Tp element).)
698
   *    - i.last  == i.first + node_size
699
   *    - i.cur is a pointer in the range [i.first, i.last).  NOTE:
700
   *      the implication of this is that i.cur is always a dereferenceable
701
   *      pointer, even if i is a past-the-end iterator.
702
   * - Start and Finish are always nonsingular iterators.  NOTE: this
703
   * means that an empty deque must have one node, a deque with 
704
   * elements (where N is the node buffer size) must have one node, a
705
   * deque with N through (2N-1) elements must have two nodes, etc.
706
   * - For every node other than start.node and finish.node, every
707
   * element in the node is an initialized object.  If start.node ==
708
   * finish.node, then [start.cur, finish.cur) are initialized
709
   * objects, and the elements outside that range are uninitialized
710
   * storage.  Otherwise, [start.cur, start.last) and [finish.first,
711
   * finish.cur) are initialized objects, and [start.first, start.cur)
712
   * and [finish.cur, finish.last) are uninitialized storage.
713
   * - [%map, %map + map_size) is a valid, non-empty range.
714
   * - [start.node, finish.node] is a valid range contained within
715
   *   [%map, %map + map_size).
716
   * - A pointer in the range [%map, %map + map_size) points to an allocated
717
   *   node if and only if the pointer is in the range
718
   *   [start.node, finish.node].
719
   *
720
   *  Here's the magic:  nothing in deque is @b aware of the discontiguous
721
   *  storage!
722
   *
723
   *  The memory setup and layout occurs in the parent, _Base, and the iterator
724
   *  class is entirely responsible for @a leaping from one node to the next.
725
   *  All the implementation routines for deque itself work only through the
726
   *  start and finish iterators.  This keeps the routines simple and sane,
727
   *  and we can use other standard algorithms as well.
728
  */
729
  template >
730
    class deque : protected _Deque_base<_Tp, _Alloc>
731
    {
732
      // concept requirements
733
      typedef typename _Alloc::value_type        _Alloc_value_type;
734
      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
735
      __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
736
 
737
      typedef _Deque_base<_Tp, _Alloc>           _Base;
738
      typedef typename _Base::_Tp_alloc_type	 _Tp_alloc_type;
739
 
740
    public:
741
      typedef _Tp                                        value_type;
742
      typedef typename _Tp_alloc_type::pointer           pointer;
743
      typedef typename _Tp_alloc_type::const_pointer     const_pointer;
744
      typedef typename _Tp_alloc_type::reference         reference;
745
      typedef typename _Tp_alloc_type::const_reference   const_reference;
746
      typedef typename _Base::iterator                   iterator;
747
      typedef typename _Base::const_iterator             const_iterator;
748
      typedef std::reverse_iterator      const_reverse_iterator;
749
      typedef std::reverse_iterator            reverse_iterator;
750
      typedef size_t                             size_type;
751
      typedef ptrdiff_t                          difference_type;
752
      typedef _Alloc                             allocator_type;
753
 
754
    protected:
755
      typedef pointer*                           _Map_pointer;
756
 
757
      static size_t _S_buffer_size()
758
      { return __deque_buf_size(sizeof(_Tp)); }
759
 
760
      // Functions controlling memory layout, and nothing else.
761
      using _Base::_M_initialize_map;
762
      using _Base::_M_create_nodes;
763
      using _Base::_M_destroy_nodes;
764
      using _Base::_M_allocate_node;
765
      using _Base::_M_deallocate_node;
766
      using _Base::_M_allocate_map;
767
      using _Base::_M_deallocate_map;
768
      using _Base::_M_get_Tp_allocator;
769
 
770
      /**
771
       *  A total of four data members accumulated down the hierarchy.
772
       *  May be accessed via _M_impl.*
773
       */
774
      using _Base::_M_impl;
775
 
776
    public:
777
      // [23.2.1.1] construct/copy/destroy
778
      // (assign() and get_allocator() are also listed in this section)
779
      /**
780
       *  @brief  Default constructor creates no elements.
781
       */
782
      deque()
783
      : _Base() { }
784
 
785
      /**
786
       *  @brief  Creates a %deque with no elements.
787
       *  @param  __a  An allocator object.
788
       */
789
      explicit
790
      deque(const allocator_type& __a)
791
      : _Base(__a, 0) { }
792
 
793
#if __cplusplus >= 201103L
794
      /**
795
       *  @brief  Creates a %deque with default constructed elements.
796
       *  @param  __n  The number of elements to initially create.
797
       *
798
       *  This constructor fills the %deque with @a n default
799
       *  constructed elements.
800
       */
801
      explicit
802
      deque(size_type __n)
803
      : _Base(__n)
804
      { _M_default_initialize(); }
805
 
806
      /**
807
       *  @brief  Creates a %deque with copies of an exemplar element.
808
       *  @param  __n  The number of elements to initially create.
809
       *  @param  __value  An element to copy.
810
       *  @param  __a  An allocator.
811
       *
812
       *  This constructor fills the %deque with @a __n copies of @a __value.
813
       */
814
      deque(size_type __n, const value_type& __value,
815
	    const allocator_type& __a = allocator_type())
816
      : _Base(__a, __n)
817
      { _M_fill_initialize(__value); }
818
#else
819
      /**
820
       *  @brief  Creates a %deque with copies of an exemplar element.
821
       *  @param  __n  The number of elements to initially create.
822
       *  @param  __value  An element to copy.
823
       *  @param  __a  An allocator.
824
       *
825
       *  This constructor fills the %deque with @a __n copies of @a __value.
826
       */
827
      explicit
828
      deque(size_type __n, const value_type& __value = value_type(),
829
	    const allocator_type& __a = allocator_type())
830
      : _Base(__a, __n)
831
      { _M_fill_initialize(__value); }
832
#endif
833
 
834
      /**
835
       *  @brief  %Deque copy constructor.
836
       *  @param  __x  A %deque of identical element and allocator types.
837
       *
838
       *  The newly-created %deque uses a copy of the allocation object used
839
       *  by @a __x.
840
       */
841
      deque(const deque& __x)
842
      : _Base(__x._M_get_Tp_allocator(), __x.size())
843
      { std::__uninitialized_copy_a(__x.begin(), __x.end(),
844
				    this->_M_impl._M_start,
845
				    _M_get_Tp_allocator()); }
846
 
847
#if __cplusplus >= 201103L
848
      /**
849
       *  @brief  %Deque move constructor.
850
       *  @param  __x  A %deque of identical element and allocator types.
851
       *
852
       *  The newly-created %deque contains the exact contents of @a __x.
853
       *  The contents of @a __x are a valid, but unspecified %deque.
854
       */
855
      deque(deque&& __x)
856
      : _Base(std::move(__x)) { }
857
 
858
      /**
859
       *  @brief  Builds a %deque from an initializer list.
860
       *  @param  __l  An initializer_list.
861
       *  @param  __a  An allocator object.
862
       *
863
       *  Create a %deque consisting of copies of the elements in the
864
       *  initializer_list @a __l.
865
       *
866
       *  This will call the element type's copy constructor N times
867
       *  (where N is __l.size()) and do no memory reallocation.
868
       */
869
      deque(initializer_list __l,
870
	    const allocator_type& __a = allocator_type())
871
      : _Base(__a)
872
      {
873
	_M_range_initialize(__l.begin(), __l.end(),
874
			    random_access_iterator_tag());
875
      }
876
#endif
877
 
878
      /**
879
       *  @brief  Builds a %deque from a range.
880
       *  @param  __first  An input iterator.
881
       *  @param  __last  An input iterator.
882
       *  @param  __a  An allocator object.
883
       *
884
       *  Create a %deque consisting of copies of the elements from [__first,
885
       *  __last).
886
       *
887
       *  If the iterators are forward, bidirectional, or random-access, then
888
       *  this will call the elements' copy constructor N times (where N is
889
       *  distance(__first,__last)) and do no memory reallocation.  But if only
890
       *  input iterators are used, then this will do at most 2N calls to the
891
       *  copy constructor, and logN memory reallocations.
892
       */
893
#if __cplusplus >= 201103L
894
      template
895
	       typename = std::_RequireInputIter<_InputIterator>>
896
        deque(_InputIterator __first, _InputIterator __last,
897
	      const allocator_type& __a = allocator_type())
898
	: _Base(__a)
899
        { _M_initialize_dispatch(__first, __last, __false_type()); }
900
#else
901
      template
902
        deque(_InputIterator __first, _InputIterator __last,
903
	      const allocator_type& __a = allocator_type())
904
	: _Base(__a)
905
        {
906
	  // Check whether it's an integral type.  If so, it's not an iterator.
907
	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
908
	  _M_initialize_dispatch(__first, __last, _Integral());
909
	}
910
#endif
911
 
912
      /**
913
       *  The dtor only erases the elements, and note that if the elements
914
       *  themselves are pointers, the pointed-to memory is not touched in any
915
       *  way.  Managing the pointer is the user's responsibility.
916
       */
917
      ~deque() _GLIBCXX_NOEXCEPT
918
      { _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); }
919
 
920
      /**
921
       *  @brief  %Deque assignment operator.
922
       *  @param  __x  A %deque of identical element and allocator types.
923
       *
924
       *  All the elements of @a x are copied, but unlike the copy constructor,
925
       *  the allocator object is not copied.
926
       */
927
      deque&
928
      operator=(const deque& __x);
929
 
930
#if __cplusplus >= 201103L
931
      /**
932
       *  @brief  %Deque move assignment operator.
933
       *  @param  __x  A %deque of identical element and allocator types.
934
       *
935
       *  The contents of @a __x are moved into this deque (without copying).
936
       *  @a __x is a valid, but unspecified %deque.
937
       */
938
      deque&
939
      operator=(deque&& __x)
940
      {
941
	// NB: DR 1204.
942
	// NB: DR 675.
943
	this->clear();
944
	this->swap(__x);
945
	return *this;
946
      }
947
 
948
      /**
949
       *  @brief  Assigns an initializer list to a %deque.
950
       *  @param  __l  An initializer_list.
951
       *
952
       *  This function fills a %deque with copies of the elements in the
953
       *  initializer_list @a __l.
954
       *
955
       *  Note that the assignment completely changes the %deque and that the
956
       *  resulting %deque's size is the same as the number of elements
957
       *  assigned.  Old data may be lost.
958
       */
959
      deque&
960
      operator=(initializer_list __l)
961
      {
962
	this->assign(__l.begin(), __l.end());
963
	return *this;
964
      }
965
#endif
966
 
967
      /**
968
       *  @brief  Assigns a given value to a %deque.
969
       *  @param  __n  Number of elements to be assigned.
970
       *  @param  __val  Value to be assigned.
971
       *
972
       *  This function fills a %deque with @a n copies of the given
973
       *  value.  Note that the assignment completely changes the
974
       *  %deque and that the resulting %deque's size is the same as
975
       *  the number of elements assigned.  Old data may be lost.
976
       */
977
      void
978
      assign(size_type __n, const value_type& __val)
979
      { _M_fill_assign(__n, __val); }
980
 
981
      /**
982
       *  @brief  Assigns a range to a %deque.
983
       *  @param  __first  An input iterator.
984
       *  @param  __last   An input iterator.
985
       *
986
       *  This function fills a %deque with copies of the elements in the
987
       *  range [__first,__last).
988
       *
989
       *  Note that the assignment completely changes the %deque and that the
990
       *  resulting %deque's size is the same as the number of elements
991
       *  assigned.  Old data may be lost.
992
       */
993
#if __cplusplus >= 201103L
994
      template
995
	       typename = std::_RequireInputIter<_InputIterator>>
996
        void
997
        assign(_InputIterator __first, _InputIterator __last)
998
        { _M_assign_dispatch(__first, __last, __false_type()); }
999
#else
1000
      template
1001
        void
1002
        assign(_InputIterator __first, _InputIterator __last)
1003
        {
1004
	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1005
	  _M_assign_dispatch(__first, __last, _Integral());
1006
	}
1007
#endif
1008
 
1009
#if __cplusplus >= 201103L
1010
      /**
1011
       *  @brief  Assigns an initializer list to a %deque.
1012
       *  @param  __l  An initializer_list.
1013
       *
1014
       *  This function fills a %deque with copies of the elements in the
1015
       *  initializer_list @a __l.
1016
       *
1017
       *  Note that the assignment completely changes the %deque and that the
1018
       *  resulting %deque's size is the same as the number of elements
1019
       *  assigned.  Old data may be lost.
1020
       */
1021
      void
1022
      assign(initializer_list __l)
1023
      { this->assign(__l.begin(), __l.end()); }
1024
#endif
1025
 
1026
      /// Get a copy of the memory allocation object.
1027
      allocator_type
1028
      get_allocator() const _GLIBCXX_NOEXCEPT
1029
      { return _Base::get_allocator(); }
1030
 
1031
      // iterators
1032
      /**
1033
       *  Returns a read/write iterator that points to the first element in the
1034
       *  %deque.  Iteration is done in ordinary element order.
1035
       */
1036
      iterator
1037
      begin() _GLIBCXX_NOEXCEPT
1038
      { return this->_M_impl._M_start; }
1039
 
1040
      /**
1041
       *  Returns a read-only (constant) iterator that points to the first
1042
       *  element in the %deque.  Iteration is done in ordinary element order.
1043
       */
1044
      const_iterator
1045
      begin() const _GLIBCXX_NOEXCEPT
1046
      { return this->_M_impl._M_start; }
1047
 
1048
      /**
1049
       *  Returns a read/write iterator that points one past the last
1050
       *  element in the %deque.  Iteration is done in ordinary
1051
       *  element order.
1052
       */
1053
      iterator
1054
      end() _GLIBCXX_NOEXCEPT
1055
      { return this->_M_impl._M_finish; }
1056
 
1057
      /**
1058
       *  Returns a read-only (constant) iterator that points one past
1059
       *  the last element in the %deque.  Iteration is done in
1060
       *  ordinary element order.
1061
       */
1062
      const_iterator
1063
      end() const _GLIBCXX_NOEXCEPT
1064
      { return this->_M_impl._M_finish; }
1065
 
1066
      /**
1067
       *  Returns a read/write reverse iterator that points to the
1068
       *  last element in the %deque.  Iteration is done in reverse
1069
       *  element order.
1070
       */
1071
      reverse_iterator
1072
      rbegin() _GLIBCXX_NOEXCEPT
1073
      { return reverse_iterator(this->_M_impl._M_finish); }
1074
 
1075
      /**
1076
       *  Returns a read-only (constant) reverse iterator that points
1077
       *  to the last element in the %deque.  Iteration is done in
1078
       *  reverse element order.
1079
       */
1080
      const_reverse_iterator
1081
      rbegin() const _GLIBCXX_NOEXCEPT
1082
      { return const_reverse_iterator(this->_M_impl._M_finish); }
1083
 
1084
      /**
1085
       *  Returns a read/write reverse iterator that points to one
1086
       *  before the first element in the %deque.  Iteration is done
1087
       *  in reverse element order.
1088
       */
1089
      reverse_iterator
1090
      rend() _GLIBCXX_NOEXCEPT
1091
      { return reverse_iterator(this->_M_impl._M_start); }
1092
 
1093
      /**
1094
       *  Returns a read-only (constant) reverse iterator that points
1095
       *  to one before the first element in the %deque.  Iteration is
1096
       *  done in reverse element order.
1097
       */
1098
      const_reverse_iterator
1099
      rend() const _GLIBCXX_NOEXCEPT
1100
      { return const_reverse_iterator(this->_M_impl._M_start); }
1101
 
1102
#if __cplusplus >= 201103L
1103
      /**
1104
       *  Returns a read-only (constant) iterator that points to the first
1105
       *  element in the %deque.  Iteration is done in ordinary element order.
1106
       */
1107
      const_iterator
1108
      cbegin() const noexcept
1109
      { return this->_M_impl._M_start; }
1110
 
1111
      /**
1112
       *  Returns a read-only (constant) iterator that points one past
1113
       *  the last element in the %deque.  Iteration is done in
1114
       *  ordinary element order.
1115
       */
1116
      const_iterator
1117
      cend() const noexcept
1118
      { return this->_M_impl._M_finish; }
1119
 
1120
      /**
1121
       *  Returns a read-only (constant) reverse iterator that points
1122
       *  to the last element in the %deque.  Iteration is done in
1123
       *  reverse element order.
1124
       */
1125
      const_reverse_iterator
1126
      crbegin() const noexcept
1127
      { return const_reverse_iterator(this->_M_impl._M_finish); }
1128
 
1129
      /**
1130
       *  Returns a read-only (constant) reverse iterator that points
1131
       *  to one before the first element in the %deque.  Iteration is
1132
       *  done in reverse element order.
1133
       */
1134
      const_reverse_iterator
1135
      crend() const noexcept
1136
      { return const_reverse_iterator(this->_M_impl._M_start); }
1137
#endif
1138
 
1139
      // [23.2.1.2] capacity
1140
      /**  Returns the number of elements in the %deque.  */
1141
      size_type
1142
      size() const _GLIBCXX_NOEXCEPT
1143
      { return this->_M_impl._M_finish - this->_M_impl._M_start; }
1144
 
1145
      /**  Returns the size() of the largest possible %deque.  */
1146
      size_type
1147
      max_size() const _GLIBCXX_NOEXCEPT
1148
      { return _M_get_Tp_allocator().max_size(); }
1149
 
1150
#if __cplusplus >= 201103L
1151
      /**
1152
       *  @brief  Resizes the %deque to the specified number of elements.
1153
       *  @param  __new_size  Number of elements the %deque should contain.
1154
       *
1155
       *  This function will %resize the %deque to the specified
1156
       *  number of elements.  If the number is smaller than the
1157
       *  %deque's current size the %deque is truncated, otherwise
1158
       *  default constructed elements are appended.
1159
       */
1160
      void
1161
      resize(size_type __new_size)
1162
      {
1163
	const size_type __len = size();
1164
	if (__new_size > __len)
1165
	  _M_default_append(__new_size - __len);
1166
	else if (__new_size < __len)
1167
	  _M_erase_at_end(this->_M_impl._M_start
1168
			  + difference_type(__new_size));
1169
      }
1170
 
1171
      /**
1172
       *  @brief  Resizes the %deque to the specified number of elements.
1173
       *  @param  __new_size  Number of elements the %deque should contain.
1174
       *  @param  __x  Data with which new elements should be populated.
1175
       *
1176
       *  This function will %resize the %deque to the specified
1177
       *  number of elements.  If the number is smaller than the
1178
       *  %deque's current size the %deque is truncated, otherwise the
1179
       *  %deque is extended and new elements are populated with given
1180
       *  data.
1181
       */
1182
      void
1183
      resize(size_type __new_size, const value_type& __x)
1184
      {
1185
	const size_type __len = size();
1186
	if (__new_size > __len)
1187
	  insert(this->_M_impl._M_finish, __new_size - __len, __x);
1188
	else if (__new_size < __len)
1189
	  _M_erase_at_end(this->_M_impl._M_start
1190
			  + difference_type(__new_size));
1191
      }
1192
#else
1193
      /**
1194
       *  @brief  Resizes the %deque to the specified number of elements.
1195
       *  @param  __new_size  Number of elements the %deque should contain.
1196
       *  @param  __x  Data with which new elements should be populated.
1197
       *
1198
       *  This function will %resize the %deque to the specified
1199
       *  number of elements.  If the number is smaller than the
1200
       *  %deque's current size the %deque is truncated, otherwise the
1201
       *  %deque is extended and new elements are populated with given
1202
       *  data.
1203
       */
1204
      void
1205
      resize(size_type __new_size, value_type __x = value_type())
1206
      {
1207
	const size_type __len = size();
1208
	if (__new_size > __len)
1209
	  insert(this->_M_impl._M_finish, __new_size - __len, __x);
1210
	else if (__new_size < __len)
1211
	  _M_erase_at_end(this->_M_impl._M_start
1212
			  + difference_type(__new_size));
1213
      }
1214
#endif
1215
 
1216
#if __cplusplus >= 201103L
1217
      /**  A non-binding request to reduce memory use.  */
1218
      void
1219
      shrink_to_fit()
1220
      { _M_shrink_to_fit(); }
1221
#endif
1222
 
1223
      /**
1224
       *  Returns true if the %deque is empty.  (Thus begin() would
1225
       *  equal end().)
1226
       */
1227
      bool
1228
      empty() const _GLIBCXX_NOEXCEPT
1229
      { return this->_M_impl._M_finish == this->_M_impl._M_start; }
1230
 
1231
      // element access
1232
      /**
1233
       *  @brief Subscript access to the data contained in the %deque.
1234
       *  @param __n The index of the element for which data should be
1235
       *  accessed.
1236
       *  @return  Read/write reference to data.
1237
       *
1238
       *  This operator allows for easy, array-style, data access.
1239
       *  Note that data access with this operator is unchecked and
1240
       *  out_of_range lookups are not defined. (For checked lookups
1241
       *  see at().)
1242
       */
1243
      reference
1244
      operator[](size_type __n)
1245
      { return this->_M_impl._M_start[difference_type(__n)]; }
1246
 
1247
      /**
1248
       *  @brief Subscript access to the data contained in the %deque.
1249
       *  @param __n The index of the element for which data should be
1250
       *  accessed.
1251
       *  @return  Read-only (constant) reference to data.
1252
       *
1253
       *  This operator allows for easy, array-style, data access.
1254
       *  Note that data access with this operator is unchecked and
1255
       *  out_of_range lookups are not defined. (For checked lookups
1256
       *  see at().)
1257
       */
1258
      const_reference
1259
      operator[](size_type __n) const
1260
      { return this->_M_impl._M_start[difference_type(__n)]; }
1261
 
1262
    protected:
1263
      /// Safety check used only from at().
1264
      void
1265
      _M_range_check(size_type __n) const
1266
      {
1267
	if (__n >= this->size())
1268
	  __throw_out_of_range(__N("deque::_M_range_check"));
1269
      }
1270
 
1271
    public:
1272
      /**
1273
       *  @brief  Provides access to the data contained in the %deque.
1274
       *  @param __n The index of the element for which data should be
1275
       *  accessed.
1276
       *  @return  Read/write reference to data.
1277
       *  @throw  std::out_of_range  If @a __n is an invalid index.
1278
       *
1279
       *  This function provides for safer data access.  The parameter
1280
       *  is first checked that it is in the range of the deque.  The
1281
       *  function throws out_of_range if the check fails.
1282
       */
1283
      reference
1284
      at(size_type __n)
1285
      {
1286
	_M_range_check(__n);
1287
	return (*this)[__n];
1288
      }
1289
 
1290
      /**
1291
       *  @brief  Provides access to the data contained in the %deque.
1292
       *  @param __n The index of the element for which data should be
1293
       *  accessed.
1294
       *  @return  Read-only (constant) reference to data.
1295
       *  @throw  std::out_of_range  If @a __n is an invalid index.
1296
       *
1297
       *  This function provides for safer data access.  The parameter is first
1298
       *  checked that it is in the range of the deque.  The function throws
1299
       *  out_of_range if the check fails.
1300
       */
1301
      const_reference
1302
      at(size_type __n) const
1303
      {
1304
	_M_range_check(__n);
1305
	return (*this)[__n];
1306
      }
1307
 
1308
      /**
1309
       *  Returns a read/write reference to the data at the first
1310
       *  element of the %deque.
1311
       */
1312
      reference
1313
      front()
1314
      { return *begin(); }
1315
 
1316
      /**
1317
       *  Returns a read-only (constant) reference to the data at the first
1318
       *  element of the %deque.
1319
       */
1320
      const_reference
1321
      front() const
1322
      { return *begin(); }
1323
 
1324
      /**
1325
       *  Returns a read/write reference to the data at the last element of the
1326
       *  %deque.
1327
       */
1328
      reference
1329
      back()
1330
      {
1331
	iterator __tmp = end();
1332
	--__tmp;
1333
	return *__tmp;
1334
      }
1335
 
1336
      /**
1337
       *  Returns a read-only (constant) reference to the data at the last
1338
       *  element of the %deque.
1339
       */
1340
      const_reference
1341
      back() const
1342
      {
1343
	const_iterator __tmp = end();
1344
	--__tmp;
1345
	return *__tmp;
1346
      }
1347
 
1348
      // [23.2.1.2] modifiers
1349
      /**
1350
       *  @brief  Add data to the front of the %deque.
1351
       *  @param  __x  Data to be added.
1352
       *
1353
       *  This is a typical stack operation.  The function creates an
1354
       *  element at the front of the %deque and assigns the given
1355
       *  data to it.  Due to the nature of a %deque this operation
1356
       *  can be done in constant time.
1357
       */
1358
      void
1359
      push_front(const value_type& __x)
1360
      {
1361
	if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first)
1362
	  {
1363
	    this->_M_impl.construct(this->_M_impl._M_start._M_cur - 1, __x);
1364
	    --this->_M_impl._M_start._M_cur;
1365
	  }
1366
	else
1367
	  _M_push_front_aux(__x);
1368
      }
1369
 
1370
#if __cplusplus >= 201103L
1371
      void
1372
      push_front(value_type&& __x)
1373
      { emplace_front(std::move(__x)); }
1374
 
1375
      template
1376
        void
1377
        emplace_front(_Args&&... __args);
1378
#endif
1379
 
1380
      /**
1381
       *  @brief  Add data to the end of the %deque.
1382
       *  @param  __x  Data to be added.
1383
       *
1384
       *  This is a typical stack operation.  The function creates an
1385
       *  element at the end of the %deque and assigns the given data
1386
       *  to it.  Due to the nature of a %deque this operation can be
1387
       *  done in constant time.
1388
       */
1389
      void
1390
      push_back(const value_type& __x)
1391
      {
1392
	if (this->_M_impl._M_finish._M_cur
1393
	    != this->_M_impl._M_finish._M_last - 1)
1394
	  {
1395
	    this->_M_impl.construct(this->_M_impl._M_finish._M_cur, __x);
1396
	    ++this->_M_impl._M_finish._M_cur;
1397
	  }
1398
	else
1399
	  _M_push_back_aux(__x);
1400
      }
1401
 
1402
#if __cplusplus >= 201103L
1403
      void
1404
      push_back(value_type&& __x)
1405
      { emplace_back(std::move(__x)); }
1406
 
1407
      template
1408
        void
1409
        emplace_back(_Args&&... __args);
1410
#endif
1411
 
1412
      /**
1413
       *  @brief  Removes first element.
1414
       *
1415
       *  This is a typical stack operation.  It shrinks the %deque by one.
1416
       *
1417
       *  Note that no data is returned, and if the first element's data is
1418
       *  needed, it should be retrieved before pop_front() is called.
1419
       */
1420
      void
1421
      pop_front()
1422
      {
1423
	if (this->_M_impl._M_start._M_cur
1424
	    != this->_M_impl._M_start._M_last - 1)
1425
	  {
1426
	    this->_M_impl.destroy(this->_M_impl._M_start._M_cur);
1427
	    ++this->_M_impl._M_start._M_cur;
1428
	  }
1429
	else
1430
	  _M_pop_front_aux();
1431
      }
1432
 
1433
      /**
1434
       *  @brief  Removes last element.
1435
       *
1436
       *  This is a typical stack operation.  It shrinks the %deque by one.
1437
       *
1438
       *  Note that no data is returned, and if the last element's data is
1439
       *  needed, it should be retrieved before pop_back() is called.
1440
       */
1441
      void
1442
      pop_back()
1443
      {
1444
	if (this->_M_impl._M_finish._M_cur
1445
	    != this->_M_impl._M_finish._M_first)
1446
	  {
1447
	    --this->_M_impl._M_finish._M_cur;
1448
	    this->_M_impl.destroy(this->_M_impl._M_finish._M_cur);
1449
	  }
1450
	else
1451
	  _M_pop_back_aux();
1452
      }
1453
 
1454
#if __cplusplus >= 201103L
1455
      /**
1456
       *  @brief  Inserts an object in %deque before specified iterator.
1457
       *  @param  __position  An iterator into the %deque.
1458
       *  @param  __args  Arguments.
1459
       *  @return  An iterator that points to the inserted data.
1460
       *
1461
       *  This function will insert an object of type T constructed
1462
       *  with T(std::forward(args)...) before the specified location.
1463
       */
1464
      template
1465
        iterator
1466
        emplace(iterator __position, _Args&&... __args);
1467
#endif
1468
 
1469
      /**
1470
       *  @brief  Inserts given value into %deque before specified iterator.
1471
       *  @param  __position  An iterator into the %deque.
1472
       *  @param  __x  Data to be inserted.
1473
       *  @return  An iterator that points to the inserted data.
1474
       *
1475
       *  This function will insert a copy of the given value before the
1476
       *  specified location.
1477
       */
1478
      iterator
1479
      insert(iterator __position, const value_type& __x);
1480
 
1481
#if __cplusplus >= 201103L
1482
      /**
1483
       *  @brief  Inserts given rvalue into %deque before specified iterator.
1484
       *  @param  __position  An iterator into the %deque.
1485
       *  @param  __x  Data to be inserted.
1486
       *  @return  An iterator that points to the inserted data.
1487
       *
1488
       *  This function will insert a copy of the given rvalue before the
1489
       *  specified location.
1490
       */
1491
      iterator
1492
      insert(iterator __position, value_type&& __x)
1493
      { return emplace(__position, std::move(__x)); }
1494
 
1495
      /**
1496
       *  @brief  Inserts an initializer list into the %deque.
1497
       *  @param  __p  An iterator into the %deque.
1498
       *  @param  __l  An initializer_list.
1499
       *
1500
       *  This function will insert copies of the data in the
1501
       *  initializer_list @a __l into the %deque before the location
1502
       *  specified by @a __p.  This is known as list insert.
1503
       */
1504
      void
1505
      insert(iterator __p, initializer_list __l)
1506
      { this->insert(__p, __l.begin(), __l.end()); }
1507
#endif
1508
 
1509
      /**
1510
       *  @brief  Inserts a number of copies of given data into the %deque.
1511
       *  @param  __position  An iterator into the %deque.
1512
       *  @param  __n  Number of elements to be inserted.
1513
       *  @param  __x  Data to be inserted.
1514
       *
1515
       *  This function will insert a specified number of copies of the given
1516
       *  data before the location specified by @a __position.
1517
       */
1518
      void
1519
      insert(iterator __position, size_type __n, const value_type& __x)
1520
      { _M_fill_insert(__position, __n, __x); }
1521
 
1522
      /**
1523
       *  @brief  Inserts a range into the %deque.
1524
       *  @param  __position  An iterator into the %deque.
1525
       *  @param  __first  An input iterator.
1526
       *  @param  __last   An input iterator.
1527
       *
1528
       *  This function will insert copies of the data in the range
1529
       *  [__first,__last) into the %deque before the location specified
1530
       *  by @a __position.  This is known as range insert.
1531
       */
1532
#if __cplusplus >= 201103L
1533
      template
1534
	       typename = std::_RequireInputIter<_InputIterator>>
1535
        void
1536
        insert(iterator __position, _InputIterator __first,
1537
	       _InputIterator __last)
1538
        { _M_insert_dispatch(__position, __first, __last, __false_type()); }
1539
#else
1540
      template
1541
        void
1542
        insert(iterator __position, _InputIterator __first,
1543
	       _InputIterator __last)
1544
        {
1545
	  // Check whether it's an integral type.  If so, it's not an iterator.
1546
	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1547
	  _M_insert_dispatch(__position, __first, __last, _Integral());
1548
	}
1549
#endif
1550
 
1551
      /**
1552
       *  @brief  Remove element at given position.
1553
       *  @param  __position  Iterator pointing to element to be erased.
1554
       *  @return  An iterator pointing to the next element (or end()).
1555
       *
1556
       *  This function will erase the element at the given position and thus
1557
       *  shorten the %deque by one.
1558
       *
1559
       *  The user is cautioned that
1560
       *  this function only erases the element, and that if the element is
1561
       *  itself a pointer, the pointed-to memory is not touched in any way.
1562
       *  Managing the pointer is the user's responsibility.
1563
       */
1564
      iterator
1565
      erase(iterator __position);
1566
 
1567
      /**
1568
       *  @brief  Remove a range of elements.
1569
       *  @param  __first  Iterator pointing to the first element to be erased.
1570
       *  @param  __last  Iterator pointing to one past the last element to be
1571
       *                erased.
1572
       *  @return  An iterator pointing to the element pointed to by @a last
1573
       *           prior to erasing (or end()).
1574
       *
1575
       *  This function will erase the elements in the range
1576
       *  [__first,__last) and shorten the %deque accordingly.
1577
       *
1578
       *  The user is cautioned that
1579
       *  this function only erases the elements, and that if the elements
1580
       *  themselves are pointers, the pointed-to memory is not touched in any
1581
       *  way.  Managing the pointer is the user's responsibility.
1582
       */
1583
      iterator
1584
      erase(iterator __first, iterator __last);
1585
 
1586
      /**
1587
       *  @brief  Swaps data with another %deque.
1588
       *  @param  __x  A %deque of the same element and allocator types.
1589
       *
1590
       *  This exchanges the elements between two deques in constant time.
1591
       *  (Four pointers, so it should be quite fast.)
1592
       *  Note that the global std::swap() function is specialized such that
1593
       *  std::swap(d1,d2) will feed to this function.
1594
       */
1595
      void
1596
      swap(deque& __x)
1597
      {
1598
	std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
1599
	std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
1600
	std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
1601
	std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
1602
 
1603
	// _GLIBCXX_RESOLVE_LIB_DEFECTS
1604
	// 431. Swapping containers with unequal allocators.
1605
	std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),
1606
						    __x._M_get_Tp_allocator());
1607
      }
1608
 
1609
      /**
1610
       *  Erases all the elements.  Note that this function only erases the
1611
       *  elements, and that if the elements themselves are pointers, the
1612
       *  pointed-to memory is not touched in any way.  Managing the pointer is
1613
       *  the user's responsibility.
1614
       */
1615
      void
1616
      clear() _GLIBCXX_NOEXCEPT
1617
      { _M_erase_at_end(begin()); }
1618
 
1619
    protected:
1620
      // Internal constructor functions follow.
1621
 
1622
      // called by the range constructor to implement [23.1.1]/9
1623
 
1624
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1625
      // 438. Ambiguity in the "do the right thing" clause
1626
      template
1627
        void
1628
        _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1629
        {
1630
	  _M_initialize_map(static_cast(__n));
1631
	  _M_fill_initialize(__x);
1632
	}
1633
 
1634
      // called by the range constructor to implement [23.1.1]/9
1635
      template
1636
        void
1637
        _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1638
			       __false_type)
1639
        {
1640
	  typedef typename std::iterator_traits<_InputIterator>::
1641
	    iterator_category _IterCategory;
1642
	  _M_range_initialize(__first, __last, _IterCategory());
1643
	}
1644
 
1645
      // called by the second initialize_dispatch above
1646
      //@{
1647
      /**
1648
       *  @brief Fills the deque with whatever is in [first,last).
1649
       *  @param  __first  An input iterator.
1650
       *  @param  __last  An input iterator.
1651
       *  @return   Nothing.
1652
       *
1653
       *  If the iterators are actually forward iterators (or better), then the
1654
       *  memory layout can be done all at once.  Else we move forward using
1655
       *  push_back on each value from the iterator.
1656
       */
1657
      template
1658
        void
1659
        _M_range_initialize(_InputIterator __first, _InputIterator __last,
1660
			    std::input_iterator_tag);
1661
 
1662
      // called by the second initialize_dispatch above
1663
      template
1664
        void
1665
        _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
1666
			    std::forward_iterator_tag);
1667
      //@}
1668
 
1669
      /**
1670
       *  @brief Fills the %deque with copies of value.
1671
       *  @param  __value  Initial value.
1672
       *  @return   Nothing.
1673
       *  @pre _M_start and _M_finish have already been initialized,
1674
       *  but none of the %deque's elements have yet been constructed.
1675
       *
1676
       *  This function is called only when the user provides an explicit size
1677
       *  (with or without an explicit exemplar value).
1678
       */
1679
      void
1680
      _M_fill_initialize(const value_type& __value);
1681
 
1682
#if __cplusplus >= 201103L
1683
      // called by deque(n).
1684
      void
1685
      _M_default_initialize();
1686
#endif
1687
 
1688
      // Internal assign functions follow.  The *_aux functions do the actual
1689
      // assignment work for the range versions.
1690
 
1691
      // called by the range assign to implement [23.1.1]/9
1692
 
1693
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1694
      // 438. Ambiguity in the "do the right thing" clause
1695
      template
1696
        void
1697
        _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1698
        { _M_fill_assign(__n, __val); }
1699
 
1700
      // called by the range assign to implement [23.1.1]/9
1701
      template
1702
        void
1703
        _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1704
			   __false_type)
1705
        {
1706
	  typedef typename std::iterator_traits<_InputIterator>::
1707
	    iterator_category _IterCategory;
1708
	  _M_assign_aux(__first, __last, _IterCategory());
1709
	}
1710
 
1711
      // called by the second assign_dispatch above
1712
      template
1713
        void
1714
        _M_assign_aux(_InputIterator __first, _InputIterator __last,
1715
		      std::input_iterator_tag);
1716
 
1717
      // called by the second assign_dispatch above
1718
      template
1719
        void
1720
        _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1721
		      std::forward_iterator_tag)
1722
        {
1723
	  const size_type __len = std::distance(__first, __last);
1724
	  if (__len > size())
1725
	    {
1726
	      _ForwardIterator __mid = __first;
1727
	      std::advance(__mid, size());
1728
	      std::copy(__first, __mid, begin());
1729
	      insert(end(), __mid, __last);
1730
	    }
1731
	  else
1732
	    _M_erase_at_end(std::copy(__first, __last, begin()));
1733
	}
1734
 
1735
      // Called by assign(n,t), and the range assign when it turns out
1736
      // to be the same thing.
1737
      void
1738
      _M_fill_assign(size_type __n, const value_type& __val)
1739
      {
1740
	if (__n > size())
1741
	  {
1742
	    std::fill(begin(), end(), __val);
1743
	    insert(end(), __n - size(), __val);
1744
	  }
1745
	else
1746
	  {
1747
	    _M_erase_at_end(begin() + difference_type(__n));
1748
	    std::fill(begin(), end(), __val);
1749
	  }
1750
      }
1751
 
1752
      //@{
1753
      /// Helper functions for push_* and pop_*.
1754
#if __cplusplus < 201103L
1755
      void _M_push_back_aux(const value_type&);
1756
 
1757
      void _M_push_front_aux(const value_type&);
1758
#else
1759
      template
1760
        void _M_push_back_aux(_Args&&... __args);
1761
 
1762
      template
1763
        void _M_push_front_aux(_Args&&... __args);
1764
#endif
1765
 
1766
      void _M_pop_back_aux();
1767
 
1768
      void _M_pop_front_aux();
1769
      //@}
1770
 
1771
      // Internal insert functions follow.  The *_aux functions do the actual
1772
      // insertion work when all shortcuts fail.
1773
 
1774
      // called by the range insert to implement [23.1.1]/9
1775
 
1776
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1777
      // 438. Ambiguity in the "do the right thing" clause
1778
      template
1779
        void
1780
        _M_insert_dispatch(iterator __pos,
1781
			   _Integer __n, _Integer __x, __true_type)
1782
        { _M_fill_insert(__pos, __n, __x); }
1783
 
1784
      // called by the range insert to implement [23.1.1]/9
1785
      template
1786
        void
1787
        _M_insert_dispatch(iterator __pos,
1788
			   _InputIterator __first, _InputIterator __last,
1789
			   __false_type)
1790
        {
1791
	  typedef typename std::iterator_traits<_InputIterator>::
1792
	    iterator_category _IterCategory;
1793
          _M_range_insert_aux(__pos, __first, __last, _IterCategory());
1794
	}
1795
 
1796
      // called by the second insert_dispatch above
1797
      template
1798
        void
1799
        _M_range_insert_aux(iterator __pos, _InputIterator __first,
1800
			    _InputIterator __last, std::input_iterator_tag);
1801
 
1802
      // called by the second insert_dispatch above
1803
      template
1804
        void
1805
        _M_range_insert_aux(iterator __pos, _ForwardIterator __first,
1806
			    _ForwardIterator __last, std::forward_iterator_tag);
1807
 
1808
      // Called by insert(p,n,x), and the range insert when it turns out to be
1809
      // the same thing.  Can use fill functions in optimal situations,
1810
      // otherwise passes off to insert_aux(p,n,x).
1811
      void
1812
      _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1813
 
1814
      // called by insert(p,x)
1815
#if __cplusplus < 201103L
1816
      iterator
1817
      _M_insert_aux(iterator __pos, const value_type& __x);
1818
#else
1819
      template
1820
        iterator
1821
        _M_insert_aux(iterator __pos, _Args&&... __args);
1822
#endif
1823
 
1824
      // called by insert(p,n,x) via fill_insert
1825
      void
1826
      _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
1827
 
1828
      // called by range_insert_aux for forward iterators
1829
      template
1830
        void
1831
        _M_insert_aux(iterator __pos,
1832
		      _ForwardIterator __first, _ForwardIterator __last,
1833
		      size_type __n);
1834
 
1835
 
1836
      // Internal erase functions follow.
1837
 
1838
      void
1839
      _M_destroy_data_aux(iterator __first, iterator __last);
1840
 
1841
      // Called by ~deque().
1842
      // NB: Doesn't deallocate the nodes.
1843
      template
1844
        void
1845
        _M_destroy_data(iterator __first, iterator __last, const _Alloc1&)
1846
        { _M_destroy_data_aux(__first, __last); }
1847
 
1848
      void
1849
      _M_destroy_data(iterator __first, iterator __last,
1850
		      const std::allocator<_Tp>&)
1851
      {
1852
	if (!__has_trivial_destructor(value_type))
1853
	  _M_destroy_data_aux(__first, __last);
1854
      }
1855
 
1856
      // Called by erase(q1, q2).
1857
      void
1858
      _M_erase_at_begin(iterator __pos)
1859
      {
1860
	_M_destroy_data(begin(), __pos, _M_get_Tp_allocator());
1861
	_M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node);
1862
	this->_M_impl._M_start = __pos;
1863
      }
1864
 
1865
      // Called by erase(q1, q2), resize(), clear(), _M_assign_aux,
1866
      // _M_fill_assign, operator=.
1867
      void
1868
      _M_erase_at_end(iterator __pos)
1869
      {
1870
	_M_destroy_data(__pos, end(), _M_get_Tp_allocator());
1871
	_M_destroy_nodes(__pos._M_node + 1,
1872
			 this->_M_impl._M_finish._M_node + 1);
1873
	this->_M_impl._M_finish = __pos;
1874
      }
1875
 
1876
#if __cplusplus >= 201103L
1877
      // Called by resize(sz).
1878
      void
1879
      _M_default_append(size_type __n);
1880
 
1881
      bool
1882
      _M_shrink_to_fit();
1883
#endif
1884
 
1885
      //@{
1886
      /// Memory-handling helpers for the previous internal insert functions.
1887
      iterator
1888
      _M_reserve_elements_at_front(size_type __n)
1889
      {
1890
	const size_type __vacancies = this->_M_impl._M_start._M_cur
1891
	                              - this->_M_impl._M_start._M_first;
1892
	if (__n > __vacancies)
1893
	  _M_new_elements_at_front(__n - __vacancies);
1894
	return this->_M_impl._M_start - difference_type(__n);
1895
      }
1896
 
1897
      iterator
1898
      _M_reserve_elements_at_back(size_type __n)
1899
      {
1900
	const size_type __vacancies = (this->_M_impl._M_finish._M_last
1901
				       - this->_M_impl._M_finish._M_cur) - 1;
1902
	if (__n > __vacancies)
1903
	  _M_new_elements_at_back(__n - __vacancies);
1904
	return this->_M_impl._M_finish + difference_type(__n);
1905
      }
1906
 
1907
      void
1908
      _M_new_elements_at_front(size_type __new_elements);
1909
 
1910
      void
1911
      _M_new_elements_at_back(size_type __new_elements);
1912
      //@}
1913
 
1914
 
1915
      //@{
1916
      /**
1917
       *  @brief Memory-handling helpers for the major %map.
1918
       *
1919
       *  Makes sure the _M_map has space for new nodes.  Does not
1920
       *  actually add the nodes.  Can invalidate _M_map pointers.
1921
       *  (And consequently, %deque iterators.)
1922
       */
1923
      void
1924
      _M_reserve_map_at_back(size_type __nodes_to_add = 1)
1925
      {
1926
	if (__nodes_to_add + 1 > this->_M_impl._M_map_size
1927
	    - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map))
1928
	  _M_reallocate_map(__nodes_to_add, false);
1929
      }
1930
 
1931
      void
1932
      _M_reserve_map_at_front(size_type __nodes_to_add = 1)
1933
      {
1934
	if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node
1935
				       - this->_M_impl._M_map))
1936
	  _M_reallocate_map(__nodes_to_add, true);
1937
      }
1938
 
1939
      void
1940
      _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
1941
      //@}
1942
    };
1943
 
1944
 
1945
  /**
1946
   *  @brief  Deque equality comparison.
1947
   *  @param  __x  A %deque.
1948
   *  @param  __y  A %deque of the same type as @a __x.
1949
   *  @return  True iff the size and elements of the deques are equal.
1950
   *
1951
   *  This is an equivalence relation.  It is linear in the size of the
1952
   *  deques.  Deques are considered equivalent if their sizes are equal,
1953
   *  and if corresponding elements compare equal.
1954
  */
1955
  template
1956
    inline bool
1957
    operator==(const deque<_Tp, _Alloc>& __x,
1958
                         const deque<_Tp, _Alloc>& __y)
1959
    { return __x.size() == __y.size()
1960
             && std::equal(__x.begin(), __x.end(), __y.begin()); }
1961
 
1962
  /**
1963
   *  @brief  Deque ordering relation.
1964
   *  @param  __x  A %deque.
1965
   *  @param  __y  A %deque of the same type as @a __x.
1966
   *  @return  True iff @a x is lexicographically less than @a __y.
1967
   *
1968
   *  This is a total ordering relation.  It is linear in the size of the
1969
   *  deques.  The elements must be comparable with @c <.
1970
   *
1971
   *  See std::lexicographical_compare() for how the determination is made.
1972
  */
1973
  template
1974
    inline bool
1975
    operator<(const deque<_Tp, _Alloc>& __x,
1976
	      const deque<_Tp, _Alloc>& __y)
1977
    { return std::lexicographical_compare(__x.begin(), __x.end(),
1978
					  __y.begin(), __y.end()); }
1979
 
1980
  /// Based on operator==
1981
  template
1982
    inline bool
1983
    operator!=(const deque<_Tp, _Alloc>& __x,
1984
	       const deque<_Tp, _Alloc>& __y)
1985
    { return !(__x == __y); }
1986
 
1987
  /// Based on operator<
1988
  template
1989
    inline bool
1990
    operator>(const deque<_Tp, _Alloc>& __x,
1991
	      const deque<_Tp, _Alloc>& __y)
1992
    { return __y < __x; }
1993
 
1994
  /// Based on operator<
1995
  template
1996
    inline bool
1997
    operator<=(const deque<_Tp, _Alloc>& __x,
1998
	       const deque<_Tp, _Alloc>& __y)
1999
    { return !(__y < __x); }
2000
 
2001
  /// Based on operator<
2002
  template
2003
    inline bool
2004
    operator>=(const deque<_Tp, _Alloc>& __x,
2005
	       const deque<_Tp, _Alloc>& __y)
2006
    { return !(__x < __y); }
2007
 
2008
  /// See std::deque::swap().
2009
  template
2010
    inline void
2011
    swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
2012
    { __x.swap(__y); }
2013
 
2014
#undef _GLIBCXX_DEQUE_BUF_SIZE
2015
 
2016
_GLIBCXX_END_NAMESPACE_CONTAINER
2017
} // namespace std
2018
 
2019
#endif /* _STL_DEQUE_H */