Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * Copyright (c) 2013 Paul B Mahol
3
 * Copyright (c) 2006-2008 Rob Sykes 
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
 
22
/*
23
 * 2-pole filters designed by Robert Bristow-Johnson 
24
 *   see http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt
25
 *
26
 * 1-pole filters based on code (c) 2000 Chris Bagwell 
27
 *   Algorithms: Recursive single pole low/high pass filter
28
 *   Reference: The Scientist and Engineer's Guide to Digital Signal Processing
29
 *
30
 *   low-pass: output[N] = input[N] * A + output[N-1] * B
31
 *     X = exp(-2.0 * pi * Fc)
32
 *     A = 1 - X
33
 *     B = X
34
 *     Fc = cutoff freq / sample rate
35
 *
36
 *     Mimics an RC low-pass filter:
37
 *
38
 *     ---/\/\/\/\----------->
39
 *                   |
40
 *                  --- C
41
 *                  ---
42
 *                   |
43
 *                   |
44
 *                   V
45
 *
46
 *   high-pass: output[N] = A0 * input[N] + A1 * input[N-1] + B1 * output[N-1]
47
 *     X  = exp(-2.0 * pi * Fc)
48
 *     A0 = (1 + X) / 2
49
 *     A1 = -(1 + X) / 2
50
 *     B1 = X
51
 *     Fc = cutoff freq / sample rate
52
 *
53
 *     Mimics an RC high-pass filter:
54
 *
55
 *         || C
56
 *     ----||--------->
57
 *         ||    |
58
 *               <
59
 *               > R
60
 *               <
61
 *               |
62
 *               V
63
 */
64
 
65
#include "libavutil/avassert.h"
66
#include "libavutil/opt.h"
67
#include "audio.h"
68
#include "avfilter.h"
69
#include "internal.h"
70
 
71
enum FilterType {
72
    biquad,
73
    equalizer,
74
    bass,
75
    treble,
76
    band,
77
    bandpass,
78
    bandreject,
79
    allpass,
80
    highpass,
81
    lowpass,
82
};
83
 
84
enum WidthType {
85
    NONE,
86
    HERTZ,
87
    OCTAVE,
88
    QFACTOR,
89
    SLOPE,
90
};
91
 
92
typedef struct ChanCache {
93
    double i1, i2;
94
    double o1, o2;
95
} ChanCache;
96
 
97
typedef struct {
98
    const AVClass *class;
99
 
100
    enum FilterType filter_type;
101
    enum WidthType width_type;
102
    int poles;
103
    int csg;
104
 
105
    double gain;
106
    double frequency;
107
    double width;
108
 
109
    double a0, a1, a2;
110
    double b0, b1, b2;
111
 
112
    ChanCache *cache;
113
 
114
    void (*filter)(const void *ibuf, void *obuf, int len,
115
                   double *i1, double *i2, double *o1, double *o2,
116
                   double b0, double b1, double b2, double a1, double a2);
117
} BiquadsContext;
118
 
119
static av_cold int init(AVFilterContext *ctx)
120
{
121
    BiquadsContext *p = ctx->priv;
122
 
123
    if (p->filter_type != biquad) {
124
        if (p->frequency <= 0 || p->width <= 0) {
125
            av_log(ctx, AV_LOG_ERROR, "Invalid frequency %f and/or width %f <= 0\n",
126
                   p->frequency, p->width);
127
            return AVERROR(EINVAL);
128
        }
129
    }
130
 
131
    return 0;
132
}
133
 
134
static int query_formats(AVFilterContext *ctx)
135
{
136
    AVFilterFormats *formats;
137
    AVFilterChannelLayouts *layouts;
138
    static const enum AVSampleFormat sample_fmts[] = {
139
        AV_SAMPLE_FMT_S16P,
140
        AV_SAMPLE_FMT_S32P,
141
        AV_SAMPLE_FMT_FLTP,
142
        AV_SAMPLE_FMT_DBLP,
143
        AV_SAMPLE_FMT_NONE
144
    };
145
 
146
    layouts = ff_all_channel_layouts();
147
    if (!layouts)
148
        return AVERROR(ENOMEM);
149
    ff_set_common_channel_layouts(ctx, layouts);
150
 
151
    formats = ff_make_format_list(sample_fmts);
152
    if (!formats)
153
        return AVERROR(ENOMEM);
154
    ff_set_common_formats(ctx, formats);
155
 
156
    formats = ff_all_samplerates();
157
    if (!formats)
158
        return AVERROR(ENOMEM);
159
    ff_set_common_samplerates(ctx, formats);
160
 
161
    return 0;
162
}
163
 
164
#define BIQUAD_FILTER(name, type, min, max)                                   \
165
static void biquad_## name (const void *input, void *output, int len,         \
166
                            double *in1, double *in2,                         \
167
                            double *out1, double *out2,                       \
168
                            double b0, double b1, double b2,                  \
169
                            double a1, double a2)                             \
170
{                                                                             \
171
    const type *ibuf = input;                                                 \
172
    type *obuf = output;                                                      \
173
    double i1 = *in1;                                                         \
174
    double i2 = *in2;                                                         \
175
    double o1 = *out1;                                                        \
176
    double o2 = *out2;                                                        \
177
    int i;                                                                    \
178
    a1 = -a1;                                                                 \
179
    a2 = -a2;                                                                 \
180
                                                                              \
181
    for (i = 0; i+1 < len; i++) {                                             \
182
        o2 = i2 * b2 + i1 * b1 + ibuf[i] * b0 + o2 * a2 + o1 * a1;            \
183
        i2 = ibuf[i];                                                         \
184
        if (o2 < min) {                                                       \
185
            av_log(NULL, AV_LOG_WARNING, "clipping\n");                       \
186
            obuf[i] = min;                                                    \
187
        } else if (o2 > max) {                                                \
188
            av_log(NULL, AV_LOG_WARNING, "clipping\n");                       \
189
            obuf[i] = max;                                                    \
190
        } else {                                                              \
191
            obuf[i] = o2;                                                     \
192
        }                                                                     \
193
        i++;                                                                  \
194
        o1 = i1 * b2 + i2 * b1 + ibuf[i] * b0 + o1 * a2 + o2 * a1;            \
195
        i1 = ibuf[i];                                                         \
196
        if (o1 < min) {                                                       \
197
            av_log(NULL, AV_LOG_WARNING, "clipping\n");                       \
198
            obuf[i] = min;                                                    \
199
        } else if (o1 > max) {                                                \
200
            av_log(NULL, AV_LOG_WARNING, "clipping\n");                       \
201
            obuf[i] = max;                                                    \
202
        } else {                                                              \
203
            obuf[i] = o1;                                                     \
204
        }                                                                     \
205
    }                                                                         \
206
    if (i < len) {                                                            \
207
        double o0 = ibuf[i] * b0 + i1 * b1 + i2 * b2 + o1 * a1 + o2 * a2;     \
208
        i2 = i1;                                                              \
209
        i1 = ibuf[i];                                                         \
210
        o2 = o1;                                                              \
211
        o1 = o0;                                                              \
212
        if (o0 < min) {                                                       \
213
            av_log(NULL, AV_LOG_WARNING, "clipping\n");                       \
214
            obuf[i] = min;                                                    \
215
        } else if (o0 > max) {                                                \
216
            av_log(NULL, AV_LOG_WARNING, "clipping\n");                       \
217
            obuf[i] = max;                                                    \
218
        } else {                                                              \
219
            obuf[i] = o0;                                                     \
220
        }                                                                     \
221
    }                                                                         \
222
    *in1  = i1;                                                               \
223
    *in2  = i2;                                                               \
224
    *out1 = o1;                                                               \
225
    *out2 = o2;                                                               \
226
}
227
 
228
BIQUAD_FILTER(s16, int16_t, INT16_MIN, INT16_MAX)
229
BIQUAD_FILTER(s32, int32_t, INT32_MIN, INT32_MAX)
230
BIQUAD_FILTER(flt, float,   -1., 1.)
231
BIQUAD_FILTER(dbl, double,  -1., 1.)
232
 
233
static int config_output(AVFilterLink *outlink)
234
{
235
    AVFilterContext *ctx    = outlink->src;
236
    BiquadsContext *p       = ctx->priv;
237
    AVFilterLink *inlink    = ctx->inputs[0];
238
    double A = exp(p->gain / 40 * log(10.));
239
    double w0 = 2 * M_PI * p->frequency / inlink->sample_rate;
240
    double alpha;
241
 
242
    if (w0 > M_PI) {
243
        av_log(ctx, AV_LOG_ERROR,
244
               "Invalid frequency %f. Frequency must be less than half the sample-rate %d.\n",
245
               p->frequency, inlink->sample_rate);
246
        return AVERROR(EINVAL);
247
    }
248
 
249
    switch (p->width_type) {
250
    case NONE:
251
        alpha = 0.0;
252
        break;
253
    case HERTZ:
254
        alpha = sin(w0) / (2 * p->frequency / p->width);
255
        break;
256
    case OCTAVE:
257
        alpha = sin(w0) * sinh(log(2.) / 2 * p->width * w0 / sin(w0));
258
        break;
259
    case QFACTOR:
260
        alpha = sin(w0) / (2 * p->width);
261
        break;
262
    case SLOPE:
263
        alpha = sin(w0) / 2 * sqrt((A + 1 / A) * (1 / p->width - 1) + 2);
264
        break;
265
    default:
266
        av_assert0(0);
267
    }
268
 
269
    switch (p->filter_type) {
270
    case biquad:
271
        break;
272
    case equalizer:
273
        p->a0 =   1 + alpha / A;
274
        p->a1 =  -2 * cos(w0);
275
        p->a2 =   1 - alpha / A;
276
        p->b0 =   1 + alpha * A;
277
        p->b1 =  -2 * cos(w0);
278
        p->b2 =   1 - alpha * A;
279
        break;
280
    case bass:
281
        p->a0 =          (A + 1) + (A - 1) * cos(w0) + 2 * sqrt(A) * alpha;
282
        p->a1 =    -2 * ((A - 1) + (A + 1) * cos(w0));
283
        p->a2 =          (A + 1) + (A - 1) * cos(w0) - 2 * sqrt(A) * alpha;
284
        p->b0 =     A * ((A + 1) - (A - 1) * cos(w0) + 2 * sqrt(A) * alpha);
285
        p->b1 = 2 * A * ((A - 1) - (A + 1) * cos(w0));
286
        p->b2 =     A * ((A + 1) - (A - 1) * cos(w0) - 2 * sqrt(A) * alpha);
287
        break;
288
    case treble:
289
        p->a0 =          (A + 1) - (A - 1) * cos(w0) + 2 * sqrt(A) * alpha;
290
        p->a1 =     2 * ((A - 1) - (A + 1) * cos(w0));
291
        p->a2 =          (A + 1) - (A - 1) * cos(w0) - 2 * sqrt(A) * alpha;
292
        p->b0 =     A * ((A + 1) + (A - 1) * cos(w0) + 2 * sqrt(A) * alpha);
293
        p->b1 =-2 * A * ((A - 1) + (A + 1) * cos(w0));
294
        p->b2 =     A * ((A + 1) + (A - 1) * cos(w0) - 2 * sqrt(A) * alpha);
295
        break;
296
    case bandpass:
297
        if (p->csg) {
298
            p->a0 =  1 + alpha;
299
            p->a1 = -2 * cos(w0);
300
            p->a2 =  1 - alpha;
301
            p->b0 =  sin(w0) / 2;
302
            p->b1 =  0;
303
            p->b2 = -sin(w0) / 2;
304
        } else {
305
            p->a0 =  1 + alpha;
306
            p->a1 = -2 * cos(w0);
307
            p->a2 =  1 - alpha;
308
            p->b0 =  alpha;
309
            p->b1 =  0;
310
            p->b2 = -alpha;
311
        }
312
        break;
313
    case bandreject:
314
        p->a0 =  1 + alpha;
315
        p->a1 = -2 * cos(w0);
316
        p->a2 =  1 - alpha;
317
        p->b0 =  1;
318
        p->b1 = -2 * cos(w0);
319
        p->b2 =  1;
320
        break;
321
    case lowpass:
322
        if (p->poles == 1) {
323
            p->a0 = 1;
324
            p->a1 = -exp(-w0);
325
            p->a2 = 0;
326
            p->b0 = 1 + p->a1;
327
            p->b1 = 0;
328
            p->b2 = 0;
329
        } else {
330
            p->a0 =  1 + alpha;
331
            p->a1 = -2 * cos(w0);
332
            p->a2 =  1 - alpha;
333
            p->b0 = (1 - cos(w0)) / 2;
334
            p->b1 =  1 - cos(w0);
335
            p->b2 = (1 - cos(w0)) / 2;
336
        }
337
        break;
338
    case highpass:
339
        if (p->poles == 1) {
340
            p->a0 = 1;
341
            p->a1 = -exp(-w0);
342
            p->a2 = 0;
343
            p->b0 = (1 - p->a1) / 2;
344
            p->b1 = -p->b0;
345
            p->b2 = 0;
346
        } else {
347
            p->a0 =   1 + alpha;
348
            p->a1 =  -2 * cos(w0);
349
            p->a2 =   1 - alpha;
350
            p->b0 =  (1 + cos(w0)) / 2;
351
            p->b1 = -(1 + cos(w0));
352
            p->b2 =  (1 + cos(w0)) / 2;
353
        }
354
        break;
355
    case allpass:
356
        p->a0 =  1 + alpha;
357
        p->a1 = -2 * cos(w0);
358
        p->a2 =  1 - alpha;
359
        p->b0 =  1 - alpha;
360
        p->b1 = -2 * cos(w0);
361
        p->b2 =  1 + alpha;
362
        break;
363
    default:
364
        av_assert0(0);
365
    }
366
 
367
    p->a1 /= p->a0;
368
    p->a2 /= p->a0;
369
    p->b0 /= p->a0;
370
    p->b1 /= p->a0;
371
    p->b2 /= p->a0;
372
 
373
    p->cache = av_realloc_f(p->cache, sizeof(ChanCache), inlink->channels);
374
    if (!p->cache)
375
        return AVERROR(ENOMEM);
376
    memset(p->cache, 0, sizeof(ChanCache) * inlink->channels);
377
 
378
    switch (inlink->format) {
379
    case AV_SAMPLE_FMT_S16P: p->filter = biquad_s16; break;
380
    case AV_SAMPLE_FMT_S32P: p->filter = biquad_s32; break;
381
    case AV_SAMPLE_FMT_FLTP: p->filter = biquad_flt; break;
382
    case AV_SAMPLE_FMT_DBLP: p->filter = biquad_dbl; break;
383
    default: av_assert0(0);
384
    }
385
 
386
    return 0;
387
}
388
 
389
static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
390
{
391
    BiquadsContext *p       = inlink->dst->priv;
392
    AVFilterLink *outlink   = inlink->dst->outputs[0];
393
    AVFrame *out_buf;
394
    int nb_samples = buf->nb_samples;
395
    int ch;
396
 
397
    if (av_frame_is_writable(buf)) {
398
        out_buf = buf;
399
    } else {
400
        out_buf = ff_get_audio_buffer(inlink, nb_samples);
401
        if (!out_buf)
402
            return AVERROR(ENOMEM);
403
        av_frame_copy_props(out_buf, buf);
404
    }
405
 
406
    for (ch = 0; ch < av_frame_get_channels(buf); ch++)
407
        p->filter(buf->extended_data[ch],
408
                  out_buf->extended_data[ch], nb_samples,
409
                  &p->cache[ch].i1, &p->cache[ch].i2,
410
                  &p->cache[ch].o1, &p->cache[ch].o2,
411
                  p->b0, p->b1, p->b2, p->a1, p->a2);
412
 
413
    if (buf != out_buf)
414
        av_frame_free(&buf);
415
 
416
    return ff_filter_frame(outlink, out_buf);
417
}
418
 
419
static av_cold void uninit(AVFilterContext *ctx)
420
{
421
    BiquadsContext *p = ctx->priv;
422
 
423
    av_freep(&p->cache);
424
}
425
 
426
static const AVFilterPad inputs[] = {
427
    {
428
        .name         = "default",
429
        .type         = AVMEDIA_TYPE_AUDIO,
430
        .filter_frame = filter_frame,
431
    },
432
    { NULL }
433
};
434
 
435
static const AVFilterPad outputs[] = {
436
    {
437
        .name         = "default",
438
        .type         = AVMEDIA_TYPE_AUDIO,
439
        .config_props = config_output,
440
    },
441
    { NULL }
442
};
443
 
444
#define OFFSET(x) offsetof(BiquadsContext, x)
445
#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
446
 
447
#define DEFINE_BIQUAD_FILTER(name_, description_)                       \
448
AVFILTER_DEFINE_CLASS(name_);                                           \
449
static av_cold int name_##_init(AVFilterContext *ctx) \
450
{                                                                       \
451
    BiquadsContext *p = ctx->priv;                                      \
452
    p->class = &name_##_class;                                          \
453
    p->filter_type = name_;                                             \
454
    return init(ctx);                                             \
455
}                                                                       \
456
                                                         \
457
AVFilter avfilter_af_##name_ = {                         \
458
    .name          = #name_,                             \
459
    .description   = NULL_IF_CONFIG_SMALL(description_), \
460
    .priv_size     = sizeof(BiquadsContext),             \
461
    .init          = name_##_init,                       \
462
    .uninit        = uninit,                             \
463
    .query_formats = query_formats,                      \
464
    .inputs        = inputs,                             \
465
    .outputs       = outputs,                            \
466
    .priv_class    = &name_##_class,                     \
467
}
468
 
469
#if CONFIG_EQUALIZER_FILTER
470
static const AVOption equalizer_options[] = {
471
    {"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 999999, FLAGS},
472
    {"f",         "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 999999, FLAGS},
473
    {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
474
    {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
475
    {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
476
    {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
477
    {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
478
    {"width", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 999, FLAGS},
479
    {"w",     "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 999, FLAGS},
480
    {"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
481
    {"g",    "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
482
    {NULL}
483
};
484
 
485
DEFINE_BIQUAD_FILTER(equalizer, "Apply two-pole peaking equalization (EQ) filter.");
486
#endif  /* CONFIG_EQUALIZER_FILTER */
487
#if CONFIG_BASS_FILTER
488
static const AVOption bass_options[] = {
489
    {"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=100}, 0, 999999, FLAGS},
490
    {"f",         "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=100}, 0, 999999, FLAGS},
491
    {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
492
    {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
493
    {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
494
    {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
495
    {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
496
    {"width", "set shelf transition steep", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
497
    {"w",     "set shelf transition steep", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
498
    {"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
499
    {"g",    "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
500
    {NULL}
501
};
502
 
503
DEFINE_BIQUAD_FILTER(bass, "Boost or cut lower frequencies.");
504
#endif  /* CONFIG_BASS_FILTER */
505
#if CONFIG_TREBLE_FILTER
506
static const AVOption treble_options[] = {
507
    {"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
508
    {"f",         "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
509
    {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
510
    {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
511
    {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
512
    {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
513
    {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
514
    {"width", "set shelf transition steep", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
515
    {"w",     "set shelf transition steep", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
516
    {"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
517
    {"g",    "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
518
    {NULL}
519
};
520
 
521
DEFINE_BIQUAD_FILTER(treble, "Boost or cut upper frequencies.");
522
#endif  /* CONFIG_TREBLE_FILTER */
523
#if CONFIG_BANDPASS_FILTER
524
static const AVOption bandpass_options[] = {
525
    {"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
526
    {"f",         "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
527
    {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
528
    {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
529
    {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
530
    {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
531
    {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
532
    {"width", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 999, FLAGS},
533
    {"w",     "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 999, FLAGS},
534
    {"csg",   "use constant skirt gain", OFFSET(csg), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS},
535
    {NULL}
536
};
537
 
538
DEFINE_BIQUAD_FILTER(bandpass, "Apply a two-pole Butterworth band-pass filter.");
539
#endif  /* CONFIG_BANDPASS_FILTER */
540
#if CONFIG_BANDREJECT_FILTER
541
static const AVOption bandreject_options[] = {
542
    {"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
543
    {"f",         "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
544
    {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
545
    {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
546
    {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
547
    {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
548
    {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
549
    {"width", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 999, FLAGS},
550
    {"w",     "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 999, FLAGS},
551
    {NULL}
552
};
553
 
554
DEFINE_BIQUAD_FILTER(bandreject, "Apply a two-pole Butterworth band-reject filter.");
555
#endif  /* CONFIG_BANDREJECT_FILTER */
556
#if CONFIG_LOWPASS_FILTER
557
static const AVOption lowpass_options[] = {
558
    {"frequency", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=500}, 0, 999999, FLAGS},
559
    {"f",         "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=500}, 0, 999999, FLAGS},
560
    {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
561
    {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
562
    {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
563
    {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
564
    {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
565
    {"width", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.707}, 0, 99999, FLAGS},
566
    {"w",     "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.707}, 0, 99999, FLAGS},
567
    {"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS},
568
    {"p",     "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS},
569
    {NULL}
570
};
571
 
572
DEFINE_BIQUAD_FILTER(lowpass, "Apply a low-pass filter with 3dB point frequency.");
573
#endif  /* CONFIG_LOWPASS_FILTER */
574
#if CONFIG_HIGHPASS_FILTER
575
static const AVOption highpass_options[] = {
576
    {"frequency", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
577
    {"f",         "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
578
    {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
579
    {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
580
    {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
581
    {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
582
    {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
583
    {"width", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.707}, 0, 99999, FLAGS},
584
    {"w",     "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.707}, 0, 99999, FLAGS},
585
    {"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS},
586
    {"p",     "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS},
587
    {NULL}
588
};
589
 
590
DEFINE_BIQUAD_FILTER(highpass, "Apply a high-pass filter with 3dB point frequency.");
591
#endif  /* CONFIG_HIGHPASS_FILTER */
592
#if CONFIG_ALLPASS_FILTER
593
static const AVOption allpass_options[] = {
594
    {"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
595
    {"f",         "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
596
    {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=HERTZ}, HERTZ, SLOPE, FLAGS, "width_type"},
597
    {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
598
    {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
599
    {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
600
    {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
601
    {"width", "set filter-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=707.1}, 0, 99999, FLAGS},
602
    {"w",     "set filter-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=707.1}, 0, 99999, FLAGS},
603
    {NULL}
604
};
605
 
606
DEFINE_BIQUAD_FILTER(allpass, "Apply a two-pole all-pass filter.");
607
#endif  /* CONFIG_ALLPASS_FILTER */
608
#if CONFIG_BIQUAD_FILTER
609
static const AVOption biquad_options[] = {
610
    {"a0", NULL, OFFSET(a0), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MIN, INT16_MAX, FLAGS},
611
    {"a1", NULL, OFFSET(a1), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MIN, INT16_MAX, FLAGS},
612
    {"a2", NULL, OFFSET(a2), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MIN, INT16_MAX, FLAGS},
613
    {"b0", NULL, OFFSET(b0), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MIN, INT16_MAX, FLAGS},
614
    {"b1", NULL, OFFSET(b1), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MIN, INT16_MAX, FLAGS},
615
    {"b2", NULL, OFFSET(b2), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MIN, INT16_MAX, FLAGS},
616
    {NULL}
617
};
618
 
619
DEFINE_BIQUAD_FILTER(biquad, "Apply a biquad IIR filter with the given coefficients.");
620
#endif  /* CONFIG_BIQUAD_FILTER */