Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * audio resampling
3
 * Copyright (c) 2004-2012 Michael Niedermayer 
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
 
22
/**
23
 * @file
24
 * audio resampling
25
 * @author Michael Niedermayer 
26
 */
27
 
28
#include "libavutil/log.h"
29
#include "libavutil/avassert.h"
30
#include "swresample_internal.h"
31
 
32
 
33
typedef struct ResampleContext {
34
    const AVClass *av_class;
35
    uint8_t *filter_bank;
36
    int filter_length;
37
    int filter_alloc;
38
    int ideal_dst_incr;
39
    int dst_incr;
40
    int index;
41
    int frac;
42
    int src_incr;
43
    int compensation_distance;
44
    int phase_shift;
45
    int phase_mask;
46
    int linear;
47
    enum SwrFilterType filter_type;
48
    int kaiser_beta;
49
    double factor;
50
    enum AVSampleFormat format;
51
    int felem_size;
52
    int filter_shift;
53
} ResampleContext;
54
 
55
/**
56
 * 0th order modified bessel function of the first kind.
57
 */
58
static double bessel(double x){
59
    double v=1;
60
    double lastv=0;
61
    double t=1;
62
    int i;
63
    static const double inv[100]={
64
 1.0/( 1* 1), 1.0/( 2* 2), 1.0/( 3* 3), 1.0/( 4* 4), 1.0/( 5* 5), 1.0/( 6* 6), 1.0/( 7* 7), 1.0/( 8* 8), 1.0/( 9* 9), 1.0/(10*10),
65
 1.0/(11*11), 1.0/(12*12), 1.0/(13*13), 1.0/(14*14), 1.0/(15*15), 1.0/(16*16), 1.0/(17*17), 1.0/(18*18), 1.0/(19*19), 1.0/(20*20),
66
 1.0/(21*21), 1.0/(22*22), 1.0/(23*23), 1.0/(24*24), 1.0/(25*25), 1.0/(26*26), 1.0/(27*27), 1.0/(28*28), 1.0/(29*29), 1.0/(30*30),
67
 1.0/(31*31), 1.0/(32*32), 1.0/(33*33), 1.0/(34*34), 1.0/(35*35), 1.0/(36*36), 1.0/(37*37), 1.0/(38*38), 1.0/(39*39), 1.0/(40*40),
68
 1.0/(41*41), 1.0/(42*42), 1.0/(43*43), 1.0/(44*44), 1.0/(45*45), 1.0/(46*46), 1.0/(47*47), 1.0/(48*48), 1.0/(49*49), 1.0/(50*50),
69
 1.0/(51*51), 1.0/(52*52), 1.0/(53*53), 1.0/(54*54), 1.0/(55*55), 1.0/(56*56), 1.0/(57*57), 1.0/(58*58), 1.0/(59*59), 1.0/(60*60),
70
 1.0/(61*61), 1.0/(62*62), 1.0/(63*63), 1.0/(64*64), 1.0/(65*65), 1.0/(66*66), 1.0/(67*67), 1.0/(68*68), 1.0/(69*69), 1.0/(70*70),
71
 1.0/(71*71), 1.0/(72*72), 1.0/(73*73), 1.0/(74*74), 1.0/(75*75), 1.0/(76*76), 1.0/(77*77), 1.0/(78*78), 1.0/(79*79), 1.0/(80*80),
72
 1.0/(81*81), 1.0/(82*82), 1.0/(83*83), 1.0/(84*84), 1.0/(85*85), 1.0/(86*86), 1.0/(87*87), 1.0/(88*88), 1.0/(89*89), 1.0/(90*90),
73
 1.0/(91*91), 1.0/(92*92), 1.0/(93*93), 1.0/(94*94), 1.0/(95*95), 1.0/(96*96), 1.0/(97*97), 1.0/(98*98), 1.0/(99*99), 1.0/(10000)
74
    };
75
 
76
    x= x*x/4;
77
    for(i=0; v != lastv; i++){
78
        lastv=v;
79
        t *= x*inv[i];
80
        v += t;
81
        av_assert2(i<99);
82
    }
83
    return v;
84
}
85
 
86
/**
87
 * builds a polyphase filterbank.
88
 * @param factor resampling factor
89
 * @param scale wanted sum of coefficients for each filter
90
 * @param filter_type  filter type
91
 * @param kaiser_beta  kaiser window beta
92
 * @return 0 on success, negative on error
93
 */
94
static int build_filter(ResampleContext *c, void *filter, double factor, int tap_count, int alloc, int phase_count, int scale,
95
                        int filter_type, int kaiser_beta){
96
    int ph, i;
97
    double x, y, w;
98
    double *tab = av_malloc(tap_count * sizeof(*tab));
99
    const int center= (tap_count-1)/2;
100
 
101
    if (!tab)
102
        return AVERROR(ENOMEM);
103
 
104
    /* if upsampling, only need to interpolate, no filter */
105
    if (factor > 1.0)
106
        factor = 1.0;
107
 
108
    for(ph=0;ph
109
        double norm = 0;
110
        for(i=0;i
111
            x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
112
            if (x == 0) y = 1.0;
113
            else        y = sin(x) / x;
114
            switch(filter_type){
115
            case SWR_FILTER_TYPE_CUBIC:{
116
                const float d= -0.5; //first order derivative = -0.5
117
                x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
118
                if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*(            -x*x + x*x*x);
119
                else      y=                       d*(-4 + 8*x - 5*x*x + x*x*x);
120
                break;}
121
            case SWR_FILTER_TYPE_BLACKMAN_NUTTALL:
122
                w = 2.0*x / (factor*tap_count) + M_PI;
123
                y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
124
                break;
125
            case SWR_FILTER_TYPE_KAISER:
126
                w = 2.0*x / (factor*tap_count*M_PI);
127
                y *= bessel(kaiser_beta*sqrt(FFMAX(1-w*w, 0)));
128
                break;
129
            default:
130
                av_assert0(0);
131
            }
132
 
133
            tab[i] = y;
134
            norm += y;
135
        }
136
 
137
        /* normalize so that an uniform color remains the same */
138
        switch(c->format){
139
        case AV_SAMPLE_FMT_S16P:
140
            for(i=0;i
141
                ((int16_t*)filter)[ph * alloc + i] = av_clip(lrintf(tab[i] * scale / norm), INT16_MIN, INT16_MAX);
142
            break;
143
        case AV_SAMPLE_FMT_S32P:
144
            for(i=0;i
145
                ((int32_t*)filter)[ph * alloc + i] = av_clipl_int32(llrint(tab[i] * scale / norm));
146
            break;
147
        case AV_SAMPLE_FMT_FLTP:
148
            for(i=0;i
149
                ((float*)filter)[ph * alloc + i] = tab[i] * scale / norm;
150
            break;
151
        case AV_SAMPLE_FMT_DBLP:
152
            for(i=0;i
153
                ((double*)filter)[ph * alloc + i] = tab[i] * scale / norm;
154
            break;
155
        }
156
    }
157
#if 0
158
    {
159
#define LEN 1024
160
        int j,k;
161
        double sine[LEN + tap_count];
162
        double filtered[LEN];
163
        double maxff=-2, minff=2, maxsf=-2, minsf=2;
164
        for(i=0; i
165
            double ss=0, sf=0, ff=0;
166
            for(j=0; j
167
                sine[j]= cos(i*j*M_PI/LEN);
168
            for(j=0; j
169
                double sum=0;
170
                ph=0;
171
                for(k=0; k
172
                    sum += filter[ph * tap_count + k] * sine[k+j];
173
                filtered[j]= sum / (1<
174
                ss+= sine[j + center] * sine[j + center];
175
                ff+= filtered[j] * filtered[j];
176
                sf+= sine[j + center] * filtered[j];
177
            }
178
            ss= sqrt(2*ss/LEN);
179
            ff= sqrt(2*ff/LEN);
180
            sf= 2*sf/LEN;
181
            maxff= FFMAX(maxff, ff);
182
            minff= FFMIN(minff, ff);
183
            maxsf= FFMAX(maxsf, sf);
184
            minsf= FFMIN(minsf, sf);
185
            if(i%11==0){
186
                av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
187
                minff=minsf= 2;
188
                maxff=maxsf= -2;
189
            }
190
        }
191
    }
192
#endif
193
 
194
    av_free(tab);
195
    return 0;
196
}
197
 
198
static ResampleContext *resample_init(ResampleContext *c, int out_rate, int in_rate, int filter_size, int phase_shift, int linear,
199
                                    double cutoff0, enum AVSampleFormat format, enum SwrFilterType filter_type, int kaiser_beta,
200
                                    double precision, int cheby){
201
    double cutoff = cutoff0? cutoff0 : 0.97;
202
    double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
203
    int phase_count= 1<
204
 
205
    if (!c || c->phase_shift != phase_shift || c->linear!=linear || c->factor != factor
206
           || c->filter_length != FFMAX((int)ceil(filter_size/factor), 1) || c->format != format
207
           || c->filter_type != filter_type || c->kaiser_beta != kaiser_beta) {
208
        c = av_mallocz(sizeof(*c));
209
        if (!c)
210
            return NULL;
211
 
212
        c->format= format;
213
 
214
        c->felem_size= av_get_bytes_per_sample(c->format);
215
 
216
        switch(c->format){
217
        case AV_SAMPLE_FMT_S16P:
218
            c->filter_shift = 15;
219
            break;
220
        case AV_SAMPLE_FMT_S32P:
221
            c->filter_shift = 30;
222
            break;
223
        case AV_SAMPLE_FMT_FLTP:
224
        case AV_SAMPLE_FMT_DBLP:
225
            c->filter_shift = 0;
226
            break;
227
        default:
228
            av_log(NULL, AV_LOG_ERROR, "Unsupported sample format\n");
229
            av_assert0(0);
230
        }
231
 
232
        c->phase_shift   = phase_shift;
233
        c->phase_mask    = phase_count - 1;
234
        c->linear        = linear;
235
        c->factor        = factor;
236
        c->filter_length = FFMAX((int)ceil(filter_size/factor), 1);
237
        c->filter_alloc  = FFALIGN(c->filter_length, 8);
238
        c->filter_bank   = av_calloc(c->filter_alloc, (phase_count+1)*c->felem_size);
239
        c->filter_type   = filter_type;
240
        c->kaiser_beta   = kaiser_beta;
241
        if (!c->filter_bank)
242
            goto error;
243
        if (build_filter(c, (void*)c->filter_bank, factor, c->filter_length, c->filter_alloc, phase_count, 1<filter_shift, filter_type, kaiser_beta))
244
            goto error;
245
        memcpy(c->filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, c->filter_bank, (c->filter_alloc-1)*c->felem_size);
246
        memcpy(c->filter_bank + (c->filter_alloc*phase_count  )*c->felem_size, c->filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size);
247
    }
248
 
249
    c->compensation_distance= 0;
250
    if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2))
251
        goto error;
252
    c->ideal_dst_incr= c->dst_incr;
253
 
254
    c->index= -phase_count*((c->filter_length-1)/2);
255
    c->frac= 0;
256
 
257
    return c;
258
error:
259
    av_freep(&c->filter_bank);
260
    av_free(c);
261
    return NULL;
262
}
263
 
264
static void resample_free(ResampleContext **c){
265
    if(!*c)
266
        return;
267
    av_freep(&(*c)->filter_bank);
268
    av_freep(c);
269
}
270
 
271
static int set_compensation(ResampleContext *c, int sample_delta, int compensation_distance){
272
    c->compensation_distance= compensation_distance;
273
    if (compensation_distance)
274
        c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
275
    else
276
        c->dst_incr = c->ideal_dst_incr;
277
    return 0;
278
}
279
 
280
#define TEMPLATE_RESAMPLE_S16
281
#include "resample_template.c"
282
#undef TEMPLATE_RESAMPLE_S16
283
 
284
#define TEMPLATE_RESAMPLE_S32
285
#include "resample_template.c"
286
#undef TEMPLATE_RESAMPLE_S32
287
 
288
#define TEMPLATE_RESAMPLE_FLT
289
#include "resample_template.c"
290
#undef TEMPLATE_RESAMPLE_FLT
291
 
292
#define TEMPLATE_RESAMPLE_DBL
293
#include "resample_template.c"
294
#undef TEMPLATE_RESAMPLE_DBL
295
 
296
// XXX FIXME the whole C loop should be written in asm so this x86 specific code here isnt needed
297
#if HAVE_MMXEXT_INLINE
298
 
299
#include "x86/resample_mmx.h"
300
 
301
#define TEMPLATE_RESAMPLE_S16_MMX2
302
#include "resample_template.c"
303
#undef TEMPLATE_RESAMPLE_S16_MMX2
304
 
305
#if HAVE_SSSE3_INLINE
306
#define TEMPLATE_RESAMPLE_S16_SSSE3
307
#include "resample_template.c"
308
#undef TEMPLATE_RESAMPLE_S16_SSSE3
309
#endif
310
 
311
#endif // HAVE_MMXEXT_INLINE
312
 
313
static int multiple_resample(ResampleContext *c, AudioData *dst, int dst_size, AudioData *src, int src_size, int *consumed){
314
    int i, ret= -1;
315
    int av_unused mm_flags = av_get_cpu_flags();
316
    int need_emms= 0;
317
 
318
    for(i=0; ich_count; i++){
319
#if HAVE_MMXEXT_INLINE
320
#if HAVE_SSSE3_INLINE
321
             if(c->format == AV_SAMPLE_FMT_S16P && (mm_flags&AV_CPU_FLAG_SSSE3)) ret= swri_resample_int16_ssse3(c, (int16_t*)dst->ch[i], (const int16_t*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
322
        else
323
#endif
324
             if(c->format == AV_SAMPLE_FMT_S16P && (mm_flags&AV_CPU_FLAG_MMX2 )){
325
                 ret= swri_resample_int16_mmx2 (c, (int16_t*)dst->ch[i], (const int16_t*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
326
                 need_emms= 1;
327
             } else
328
#endif
329
             if(c->format == AV_SAMPLE_FMT_S16P) ret= swri_resample_int16(c, (int16_t*)dst->ch[i], (const int16_t*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
330
        else if(c->format == AV_SAMPLE_FMT_S32P) ret= swri_resample_int32(c, (int32_t*)dst->ch[i], (const int32_t*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
331
        else if(c->format == AV_SAMPLE_FMT_FLTP) ret= swri_resample_float(c, (float  *)dst->ch[i], (const float  *)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
332
        else if(c->format == AV_SAMPLE_FMT_DBLP) ret= swri_resample_double(c,(double *)dst->ch[i], (const double *)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
333
    }
334
    if(need_emms)
335
        emms_c();
336
    return ret;
337
}
338
 
339
static int64_t get_delay(struct SwrContext *s, int64_t base){
340
    ResampleContext *c = s->resample;
341
    int64_t num = s->in_buffer_count - (c->filter_length-1)/2;
342
    num <<= c->phase_shift;
343
    num -= c->index;
344
    num *= c->src_incr;
345
    num -= c->frac;
346
    return av_rescale(num, base, s->in_sample_rate*(int64_t)c->src_incr << c->phase_shift);
347
}
348
 
349
static int resample_flush(struct SwrContext *s) {
350
    AudioData *a= &s->in_buffer;
351
    int i, j, ret;
352
    if((ret = swri_realloc_audio(a, s->in_buffer_index + 2*s->in_buffer_count)) < 0)
353
        return ret;
354
    av_assert0(a->planar);
355
    for(i=0; ich_count; i++){
356
        for(j=0; jin_buffer_count; j++){
357
            memcpy(a->ch[i] + (s->in_buffer_index+s->in_buffer_count+j  )*a->bps,
358
                a->ch[i] + (s->in_buffer_index+s->in_buffer_count-j-1)*a->bps, a->bps);
359
        }
360
    }
361
    s->in_buffer_count += (s->in_buffer_count+1)/2;
362
    return 0;
363
}
364
 
365
struct Resampler const swri_resampler={
366
  resample_init,
367
  resample_free,
368
  multiple_resample,
369
  resample_flush,
370
  set_compensation,
371
  get_delay,
372
};