Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
6417 ashmew2 1
/*
2
 * jdcoefct.c
3
 *
4
 * Copyright (C) 1994-1997, Thomas G. Lane.
5
 * This file is part of the Independent JPEG Group's software.
6
 * For conditions of distribution and use, see the accompanying README file.
7
 *
8
 * This file contains the coefficient buffer controller for decompression.
9
 * This controller is the top level of the JPEG decompressor proper.
10
 * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
11
 *
12
 * In buffered-image mode, this controller is the interface between
13
 * input-oriented processing and output-oriented processing.
14
 * Also, the input side (only) is used when reading a file for transcoding.
15
 */
16
 
17
#define JPEG_INTERNALS
18
#include "jinclude.h"
19
#include "jpeglib.h"
20
 
21
/* Block smoothing is only applicable for progressive JPEG, so: */
22
#ifndef D_PROGRESSIVE_SUPPORTED
23
#undef BLOCK_SMOOTHING_SUPPORTED
24
#endif
25
 
26
/* Private buffer controller object */
27
 
28
typedef struct {
29
  struct jpeg_d_coef_controller pub; /* public fields */
30
 
31
  /* These variables keep track of the current location of the input side. */
32
  /* cinfo->input_iMCU_row is also used for this. */
33
  JDIMENSION MCU_ctr;		/* counts MCUs processed in current row */
34
  int MCU_vert_offset;		/* counts MCU rows within iMCU row */
35
  int MCU_rows_per_iMCU_row;	/* number of such rows needed */
36
 
37
  /* The output side's location is represented by cinfo->output_iMCU_row. */
38
 
39
  /* In single-pass modes, it's sufficient to buffer just one MCU.
40
   * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
41
   * and let the entropy decoder write into that workspace each time.
42
   * (On 80x86, the workspace is FAR even though it's not really very big;
43
   * this is to keep the module interfaces unchanged when a large coefficient
44
   * buffer is necessary.)
45
   * In multi-pass modes, this array points to the current MCU's blocks
46
   * within the virtual arrays; it is used only by the input side.
47
   */
48
  JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
49
 
50
#ifdef D_MULTISCAN_FILES_SUPPORTED
51
  /* In multi-pass modes, we need a virtual block array for each component. */
52
  jvirt_barray_ptr whole_image[MAX_COMPONENTS];
53
#endif
54
 
55
#ifdef BLOCK_SMOOTHING_SUPPORTED
56
  /* When doing block smoothing, we latch coefficient Al values here */
57
  int * coef_bits_latch;
58
#define SAVED_COEFS  6		/* we save coef_bits[0..5] */
59
#endif
60
} my_coef_controller;
61
 
62
typedef my_coef_controller * my_coef_ptr;
63
 
64
/* Forward declarations */
65
METHODDEF(int) decompress_onepass
66
	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
67
#ifdef D_MULTISCAN_FILES_SUPPORTED
68
METHODDEF(int) decompress_data
69
	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
70
#endif
71
#ifdef BLOCK_SMOOTHING_SUPPORTED
72
LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
73
METHODDEF(int) decompress_smooth_data
74
	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
75
#endif
76
 
77
 
78
LOCAL(void)
79
start_iMCU_row (j_decompress_ptr cinfo)
80
/* Reset within-iMCU-row counters for a new row (input side) */
81
{
82
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
83
 
84
  /* In an interleaved scan, an MCU row is the same as an iMCU row.
85
   * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
86
   * But at the bottom of the image, process only what's left.
87
   */
88
  if (cinfo->comps_in_scan > 1) {
89
    coef->MCU_rows_per_iMCU_row = 1;
90
  } else {
91
    if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
92
      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
93
    else
94
      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
95
  }
96
 
97
  coef->MCU_ctr = 0;
98
  coef->MCU_vert_offset = 0;
99
}
100
 
101
 
102
/*
103
 * Initialize for an input processing pass.
104
 */
105
 
106
METHODDEF(void)
107
start_input_pass (j_decompress_ptr cinfo)
108
{
109
  cinfo->input_iMCU_row = 0;
110
  start_iMCU_row(cinfo);
111
}
112
 
113
 
114
/*
115
 * Initialize for an output processing pass.
116
 */
117
 
118
METHODDEF(void)
119
start_output_pass (j_decompress_ptr cinfo)
120
{
121
#ifdef BLOCK_SMOOTHING_SUPPORTED
122
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
123
 
124
  /* If multipass, check to see whether to use block smoothing on this pass */
125
  if (coef->pub.coef_arrays != NULL) {
126
    if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
127
      coef->pub.decompress_data = decompress_smooth_data;
128
    else
129
      coef->pub.decompress_data = decompress_data;
130
  }
131
#endif
132
  cinfo->output_iMCU_row = 0;
133
}
134
 
135
 
136
/*
137
 * Decompress and return some data in the single-pass case.
138
 * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
139
 * Input and output must run in lockstep since we have only a one-MCU buffer.
140
 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
141
 *
142
 * NB: output_buf contains a plane for each component in image,
143
 * which we index according to the component's SOF position.
144
 */
145
 
146
METHODDEF(int)
147
decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
148
{
149
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
150
  JDIMENSION MCU_col_num;	/* index of current MCU within row */
151
  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
152
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
153
  int blkn, ci, xindex, yindex, yoffset, useful_width;
154
  JSAMPARRAY output_ptr;
155
  JDIMENSION start_col, output_col;
156
  jpeg_component_info *compptr;
157
  inverse_DCT_method_ptr inverse_DCT;
158
 
159
  /* Loop to process as much as one whole iMCU row */
160
  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
161
       yoffset++) {
162
    for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
163
	 MCU_col_num++) {
164
      /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
165
      jzero_far((void FAR *) coef->MCU_buffer[0],
166
		(size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
167
      if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
168
	/* Suspension forced; update state counters and exit */
169
	coef->MCU_vert_offset = yoffset;
170
	coef->MCU_ctr = MCU_col_num;
171
	return JPEG_SUSPENDED;
172
      }
173
      /* Determine where data should go in output_buf and do the IDCT thing.
174
       * We skip dummy blocks at the right and bottom edges (but blkn gets
175
       * incremented past them!).  Note the inner loop relies on having
176
       * allocated the MCU_buffer[] blocks sequentially.
177
       */
178
      blkn = 0;			/* index of current DCT block within MCU */
179
      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
180
	compptr = cinfo->cur_comp_info[ci];
181
	/* Don't bother to IDCT an uninteresting component. */
182
	if (! compptr->component_needed) {
183
	  blkn += compptr->MCU_blocks;
184
	  continue;
185
	}
186
	inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
187
	useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
188
						    : compptr->last_col_width;
189
	output_ptr = output_buf[compptr->component_index] +
190
	  yoffset * compptr->DCT_scaled_size;
191
	start_col = MCU_col_num * compptr->MCU_sample_width;
192
	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
193
	  if (cinfo->input_iMCU_row < last_iMCU_row ||
194
	      yoffset+yindex < compptr->last_row_height) {
195
	    output_col = start_col;
196
	    for (xindex = 0; xindex < useful_width; xindex++) {
197
	      (*inverse_DCT) (cinfo, compptr,
198
			      (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
199
			      output_ptr, output_col);
200
	      output_col += compptr->DCT_scaled_size;
201
	    }
202
	  }
203
	  blkn += compptr->MCU_width;
204
	  output_ptr += compptr->DCT_scaled_size;
205
	}
206
      }
207
    }
208
    /* Completed an MCU row, but perhaps not an iMCU row */
209
    coef->MCU_ctr = 0;
210
  }
211
  /* Completed the iMCU row, advance counters for next one */
212
  cinfo->output_iMCU_row++;
213
  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
214
    start_iMCU_row(cinfo);
215
    return JPEG_ROW_COMPLETED;
216
  }
217
  /* Completed the scan */
218
  (*cinfo->inputctl->finish_input_pass) (cinfo);
219
  return JPEG_SCAN_COMPLETED;
220
}
221
 
222
 
223
/*
224
 * Dummy consume-input routine for single-pass operation.
225
 */
226
 
227
METHODDEF(int)
228
dummy_consume_data (j_decompress_ptr cinfo)
229
{
230
  return JPEG_SUSPENDED;	/* Always indicate nothing was done */
231
}
232
 
233
 
234
#ifdef D_MULTISCAN_FILES_SUPPORTED
235
 
236
/*
237
 * Consume input data and store it in the full-image coefficient buffer.
238
 * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
239
 * ie, v_samp_factor block rows for each component in the scan.
240
 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
241
 */
242
 
243
METHODDEF(int)
244
consume_data (j_decompress_ptr cinfo)
245
{
246
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
247
  JDIMENSION MCU_col_num;	/* index of current MCU within row */
248
  int blkn, ci, xindex, yindex, yoffset;
249
  JDIMENSION start_col;
250
  JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
251
  JBLOCKROW buffer_ptr;
252
  jpeg_component_info *compptr;
253
 
254
  /* Align the virtual buffers for the components used in this scan. */
255
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
256
    compptr = cinfo->cur_comp_info[ci];
257
    buffer[ci] = (*cinfo->mem->access_virt_barray)
258
      ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
259
       cinfo->input_iMCU_row * compptr->v_samp_factor,
260
       (JDIMENSION) compptr->v_samp_factor, TRUE);
261
    /* Note: entropy decoder expects buffer to be zeroed,
262
     * but this is handled automatically by the memory manager
263
     * because we requested a pre-zeroed array.
264
     */
265
  }
266
 
267
  /* Loop to process one whole iMCU row */
268
  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
269
       yoffset++) {
270
    for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
271
	 MCU_col_num++) {
272
      /* Construct list of pointers to DCT blocks belonging to this MCU */
273
      blkn = 0;			/* index of current DCT block within MCU */
274
      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
275
	compptr = cinfo->cur_comp_info[ci];
276
	start_col = MCU_col_num * compptr->MCU_width;
277
	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
278
	  buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
279
	  for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
280
	    coef->MCU_buffer[blkn++] = buffer_ptr++;
281
	  }
282
	}
283
      }
284
      /* Try to fetch the MCU. */
285
      if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
286
	/* Suspension forced; update state counters and exit */
287
	coef->MCU_vert_offset = yoffset;
288
	coef->MCU_ctr = MCU_col_num;
289
	return JPEG_SUSPENDED;
290
      }
291
    }
292
    /* Completed an MCU row, but perhaps not an iMCU row */
293
    coef->MCU_ctr = 0;
294
  }
295
  /* Completed the iMCU row, advance counters for next one */
296
  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
297
    start_iMCU_row(cinfo);
298
    return JPEG_ROW_COMPLETED;
299
  }
300
  /* Completed the scan */
301
  (*cinfo->inputctl->finish_input_pass) (cinfo);
302
  return JPEG_SCAN_COMPLETED;
303
}
304
 
305
 
306
/*
307
 * Decompress and return some data in the multi-pass case.
308
 * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
309
 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
310
 *
311
 * NB: output_buf contains a plane for each component in image.
312
 */
313
 
314
METHODDEF(int)
315
decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
316
{
317
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
318
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
319
  JDIMENSION block_num;
320
  int ci, block_row, block_rows;
321
  JBLOCKARRAY buffer;
322
  JBLOCKROW buffer_ptr;
323
  JSAMPARRAY output_ptr;
324
  JDIMENSION output_col;
325
  jpeg_component_info *compptr;
326
  inverse_DCT_method_ptr inverse_DCT;
327
 
328
  /* Force some input to be done if we are getting ahead of the input. */
329
  while (cinfo->input_scan_number < cinfo->output_scan_number ||
330
	 (cinfo->input_scan_number == cinfo->output_scan_number &&
331
	  cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
332
    if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
333
      return JPEG_SUSPENDED;
334
  }
335
 
336
  /* OK, output from the virtual arrays. */
337
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
338
       ci++, compptr++) {
339
    /* Don't bother to IDCT an uninteresting component. */
340
    if (! compptr->component_needed)
341
      continue;
342
    /* Align the virtual buffer for this component. */
343
    buffer = (*cinfo->mem->access_virt_barray)
344
      ((j_common_ptr) cinfo, coef->whole_image[ci],
345
       cinfo->output_iMCU_row * compptr->v_samp_factor,
346
       (JDIMENSION) compptr->v_samp_factor, FALSE);
347
    /* Count non-dummy DCT block rows in this iMCU row. */
348
    if (cinfo->output_iMCU_row < last_iMCU_row)
349
      block_rows = compptr->v_samp_factor;
350
    else {
351
      /* NB: can't use last_row_height here; it is input-side-dependent! */
352
      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
353
      if (block_rows == 0) block_rows = compptr->v_samp_factor;
354
    }
355
    inverse_DCT = cinfo->idct->inverse_DCT[ci];
356
    output_ptr = output_buf[ci];
357
    /* Loop over all DCT blocks to be processed. */
358
    for (block_row = 0; block_row < block_rows; block_row++) {
359
      buffer_ptr = buffer[block_row];
360
      output_col = 0;
361
      for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
362
	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
363
			output_ptr, output_col);
364
	buffer_ptr++;
365
	output_col += compptr->DCT_scaled_size;
366
      }
367
      output_ptr += compptr->DCT_scaled_size;
368
    }
369
  }
370
 
371
  if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
372
    return JPEG_ROW_COMPLETED;
373
  return JPEG_SCAN_COMPLETED;
374
}
375
 
376
#endif /* D_MULTISCAN_FILES_SUPPORTED */
377
 
378
 
379
#ifdef BLOCK_SMOOTHING_SUPPORTED
380
 
381
/*
382
 * This code applies interblock smoothing as described by section K.8
383
 * of the JPEG standard: the first 5 AC coefficients are estimated from
384
 * the DC values of a DCT block and its 8 neighboring blocks.
385
 * We apply smoothing only for progressive JPEG decoding, and only if
386
 * the coefficients it can estimate are not yet known to full precision.
387
 */
388
 
389
/* Natural-order array positions of the first 5 zigzag-order coefficients */
390
#define Q01_POS  1
391
#define Q10_POS  8
392
#define Q20_POS  16
393
#define Q11_POS  9
394
#define Q02_POS  2
395
 
396
/*
397
 * Determine whether block smoothing is applicable and safe.
398
 * We also latch the current states of the coef_bits[] entries for the
399
 * AC coefficients; otherwise, if the input side of the decompressor
400
 * advances into a new scan, we might think the coefficients are known
401
 * more accurately than they really are.
402
 */
403
 
404
LOCAL(boolean)
405
smoothing_ok (j_decompress_ptr cinfo)
406
{
407
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
408
  boolean smoothing_useful = FALSE;
409
  int ci, coefi;
410
  jpeg_component_info *compptr;
411
  JQUANT_TBL * qtable;
412
  int * coef_bits;
413
  int * coef_bits_latch;
414
 
415
  if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
416
    return FALSE;
417
 
418
  /* Allocate latch area if not already done */
419
  if (coef->coef_bits_latch == NULL)
420
    coef->coef_bits_latch = (int *)
421
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
422
				  cinfo->num_components *
423
				  (SAVED_COEFS * SIZEOF(int)));
424
  coef_bits_latch = coef->coef_bits_latch;
425
 
426
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
427
       ci++, compptr++) {
428
    /* All components' quantization values must already be latched. */
429
    if ((qtable = compptr->quant_table) == NULL)
430
      return FALSE;
431
    /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
432
    if (qtable->quantval[0] == 0 ||
433
	qtable->quantval[Q01_POS] == 0 ||
434
	qtable->quantval[Q10_POS] == 0 ||
435
	qtable->quantval[Q20_POS] == 0 ||
436
	qtable->quantval[Q11_POS] == 0 ||
437
	qtable->quantval[Q02_POS] == 0)
438
      return FALSE;
439
    /* DC values must be at least partly known for all components. */
440
    coef_bits = cinfo->coef_bits[ci];
441
    if (coef_bits[0] < 0)
442
      return FALSE;
443
    /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
444
    for (coefi = 1; coefi <= 5; coefi++) {
445
      coef_bits_latch[coefi] = coef_bits[coefi];
446
      if (coef_bits[coefi] != 0)
447
	smoothing_useful = TRUE;
448
    }
449
    coef_bits_latch += SAVED_COEFS;
450
  }
451
 
452
  return smoothing_useful;
453
}
454
 
455
 
456
/*
457
 * Variant of decompress_data for use when doing block smoothing.
458
 */
459
 
460
METHODDEF(int)
461
decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
462
{
463
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
464
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
465
  JDIMENSION block_num, last_block_column;
466
  int ci, block_row, block_rows, access_rows;
467
  JBLOCKARRAY buffer;
468
  JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
469
  JSAMPARRAY output_ptr;
470
  JDIMENSION output_col;
471
  jpeg_component_info *compptr;
472
  inverse_DCT_method_ptr inverse_DCT;
473
  boolean first_row, last_row;
474
  JBLOCK workspace;
475
  int *coef_bits;
476
  JQUANT_TBL *quanttbl;
477
  INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
478
  int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
479
  int Al, pred;
480
 
481
  /* Force some input to be done if we are getting ahead of the input. */
482
  while (cinfo->input_scan_number <= cinfo->output_scan_number &&
483
	 ! cinfo->inputctl->eoi_reached) {
484
    if (cinfo->input_scan_number == cinfo->output_scan_number) {
485
      /* If input is working on current scan, we ordinarily want it to
486
       * have completed the current row.  But if input scan is DC,
487
       * we want it to keep one row ahead so that next block row's DC
488
       * values are up to date.
489
       */
490
      JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
491
      if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
492
	break;
493
    }
494
    if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
495
      return JPEG_SUSPENDED;
496
  }
497
 
498
  /* OK, output from the virtual arrays. */
499
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
500
       ci++, compptr++) {
501
    /* Don't bother to IDCT an uninteresting component. */
502
    if (! compptr->component_needed)
503
      continue;
504
    /* Count non-dummy DCT block rows in this iMCU row. */
505
    if (cinfo->output_iMCU_row < last_iMCU_row) {
506
      block_rows = compptr->v_samp_factor;
507
      access_rows = block_rows * 2; /* this and next iMCU row */
508
      last_row = FALSE;
509
    } else {
510
      /* NB: can't use last_row_height here; it is input-side-dependent! */
511
      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
512
      if (block_rows == 0) block_rows = compptr->v_samp_factor;
513
      access_rows = block_rows; /* this iMCU row only */
514
      last_row = TRUE;
515
    }
516
    /* Align the virtual buffer for this component. */
517
    if (cinfo->output_iMCU_row > 0) {
518
      access_rows += compptr->v_samp_factor; /* prior iMCU row too */
519
      buffer = (*cinfo->mem->access_virt_barray)
520
	((j_common_ptr) cinfo, coef->whole_image[ci],
521
	 (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
522
	 (JDIMENSION) access_rows, FALSE);
523
      buffer += compptr->v_samp_factor;	/* point to current iMCU row */
524
      first_row = FALSE;
525
    } else {
526
      buffer = (*cinfo->mem->access_virt_barray)
527
	((j_common_ptr) cinfo, coef->whole_image[ci],
528
	 (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
529
      first_row = TRUE;
530
    }
531
    /* Fetch component-dependent info */
532
    coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
533
    quanttbl = compptr->quant_table;
534
    Q00 = quanttbl->quantval[0];
535
    Q01 = quanttbl->quantval[Q01_POS];
536
    Q10 = quanttbl->quantval[Q10_POS];
537
    Q20 = quanttbl->quantval[Q20_POS];
538
    Q11 = quanttbl->quantval[Q11_POS];
539
    Q02 = quanttbl->quantval[Q02_POS];
540
    inverse_DCT = cinfo->idct->inverse_DCT[ci];
541
    output_ptr = output_buf[ci];
542
    /* Loop over all DCT blocks to be processed. */
543
    for (block_row = 0; block_row < block_rows; block_row++) {
544
      buffer_ptr = buffer[block_row];
545
      if (first_row && block_row == 0)
546
	prev_block_row = buffer_ptr;
547
      else
548
	prev_block_row = buffer[block_row-1];
549
      if (last_row && block_row == block_rows-1)
550
	next_block_row = buffer_ptr;
551
      else
552
	next_block_row = buffer[block_row+1];
553
      /* We fetch the surrounding DC values using a sliding-register approach.
554
       * Initialize all nine here so as to do the right thing on narrow pics.
555
       */
556
      DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
557
      DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
558
      DC7 = DC8 = DC9 = (int) next_block_row[0][0];
559
      output_col = 0;
560
      last_block_column = compptr->width_in_blocks - 1;
561
      for (block_num = 0; block_num <= last_block_column; block_num++) {
562
	/* Fetch current DCT block into workspace so we can modify it. */
563
	jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
564
	/* Update DC values */
565
	if (block_num < last_block_column) {
566
	  DC3 = (int) prev_block_row[1][0];
567
	  DC6 = (int) buffer_ptr[1][0];
568
	  DC9 = (int) next_block_row[1][0];
569
	}
570
	/* Compute coefficient estimates per K.8.
571
	 * An estimate is applied only if coefficient is still zero,
572
	 * and is not known to be fully accurate.
573
	 */
574
	/* AC01 */
575
	if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
576
	  num = 36 * Q00 * (DC4 - DC6);
577
	  if (num >= 0) {
578
	    pred = (int) (((Q01<<7) + num) / (Q01<<8));
579
	    if (Al > 0 && pred >= (1<
580
	      pred = (1<
581
	  } else {
582
	    pred = (int) (((Q01<<7) - num) / (Q01<<8));
583
	    if (Al > 0 && pred >= (1<
584
	      pred = (1<
585
	    pred = -pred;
586
	  }
587
	  workspace[1] = (JCOEF) pred;
588
	}
589
	/* AC10 */
590
	if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
591
	  num = 36 * Q00 * (DC2 - DC8);
592
	  if (num >= 0) {
593
	    pred = (int) (((Q10<<7) + num) / (Q10<<8));
594
	    if (Al > 0 && pred >= (1<
595
	      pred = (1<
596
	  } else {
597
	    pred = (int) (((Q10<<7) - num) / (Q10<<8));
598
	    if (Al > 0 && pred >= (1<
599
	      pred = (1<
600
	    pred = -pred;
601
	  }
602
	  workspace[8] = (JCOEF) pred;
603
	}
604
	/* AC20 */
605
	if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
606
	  num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
607
	  if (num >= 0) {
608
	    pred = (int) (((Q20<<7) + num) / (Q20<<8));
609
	    if (Al > 0 && pred >= (1<
610
	      pred = (1<
611
	  } else {
612
	    pred = (int) (((Q20<<7) - num) / (Q20<<8));
613
	    if (Al > 0 && pred >= (1<
614
	      pred = (1<
615
	    pred = -pred;
616
	  }
617
	  workspace[16] = (JCOEF) pred;
618
	}
619
	/* AC11 */
620
	if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
621
	  num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
622
	  if (num >= 0) {
623
	    pred = (int) (((Q11<<7) + num) / (Q11<<8));
624
	    if (Al > 0 && pred >= (1<
625
	      pred = (1<
626
	  } else {
627
	    pred = (int) (((Q11<<7) - num) / (Q11<<8));
628
	    if (Al > 0 && pred >= (1<
629
	      pred = (1<
630
	    pred = -pred;
631
	  }
632
	  workspace[9] = (JCOEF) pred;
633
	}
634
	/* AC02 */
635
	if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
636
	  num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
637
	  if (num >= 0) {
638
	    pred = (int) (((Q02<<7) + num) / (Q02<<8));
639
	    if (Al > 0 && pred >= (1<
640
	      pred = (1<
641
	  } else {
642
	    pred = (int) (((Q02<<7) - num) / (Q02<<8));
643
	    if (Al > 0 && pred >= (1<
644
	      pred = (1<
645
	    pred = -pred;
646
	  }
647
	  workspace[2] = (JCOEF) pred;
648
	}
649
	/* OK, do the IDCT */
650
	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
651
			output_ptr, output_col);
652
	/* Advance for next column */
653
	DC1 = DC2; DC2 = DC3;
654
	DC4 = DC5; DC5 = DC6;
655
	DC7 = DC8; DC8 = DC9;
656
	buffer_ptr++, prev_block_row++, next_block_row++;
657
	output_col += compptr->DCT_scaled_size;
658
      }
659
      output_ptr += compptr->DCT_scaled_size;
660
    }
661
  }
662
 
663
  if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
664
    return JPEG_ROW_COMPLETED;
665
  return JPEG_SCAN_COMPLETED;
666
}
667
 
668
#endif /* BLOCK_SMOOTHING_SUPPORTED */
669
 
670
 
671
/*
672
 * Initialize coefficient buffer controller.
673
 */
674
 
675
GLOBAL(void)
676
jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
677
{
678
  my_coef_ptr coef;
679
 
680
  coef = (my_coef_ptr)
681
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
682
				SIZEOF(my_coef_controller));
683
  cinfo->coef = (struct jpeg_d_coef_controller *) coef;
684
  coef->pub.start_input_pass = start_input_pass;
685
  coef->pub.start_output_pass = start_output_pass;
686
#ifdef BLOCK_SMOOTHING_SUPPORTED
687
  coef->coef_bits_latch = NULL;
688
#endif
689
 
690
  /* Create the coefficient buffer. */
691
  if (need_full_buffer) {
692
#ifdef D_MULTISCAN_FILES_SUPPORTED
693
    /* Allocate a full-image virtual array for each component, */
694
    /* padded to a multiple of samp_factor DCT blocks in each direction. */
695
    /* Note we ask for a pre-zeroed array. */
696
    int ci, access_rows;
697
    jpeg_component_info *compptr;
698
 
699
    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
700
	 ci++, compptr++) {
701
      access_rows = compptr->v_samp_factor;
702
#ifdef BLOCK_SMOOTHING_SUPPORTED
703
      /* If block smoothing could be used, need a bigger window */
704
      if (cinfo->progressive_mode)
705
	access_rows *= 3;
706
#endif
707
      coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
708
	((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
709
	 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
710
				(long) compptr->h_samp_factor),
711
	 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
712
				(long) compptr->v_samp_factor),
713
	 (JDIMENSION) access_rows);
714
    }
715
    coef->pub.consume_data = consume_data;
716
    coef->pub.decompress_data = decompress_data;
717
    coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
718
#else
719
    ERREXIT(cinfo, JERR_NOT_COMPILED);
720
#endif
721
  } else {
722
    /* We only need a single-MCU buffer. */
723
    JBLOCKROW buffer;
724
    int i;
725
 
726
    buffer = (JBLOCKROW)
727
      (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
728
				  D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
729
    for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
730
      coef->MCU_buffer[i] = buffer + i;
731
    }
732
    coef->pub.consume_data = dummy_consume_data;
733
    coef->pub.decompress_data = decompress_onepass;
734
    coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
735
  }
736
}