Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * Copyright (c) 2012 Justin Ruggles 
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 */
20
 
21
#ifndef AVRESAMPLE_AVRESAMPLE_H
22
#define AVRESAMPLE_AVRESAMPLE_H
23
 
24
/**
25
 * @file
26
 * @ingroup lavr
27
 * external API header
28
 */
29
 
30
/**
31
 * @defgroup lavr Libavresample
32
 * @{
33
 *
34
 * Libavresample (lavr) is a library that handles audio resampling, sample
35
 * format conversion and mixing.
36
 *
37
 * Interaction with lavr is done through AVAudioResampleContext, which is
38
 * allocated with avresample_alloc_context(). It is opaque, so all parameters
39
 * must be set with the @ref avoptions API.
40
 *
41
 * For example the following code will setup conversion from planar float sample
42
 * format to interleaved signed 16-bit integer, downsampling from 48kHz to
43
 * 44.1kHz and downmixing from 5.1 channels to stereo (using the default mixing
44
 * matrix):
45
 * @code
46
 * AVAudioResampleContext *avr = avresample_alloc_context();
47
 * av_opt_set_int(avr, "in_channel_layout",  AV_CH_LAYOUT_5POINT1, 0);
48
 * av_opt_set_int(avr, "out_channel_layout", AV_CH_LAYOUT_STEREO,  0);
49
 * av_opt_set_int(avr, "in_sample_rate",     48000,                0);
50
 * av_opt_set_int(avr, "out_sample_rate",    44100,                0);
51
 * av_opt_set_int(avr, "in_sample_fmt",      AV_SAMPLE_FMT_FLTP,   0);
52
 * av_opt_set_int(avr, "out_sample_fmt",     AV_SAMPLE_FMT_S16,    0);
53
 * @endcode
54
 *
55
 * Once the context is initialized, it must be opened with avresample_open(). If
56
 * you need to change the conversion parameters, you must close the context with
57
 * avresample_close(), change the parameters as described above, then reopen it
58
 * again.
59
 *
60
 * The conversion itself is done by repeatedly calling avresample_convert().
61
 * Note that the samples may get buffered in two places in lavr. The first one
62
 * is the output FIFO, where the samples end up if the output buffer is not
63
 * large enough. The data stored in there may be retrieved at any time with
64
 * avresample_read(). The second place is the resampling delay buffer,
65
 * applicable only when resampling is done. The samples in it require more input
66
 * before they can be processed. Their current amount is returned by
67
 * avresample_get_delay(). At the end of conversion the resampling buffer can be
68
 * flushed by calling avresample_convert() with NULL input.
69
 *
70
 * The following code demonstrates the conversion loop assuming the parameters
71
 * from above and caller-defined functions get_input() and handle_output():
72
 * @code
73
 * uint8_t **input;
74
 * int in_linesize, in_samples;
75
 *
76
 * while (get_input(&input, &in_linesize, &in_samples)) {
77
 *     uint8_t *output
78
 *     int out_linesize;
79
 *     int out_samples = avresample_available(avr) +
80
 *                       av_rescale_rnd(avresample_get_delay(avr) +
81
 *                                      in_samples, 44100, 48000, AV_ROUND_UP);
82
 *     av_samples_alloc(&output, &out_linesize, 2, out_samples,
83
 *                      AV_SAMPLE_FMT_S16, 0);
84
 *     out_samples = avresample_convert(avr, &output, out_linesize, out_samples,
85
 *                                      input, in_linesize, in_samples);
86
 *     handle_output(output, out_linesize, out_samples);
87
 *     av_freep(&output);
88
 *  }
89
 *  @endcode
90
 *
91
 *  When the conversion is finished and the FIFOs are flushed if required, the
92
 *  conversion context and everything associated with it must be freed with
93
 *  avresample_free().
94
 */
95
 
96
#include "libavutil/avutil.h"
97
#include "libavutil/channel_layout.h"
98
#include "libavutil/dict.h"
99
#include "libavutil/log.h"
100
 
101
#include "libavresample/version.h"
102
 
103
#define AVRESAMPLE_MAX_CHANNELS 32
104
 
105
typedef struct AVAudioResampleContext AVAudioResampleContext;
106
 
107
/** Mixing Coefficient Types */
108
enum AVMixCoeffType {
109
    AV_MIX_COEFF_TYPE_Q8,   /** 16-bit 8.8 fixed-point                      */
110
    AV_MIX_COEFF_TYPE_Q15,  /** 32-bit 17.15 fixed-point                    */
111
    AV_MIX_COEFF_TYPE_FLT,  /** floating-point                              */
112
    AV_MIX_COEFF_TYPE_NB,   /** Number of coeff types. Not part of ABI      */
113
};
114
 
115
/** Resampling Filter Types */
116
enum AVResampleFilterType {
117
    AV_RESAMPLE_FILTER_TYPE_CUBIC,              /**< Cubic */
118
    AV_RESAMPLE_FILTER_TYPE_BLACKMAN_NUTTALL,   /**< Blackman Nuttall Windowed Sinc */
119
    AV_RESAMPLE_FILTER_TYPE_KAISER,             /**< Kaiser Windowed Sinc */
120
};
121
 
122
enum AVResampleDitherMethod {
123
    AV_RESAMPLE_DITHER_NONE,            /**< Do not use dithering */
124
    AV_RESAMPLE_DITHER_RECTANGULAR,     /**< Rectangular Dither */
125
    AV_RESAMPLE_DITHER_TRIANGULAR,      /**< Triangular Dither*/
126
    AV_RESAMPLE_DITHER_TRIANGULAR_HP,   /**< Triangular Dither with High Pass */
127
    AV_RESAMPLE_DITHER_TRIANGULAR_NS,   /**< Triangular Dither with Noise Shaping */
128
    AV_RESAMPLE_DITHER_NB,              /**< Number of dither types. Not part of ABI. */
129
};
130
 
131
/**
132
 * Return the LIBAVRESAMPLE_VERSION_INT constant.
133
 */
134
unsigned avresample_version(void);
135
 
136
/**
137
 * Return the libavresample build-time configuration.
138
 * @return  configure string
139
 */
140
const char *avresample_configuration(void);
141
 
142
/**
143
 * Return the libavresample license.
144
 */
145
const char *avresample_license(void);
146
 
147
/**
148
 * Get the AVClass for AVAudioResampleContext.
149
 *
150
 * Can be used in combination with AV_OPT_SEARCH_FAKE_OBJ for examining options
151
 * without allocating a context.
152
 *
153
 * @see av_opt_find().
154
 *
155
 * @return AVClass for AVAudioResampleContext
156
 */
157
const AVClass *avresample_get_class(void);
158
 
159
/**
160
 * Allocate AVAudioResampleContext and set options.
161
 *
162
 * @return  allocated audio resample context, or NULL on failure
163
 */
164
AVAudioResampleContext *avresample_alloc_context(void);
165
 
166
/**
167
 * Initialize AVAudioResampleContext.
168
 *
169
 * @param avr  audio resample context
170
 * @return     0 on success, negative AVERROR code on failure
171
 */
172
int avresample_open(AVAudioResampleContext *avr);
173
 
174
/**
175
 * Close AVAudioResampleContext.
176
 *
177
 * This closes the context, but it does not change the parameters. The context
178
 * can be reopened with avresample_open(). It does, however, clear the output
179
 * FIFO and any remaining leftover samples in the resampling delay buffer. If
180
 * there was a custom matrix being used, that is also cleared.
181
 *
182
 * @see avresample_convert()
183
 * @see avresample_set_matrix()
184
 *
185
 * @param avr  audio resample context
186
 */
187
void avresample_close(AVAudioResampleContext *avr);
188
 
189
/**
190
 * Free AVAudioResampleContext and associated AVOption values.
191
 *
192
 * This also calls avresample_close() before freeing.
193
 *
194
 * @param avr  audio resample context
195
 */
196
void avresample_free(AVAudioResampleContext **avr);
197
 
198
/**
199
 * Generate a channel mixing matrix.
200
 *
201
 * This function is the one used internally by libavresample for building the
202
 * default mixing matrix. It is made public just as a utility function for
203
 * building custom matrices.
204
 *
205
 * @param in_layout           input channel layout
206
 * @param out_layout          output channel layout
207
 * @param center_mix_level    mix level for the center channel
208
 * @param surround_mix_level  mix level for the surround channel(s)
209
 * @param lfe_mix_level       mix level for the low-frequency effects channel
210
 * @param normalize           if 1, coefficients will be normalized to prevent
211
 *                            overflow. if 0, coefficients will not be
212
 *                            normalized.
213
 * @param[out] matrix         mixing coefficients; matrix[i + stride * o] is
214
 *                            the weight of input channel i in output channel o.
215
 * @param stride              distance between adjacent input channels in the
216
 *                            matrix array
217
 * @param matrix_encoding     matrixed stereo downmix mode (e.g. dplii)
218
 * @return                    0 on success, negative AVERROR code on failure
219
 */
220
int avresample_build_matrix(uint64_t in_layout, uint64_t out_layout,
221
                            double center_mix_level, double surround_mix_level,
222
                            double lfe_mix_level, int normalize, double *matrix,
223
                            int stride, enum AVMatrixEncoding matrix_encoding);
224
 
225
/**
226
 * Get the current channel mixing matrix.
227
 *
228
 * If no custom matrix has been previously set or the AVAudioResampleContext is
229
 * not open, an error is returned.
230
 *
231
 * @param avr     audio resample context
232
 * @param matrix  mixing coefficients; matrix[i + stride * o] is the weight of
233
 *                input channel i in output channel o.
234
 * @param stride  distance between adjacent input channels in the matrix array
235
 * @return        0 on success, negative AVERROR code on failure
236
 */
237
int avresample_get_matrix(AVAudioResampleContext *avr, double *matrix,
238
                          int stride);
239
 
240
/**
241
 * Set channel mixing matrix.
242
 *
243
 * Allows for setting a custom mixing matrix, overriding the default matrix
244
 * generated internally during avresample_open(). This function can be called
245
 * anytime on an allocated context, either before or after calling
246
 * avresample_open(), as long as the channel layouts have been set.
247
 * avresample_convert() always uses the current matrix.
248
 * Calling avresample_close() on the context will clear the current matrix.
249
 *
250
 * @see avresample_close()
251
 *
252
 * @param avr     audio resample context
253
 * @param matrix  mixing coefficients; matrix[i + stride * o] is the weight of
254
 *                input channel i in output channel o.
255
 * @param stride  distance between adjacent input channels in the matrix array
256
 * @return        0 on success, negative AVERROR code on failure
257
 */
258
int avresample_set_matrix(AVAudioResampleContext *avr, const double *matrix,
259
                          int stride);
260
 
261
/**
262
 * Set a customized input channel mapping.
263
 *
264
 * This function can only be called when the allocated context is not open.
265
 * Also, the input channel layout must have already been set.
266
 *
267
 * Calling avresample_close() on the context will clear the channel mapping.
268
 *
269
 * The map for each input channel specifies the channel index in the source to
270
 * use for that particular channel, or -1 to mute the channel. Source channels
271
 * can be duplicated by using the same index for multiple input channels.
272
 *
273
 * Examples:
274
 *
275
 * Reordering 5.1 AAC order (C,L,R,Ls,Rs,LFE) to FFmpeg order (L,R,C,LFE,Ls,Rs):
276
 * { 1, 2, 0, 5, 3, 4 }
277
 *
278
 * Muting the 3rd channel in 4-channel input:
279
 * { 0, 1, -1, 3 }
280
 *
281
 * Duplicating the left channel of stereo input:
282
 * { 0, 0 }
283
 *
284
 * @param avr         audio resample context
285
 * @param channel_map customized input channel mapping
286
 * @return            0 on success, negative AVERROR code on failure
287
 */
288
int avresample_set_channel_mapping(AVAudioResampleContext *avr,
289
                                   const int *channel_map);
290
 
291
/**
292
 * Set compensation for resampling.
293
 *
294
 * This can be called anytime after avresample_open(). If resampling is not
295
 * automatically enabled because of a sample rate conversion, the
296
 * "force_resampling" option must have been set to 1 when opening the context
297
 * in order to use resampling compensation.
298
 *
299
 * @param avr                    audio resample context
300
 * @param sample_delta           compensation delta, in samples
301
 * @param compensation_distance  compensation distance, in samples
302
 * @return                       0 on success, negative AVERROR code on failure
303
 */
304
int avresample_set_compensation(AVAudioResampleContext *avr, int sample_delta,
305
                                int compensation_distance);
306
 
307
/**
308
 * Convert input samples and write them to the output FIFO.
309
 *
310
 * The upper bound on the number of output samples is given by
311
 * avresample_available() + (avresample_get_delay() + number of input samples) *
312
 * output sample rate / input sample rate.
313
 *
314
 * The output data can be NULL or have fewer allocated samples than required.
315
 * In this case, any remaining samples not written to the output will be added
316
 * to an internal FIFO buffer, to be returned at the next call to this function
317
 * or to avresample_read().
318
 *
319
 * If converting sample rate, there may be data remaining in the internal
320
 * resampling delay buffer. avresample_get_delay() tells the number of remaining
321
 * samples. To get this data as output, call avresample_convert() with NULL
322
 * input.
323
 *
324
 * At the end of the conversion process, there may be data remaining in the
325
 * internal FIFO buffer. avresample_available() tells the number of remaining
326
 * samples. To get this data as output, either call avresample_convert() with
327
 * NULL input or call avresample_read().
328
 *
329
 * @see avresample_available()
330
 * @see avresample_read()
331
 * @see avresample_get_delay()
332
 *
333
 * @param avr             audio resample context
334
 * @param output          output data pointers
335
 * @param out_plane_size  output plane size, in bytes.
336
 *                        This can be 0 if unknown, but that will lead to
337
 *                        optimized functions not being used directly on the
338
 *                        output, which could slow down some conversions.
339
 * @param out_samples     maximum number of samples that the output buffer can hold
340
 * @param input           input data pointers
341
 * @param in_plane_size   input plane size, in bytes
342
 *                        This can be 0 if unknown, but that will lead to
343
 *                        optimized functions not being used directly on the
344
 *                        input, which could slow down some conversions.
345
 * @param in_samples      number of input samples to convert
346
 * @return                number of samples written to the output buffer,
347
 *                        not including converted samples added to the internal
348
 *                        output FIFO
349
 */
350
int avresample_convert(AVAudioResampleContext *avr, uint8_t **output,
351
                       int out_plane_size, int out_samples, uint8_t **input,
352
                       int in_plane_size, int in_samples);
353
 
354
/**
355
 * Return the number of samples currently in the resampling delay buffer.
356
 *
357
 * When resampling, there may be a delay between the input and output. Any
358
 * unconverted samples in each call are stored internally in a delay buffer.
359
 * This function allows the user to determine the current number of samples in
360
 * the delay buffer, which can be useful for synchronization.
361
 *
362
 * @see avresample_convert()
363
 *
364
 * @param avr  audio resample context
365
 * @return     number of samples currently in the resampling delay buffer
366
 */
367
int avresample_get_delay(AVAudioResampleContext *avr);
368
 
369
/**
370
 * Return the number of available samples in the output FIFO.
371
 *
372
 * During conversion, if the user does not specify an output buffer or
373
 * specifies an output buffer that is smaller than what is needed, remaining
374
 * samples that are not written to the output are stored to an internal FIFO
375
 * buffer. The samples in the FIFO can be read with avresample_read() or
376
 * avresample_convert().
377
 *
378
 * @see avresample_read()
379
 * @see avresample_convert()
380
 *
381
 * @param avr  audio resample context
382
 * @return     number of samples available for reading
383
 */
384
int avresample_available(AVAudioResampleContext *avr);
385
 
386
/**
387
 * Read samples from the output FIFO.
388
 *
389
 * During conversion, if the user does not specify an output buffer or
390
 * specifies an output buffer that is smaller than what is needed, remaining
391
 * samples that are not written to the output are stored to an internal FIFO
392
 * buffer. This function can be used to read samples from that internal FIFO.
393
 *
394
 * @see avresample_available()
395
 * @see avresample_convert()
396
 *
397
 * @param avr         audio resample context
398
 * @param output      output data pointers. May be NULL, in which case
399
 *                    nb_samples of data is discarded from output FIFO.
400
 * @param nb_samples  number of samples to read from the FIFO
401
 * @return            the number of samples written to output
402
 */
403
int avresample_read(AVAudioResampleContext *avr, uint8_t **output, int nb_samples);
404
 
405
/**
406
 * @}
407
 */
408
 
409
#endif /* AVRESAMPLE_AVRESAMPLE_H */