Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/* inftrees.c -- generate Huffman trees for efficient decoding
2
 * Copyright (C) 1995-2002 Mark Adler
3
 * For conditions of distribution and use, see copyright notice in zlib.h
4
 */
5
 
6
#include "zutil.h"
7
#include "inftrees.h"
8
 
9
#if !defined(BUILDFIXED) && !defined(STDC)
10
#  define BUILDFIXED   /* non ANSI compilers may not accept inffixed.h */
11
#endif
12
 
13
 
14
#if 0
15
local const char inflate_copyright[] =
16
   " inflate 1.1.4 Copyright 1995-2002 Mark Adler ";
17
#endif
18
/*
19
  If you use the zlib library in a product, an acknowledgment is welcome
20
  in the documentation of your product. If for some reason you cannot
21
  include such an acknowledgment, I would appreciate that you keep this
22
  copyright string in the executable of your product.
23
 */
24
 
25
/* simplify the use of the inflate_huft type with some defines */
26
#define exop word.what.Exop
27
#define bits word.what.Bits
28
 
29
 
30
local int huft_build OF((
31
    uIntf *,            /* code lengths in bits */
32
    uInt,               /* number of codes */
33
    uInt,               /* number of "simple" codes */
34
    const uIntf *,      /* list of base values for non-simple codes */
35
    const uIntf *,      /* list of extra bits for non-simple codes */
36
    inflate_huft * FAR*,/* result: starting table */
37
    uIntf *,            /* maximum lookup bits (returns actual) */
38
    inflate_huft *,     /* space for trees */
39
    uInt *,             /* hufts used in space */
40
    uIntf * ));         /* space for values */
41
 
42
/* Tables for deflate from PKZIP's appnote.txt. */
43
local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
44
        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
45
        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
46
        /* see note #13 above about 258 */
47
local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
48
        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
49
        3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
50
local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
51
        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
52
        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
53
        8193, 12289, 16385, 24577};
54
local const uInt cpdext[30] = { /* Extra bits for distance codes */
55
        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
56
        7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
57
        12, 12, 13, 13};
58
 
59
/*
60
   Huffman code decoding is performed using a multi-level table lookup.
61
   The fastest way to decode is to simply build a lookup table whose
62
   size is determined by the longest code.  However, the time it takes
63
   to build this table can also be a factor if the data being decoded
64
   is not very long.  The most common codes are necessarily the
65
   shortest codes, so those codes dominate the decoding time, and hence
66
   the speed.  The idea is you can have a shorter table that decodes the
67
   shorter, more probable codes, and then point to subsidiary tables for
68
   the longer codes.  The time it costs to decode the longer codes is
69
   then traded against the time it takes to make longer tables.
70
 
71
   This results of this trade are in the variables lbits and dbits
72
   below.  lbits is the number of bits the first level table for literal/
73
   length codes can decode in one step, and dbits is the same thing for
74
   the distance codes.  Subsequent tables are also less than or equal to
75
   those sizes.  These values may be adjusted either when all of the
76
   codes are shorter than that, in which case the longest code length in
77
   bits is used, or when the shortest code is *longer* than the requested
78
   table size, in which case the length of the shortest code in bits is
79
   used.
80
 
81
   There are two different values for the two tables, since they code a
82
   different number of possibilities each.  The literal/length table
83
   codes 286 possible values, or in a flat code, a little over eight
84
   bits.  The distance table codes 30 possible values, or a little less
85
   than five bits, flat.  The optimum values for speed end up being
86
   about one bit more than those, so lbits is 8+1 and dbits is 5+1.
87
   The optimum values may differ though from machine to machine, and
88
   possibly even between compilers.  Your mileage may vary.
89
 */
90
 
91
 
92
/* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
93
#define BMAX 15         /* maximum bit length of any code */
94
 
95
local int huft_build( /* b, n, s, d, e, t, m, hp, hn, v) */
96
uIntf *b,               /* code lengths in bits (all assumed <= BMAX) */
97
uInt n,                 /* number of codes (assumed <= 288) */
98
uInt s,                 /* number of simple-valued codes (0..s-1) */
99
const uIntf *d,         /* list of base values for non-simple codes */
100
const uIntf *e,         /* list of extra bits for non-simple codes */
101
inflate_huft * FAR *t,  /* result: starting table */
102
uIntf *m,               /* maximum lookup bits, returns actual */
103
inflate_huft *hp,       /* space for trees */
104
uInt *hn,               /* hufts used in space */
105
uIntf *v                /* working area: values in order of bit length */
106
/* Given a list of code lengths and a maximum table size, make a set of
107
   tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
108
   if the given code set is incomplete (the tables are still built in this
109
   case), or Z_DATA_ERROR if the input is invalid. */
110
)
111
{
112
 
113
  uInt a;                       /* counter for codes of length k */
114
  uInt c[BMAX+1];               /* bit length count table */
115
  uInt f;                       /* i repeats in table every f entries */
116
  int g;                        /* maximum code length */
117
  int h;                        /* table level */
118
  register uInt i;              /* counter, current code */
119
  register uInt j;              /* counter */
120
  register int k;               /* number of bits in current code */
121
  int l;                        /* bits per table (returned in m) */
122
  uInt mask;                    /* (1 << w) - 1, to avoid cc -O bug on HP */
123
  register uIntf *p;            /* pointer into c[], b[], or v[] */
124
  inflate_huft *q;              /* points to current table */
125
  struct inflate_huft_s r;      /* table entry for structure assignment */
126
  inflate_huft *u[BMAX];        /* table stack */
127
  register int w;               /* bits before this table == (l * h) */
128
  uInt x[BMAX+1];               /* bit offsets, then code stack */
129
  uIntf *xp;                    /* pointer into x */
130
  int y;                        /* number of dummy codes added */
131
  uInt z;                       /* number of entries in current table */
132
 
133
 
134
  /* Make compiler happy */
135
  r.base = 0;
136
 
137
  /* Generate counts for each bit length */
138
  p = c;
139
#define C0 *p++ = 0;
140
#define C2 C0 C0 C0 C0
141
#define C4 C2 C2 C2 C2
142
  C4                            /* clear c[]--assume BMAX+1 is 16 */
143
  p = b;  i = n;
144
  do {
145
    c[*p++]++;                  /* assume all entries <= BMAX */
146
  } while (--i);
147
  if (c[0] == n)                /* null input--all zero length codes */
148
  {
149
    *t = (inflate_huft *)Z_NULL;
150
    *m = 0;
151
    return Z_OK;
152
  }
153
 
154
 
155
  /* Find minimum and maximum length, bound *m by those */
156
  l = *m;
157
  for (j = 1; j <= BMAX; j++)
158
    if (c[j])
159
      break;
160
  k = j;                        /* minimum code length */
161
  if ((uInt)l < j)
162
    l = j;
163
  for (i = BMAX; i; i--)
164
    if (c[i])
165
      break;
166
  g = i;                        /* maximum code length */
167
  if ((uInt)l > i)
168
    l = i;
169
  *m = l;
170
 
171
 
172
  /* Adjust last length count to fill out codes, if needed */
173
  for (y = 1 << j; j < i; j++, y <<= 1)
174
    if ((y -= c[j]) < 0)
175
      return Z_DATA_ERROR;
176
  if ((y -= c[i]) < 0)
177
    return Z_DATA_ERROR;
178
  c[i] += y;
179
 
180
 
181
  /* Generate starting offsets into the value table for each length */
182
  x[1] = j = 0;
183
  p = c + 1;  xp = x + 2;
184
  while (--i) {                 /* note that i == g from above */
185
    *xp++ = (j += *p++);
186
  }
187
 
188
 
189
  /* Make a table of values in order of bit lengths */
190
  p = b;  i = 0;
191
  do {
192
    if ((j = *p++) != 0)
193
      v[x[j]++] = i;
194
  } while (++i < n);
195
  n = x[g];                     /* set n to length of v */
196
 
197
 
198
  /* Generate the Huffman codes and for each, make the table entries */
199
  x[0] = i = 0;                 /* first Huffman code is zero */
200
  p = v;                        /* grab values in bit order */
201
  h = -1;                       /* no tables yet--level -1 */
202
  w = -l;                       /* bits decoded == (l * h) */
203
  u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
204
  q = (inflate_huft *)Z_NULL;   /* ditto */
205
  z = 0;                        /* ditto */
206
 
207
  /* go through the bit lengths (k already is bits in shortest code) */
208
  for (; k <= g; k++)
209
  {
210
    a = c[k];
211
    while (a--)
212
    {
213
      /* here i is the Huffman code of length k bits for value *p */
214
      /* make tables up to required level */
215
      while (k > w + l)
216
      {
217
        h++;
218
        w += l;                 /* previous table always l bits */
219
 
220
        /* compute minimum size table less than or equal to l bits */
221
        z = g - w;
222
        z = z > (uInt)l ? (uInt)l : z;        /* table size upper limit */
223
        if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
224
        {                       /* too few codes for k-w bit table */
225
          f -= a + 1;           /* deduct codes from patterns left */
226
          xp = c + k;
227
          if (j < z)
228
            while (++j < z)     /* try smaller tables up to z bits */
229
            {
230
              if ((f <<= 1) <= *++xp)
231
                break;          /* enough codes to use up j bits */
232
              f -= *xp;         /* else deduct codes from patterns */
233
            }
234
        }
235
        z = 1 << j;             /* table entries for j-bit table */
236
 
237
        /* allocate new table */
238
        if (*hn + z > MANY)     /* (note: doesn't matter for fixed) */
239
          return Z_DATA_ERROR;  /* overflow of MANY */
240
        u[h] = q = hp + *hn;
241
        *hn += z;
242
 
243
        /* connect to last table, if there is one */
244
        if (h)
245
        {
246
          x[h] = i;             /* save pattern for backing up */
247
          r.bits = (Byte)l;     /* bits to dump before this table */
248
          r.exop = (Byte)j;     /* bits in this table */
249
          j = i >> (w - l);
250
          r.base = (uInt)(q - u[h-1] - j);   /* offset to this table */
251
          u[h-1][j] = r;        /* connect to last table */
252
        }
253
        else
254
          *t = q;               /* first table is returned result */
255
      }
256
 
257
      /* set up table entry in r */
258
      r.bits = (Byte)(k - w);
259
      if (p >= v + n)
260
        r.exop = 128 + 64;      /* out of values--invalid code */
261
      else if (*p < s)
262
      {
263
        r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
264
        r.base = *p++;          /* simple code is just the value */
265
      }
266
      else
267
      {
268
        r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
269
        r.base = d[*p++ - s];
270
      }
271
 
272
      /* fill code-like entries with r */
273
      f = 1 << (k - w);
274
      for (j = i >> w; j < z; j += f)
275
        q[j] = r;
276
 
277
      /* backwards increment the k-bit code i */
278
      for (j = 1 << (k - 1); i & j; j >>= 1)
279
        i ^= j;
280
      i ^= j;
281
 
282
      /* backup over finished tables */
283
      mask = (1 << w) - 1;      /* needed on HP, cc -O bug */
284
      while ((i & mask) != x[h])
285
      {
286
        h--;                    /* don't need to update q */
287
        w -= l;
288
        mask = (1 << w) - 1;
289
      }
290
    }
291
  }
292
 
293
 
294
  /* Return Z_BUF_ERROR if we were given an incomplete table */
295
  return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
296
}
297
 
298
 
299
local int inflate_trees_bits( /* c, bb, tb, hp, z) */
300
uIntf *c,               /* 19 code lengths */
301
uIntf *bb,              /* bits tree desired/actual depth */
302
inflate_huft * FAR *tb, /* bits tree result */
303
inflate_huft *hp,       /* space for trees */
304
z_streamp z             /* for messages */
305
)
306
{
307
  int r;
308
  uInt hn = 0;          /* hufts used in space */
309
  uIntf *v;             /* work area for huft_build */
310
 
311
  if ((v = (uIntf*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL)
312
    return Z_MEM_ERROR;
313
  r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL,
314
                 tb, bb, hp, &hn, v);
315
  if (r == Z_DATA_ERROR)
316
    z->msg = (char*)"oversubscribed dynamic bit lengths tree";
317
  else if (r == Z_BUF_ERROR || *bb == 0)
318
  {
319
    z->msg = (char*)"incomplete dynamic bit lengths tree";
320
    r = Z_DATA_ERROR;
321
  }
322
  ZFREE(z, v);
323
  return r;
324
}
325
 
326
 
327
local int inflate_trees_dynamic( /* nl, nd, c, bl, bd, tl, td, hp, z) */
328
uInt nl,                /* number of literal/length codes */
329
uInt nd,                /* number of distance codes */
330
uIntf *c,               /* that many (total) code lengths */
331
uIntf *bl,              /* literal desired/actual bit depth */
332
uIntf *bd,              /* distance desired/actual bit depth */
333
inflate_huft * FAR *tl, /* literal/length tree result */
334
inflate_huft * FAR *td, /* distance tree result */
335
inflate_huft *hp,       /* space for trees */
336
z_streamp z             /* for messages */
337
)
338
{
339
  int r;
340
  uInt hn = 0;          /* hufts used in space */
341
  uIntf *v;             /* work area for huft_build */
342
 
343
  /* allocate work area */
344
  if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
345
    return Z_MEM_ERROR;
346
 
347
  /* build literal/length tree */
348
  r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
349
  if (r != Z_OK || *bl == 0)
350
  {
351
    if (r == Z_DATA_ERROR)
352
      z->msg = (char*)"oversubscribed literal/length tree";
353
    else if (r != Z_MEM_ERROR)
354
    {
355
      z->msg = (char*)"incomplete literal/length tree";
356
      r = Z_DATA_ERROR;
357
    }
358
    ZFREE(z, v);
359
    return r;
360
  }
361
 
362
  /* build distance tree */
363
  r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
364
  if (r != Z_OK || (*bd == 0 && nl > 257))
365
  {
366
    if (r == Z_DATA_ERROR)
367
      z->msg = (char*)"oversubscribed distance tree";
368
    else if (r == Z_BUF_ERROR) {
369
#if 0
370
    {
371
#endif
372
#ifdef PKZIP_BUG_WORKAROUND
373
      r = Z_OK;
374
    }
375
#else
376
      z->msg = (char*)"incomplete distance tree";
377
      r = Z_DATA_ERROR;
378
    }
379
    else if (r != Z_MEM_ERROR)
380
    {
381
      z->msg = (char*)"empty distance tree with lengths";
382
      r = Z_DATA_ERROR;
383
    }
384
    ZFREE(z, v);
385
    return r;
386
#endif
387
  }
388
 
389
  /* done */
390
  ZFREE(z, v);
391
  return Z_OK;
392
}
393
 
394
 
395
/* build fixed tables only once--keep them here */
396
#ifdef BUILDFIXED
397
local int fixed_built = 0;
398
#define FIXEDH 544      /* number of hufts used by fixed tables */
399
local inflate_huft fixed_mem[FIXEDH];
400
local uInt fixed_bl;
401
local uInt fixed_bd;
402
local inflate_huft *fixed_tl;
403
local inflate_huft *fixed_td;
404
#else
405
#include "inffixed.h"
406
#endif
407
 
408
 
409
local int inflate_trees_fixed( /* bl, bd, tl, td, z) */
410
uIntf *bl,                      /* literal desired/actual bit depth */
411
uIntf *bd,                      /* distance desired/actual bit depth */
412
const inflate_huft * FAR *tl,   /* literal/length tree result */
413
const inflate_huft * FAR *td,   /* distance tree result */
414
z_streamp z                     /* for memory allocation */
415
)
416
{
417
#ifdef BUILDFIXED
418
  /* build fixed tables if not already */
419
  if (!fixed_built)
420
  {
421
    int k;              /* temporary variable */
422
    uInt f = 0;         /* number of hufts used in fixed_mem */
423
    uIntf *c;           /* length list for huft_build */
424
    uIntf *v;           /* work area for huft_build */
425
 
426
    /* allocate memory */
427
    if ((c = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
428
      return Z_MEM_ERROR;
429
    if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
430
    {
431
      ZFREE(z, c);
432
      return Z_MEM_ERROR;
433
    }
434
 
435
    /* literal table */
436
    for (k = 0; k < 144; k++)
437
      c[k] = 8;
438
    for (; k < 256; k++)
439
      c[k] = 9;
440
    for (; k < 280; k++)
441
      c[k] = 7;
442
    for (; k < 288; k++)
443
      c[k] = 8;
444
    fixed_bl = 9;
445
    huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl,
446
               fixed_mem, &f, v);
447
 
448
    /* distance table */
449
    for (k = 0; k < 30; k++)
450
      c[k] = 5;
451
    fixed_bd = 5;
452
    huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd,
453
               fixed_mem, &f, v);
454
 
455
    /* done */
456
    ZFREE(z, v);
457
    ZFREE(z, c);
458
    fixed_built = 1;
459
  }
460
#else
461
  FT_UNUSED(z);
462
#endif
463
  *bl = fixed_bl;
464
  *bd = fixed_bd;
465
  *tl = fixed_tl;
466
  *td = fixed_td;
467
  return Z_OK;
468
}