Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * Indeo Video v3 compatible decoder
3
 * Copyright (c) 2009 - 2011 Maxim Poliakovski
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
 
22
/**
23
 * @file
24
 * This is a decoder for Intel Indeo Video v3.
25
 * It is based on vector quantization, run-length coding and motion compensation.
26
 * Known container formats: .avi and .mov
27
 * Known FOURCCs: 'IV31', 'IV32'
28
 *
29
 * @see http://wiki.multimedia.cx/index.php?title=Indeo_3
30
 */
31
 
32
#include "libavutil/imgutils.h"
33
#include "libavutil/intreadwrite.h"
34
#include "avcodec.h"
35
#include "copy_block.h"
36
#include "bytestream.h"
37
#include "get_bits.h"
38
#include "hpeldsp.h"
39
#include "internal.h"
40
 
41
#include "indeo3data.h"
42
 
43
/* RLE opcodes. */
44
enum {
45
    RLE_ESC_F9    = 249, ///< same as RLE_ESC_FA + do the same with next block
46
    RLE_ESC_FA    = 250, ///< INTRA: skip block, INTER: copy data from reference
47
    RLE_ESC_FB    = 251, ///< apply null delta to N blocks / skip N blocks
48
    RLE_ESC_FC    = 252, ///< same as RLE_ESC_FD + do the same with next block
49
    RLE_ESC_FD    = 253, ///< apply null delta to all remaining lines of this block
50
    RLE_ESC_FE    = 254, ///< apply null delta to all lines up to the 3rd line
51
    RLE_ESC_FF    = 255  ///< apply null delta to all lines up to the 2nd line
52
};
53
 
54
 
55
/* Some constants for parsing frame bitstream flags. */
56
#define BS_8BIT_PEL     (1 << 1) ///< 8bit pixel bitdepth indicator
57
#define BS_KEYFRAME     (1 << 2) ///< intra frame indicator
58
#define BS_MV_Y_HALF    (1 << 4) ///< vertical mv halfpel resolution indicator
59
#define BS_MV_X_HALF    (1 << 5) ///< horizontal mv halfpel resolution indicator
60
#define BS_NONREF       (1 << 8) ///< nonref (discardable) frame indicator
61
#define BS_BUFFER        9       ///< indicates which of two frame buffers should be used
62
 
63
 
64
typedef struct Plane {
65
    uint8_t         *buffers[2];
66
    uint8_t         *pixels[2]; ///< pointer to the actual pixel data of the buffers above
67
    uint32_t        width;
68
    uint32_t        height;
69
    uint32_t        pitch;
70
} Plane;
71
 
72
#define CELL_STACK_MAX  20
73
 
74
typedef struct Cell {
75
    int16_t         xpos;       ///< cell coordinates in 4x4 blocks
76
    int16_t         ypos;
77
    int16_t         width;      ///< cell width  in 4x4 blocks
78
    int16_t         height;     ///< cell height in 4x4 blocks
79
    uint8_t         tree;       ///< tree id: 0- MC tree, 1 - VQ tree
80
    const int8_t    *mv_ptr;    ///< ptr to the motion vector if any
81
} Cell;
82
 
83
typedef struct Indeo3DecodeContext {
84
    AVCodecContext *avctx;
85
    HpelDSPContext  hdsp;
86
 
87
    GetBitContext   gb;
88
    int             need_resync;
89
    int             skip_bits;
90
    const uint8_t   *next_cell_data;
91
    const uint8_t   *last_byte;
92
    const int8_t    *mc_vectors;
93
    unsigned        num_vectors;    ///< number of motion vectors in mc_vectors
94
 
95
    int16_t         width, height;
96
    uint32_t        frame_num;      ///< current frame number (zero-based)
97
    uint32_t        data_size;      ///< size of the frame data in bytes
98
    uint16_t        frame_flags;    ///< frame properties
99
    uint8_t         cb_offset;      ///< needed for selecting VQ tables
100
    uint8_t         buf_sel;        ///< active frame buffer: 0 - primary, 1 -secondary
101
    const uint8_t   *y_data_ptr;
102
    const uint8_t   *v_data_ptr;
103
    const uint8_t   *u_data_ptr;
104
    int32_t         y_data_size;
105
    int32_t         v_data_size;
106
    int32_t         u_data_size;
107
    const uint8_t   *alt_quant;     ///< secondary VQ table set for the modes 1 and 4
108
    Plane           planes[3];
109
} Indeo3DecodeContext;
110
 
111
 
112
static uint8_t requant_tab[8][128];
113
 
114
/*
115
 *  Build the static requantization table.
116
 *  This table is used to remap pixel values according to a specific
117
 *  quant index and thus avoid overflows while adding deltas.
118
 */
119
static av_cold void build_requant_tab(void)
120
{
121
    static int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
122
    static int8_t deltas [8] = { 0, 1, 0,  4,  4, 1, 0, 1 };
123
 
124
    int i, j, step;
125
 
126
    for (i = 0; i < 8; i++) {
127
        step = i + 2;
128
        for (j = 0; j < 128; j++)
129
                requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
130
    }
131
 
132
    /* some last elements calculated above will have values >= 128 */
133
    /* pixel values shall never exceed 127 so set them to non-overflowing values */
134
    /* according with the quantization step of the respective section */
135
    requant_tab[0][127] = 126;
136
    requant_tab[1][119] = 118;
137
    requant_tab[1][120] = 118;
138
    requant_tab[2][126] = 124;
139
    requant_tab[2][127] = 124;
140
    requant_tab[6][124] = 120;
141
    requant_tab[6][125] = 120;
142
    requant_tab[6][126] = 120;
143
    requant_tab[6][127] = 120;
144
 
145
    /* Patch for compatibility with the Intel's binary decoders */
146
    requant_tab[1][7] = 10;
147
    requant_tab[4][8] = 10;
148
}
149
 
150
 
151
static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx)
152
{
153
    int p;
154
 
155
    ctx->width = ctx->height = 0;
156
 
157
    for (p = 0; p < 3; p++) {
158
        av_freep(&ctx->planes[p].buffers[0]);
159
        av_freep(&ctx->planes[p].buffers[1]);
160
        ctx->planes[p].pixels[0] = ctx->planes[p].pixels[1] = 0;
161
    }
162
}
163
 
164
 
165
static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx,
166
                                          AVCodecContext *avctx, int luma_width, int luma_height)
167
{
168
    int p, chroma_width, chroma_height;
169
    int luma_pitch, chroma_pitch, luma_size, chroma_size;
170
 
171
    if (luma_width  < 16 || luma_width  > 640 ||
172
        luma_height < 16 || luma_height > 480 ||
173
        luma_width  &  3 || luma_height &   3) {
174
        av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
175
               luma_width, luma_height);
176
        return AVERROR_INVALIDDATA;
177
    }
178
 
179
    ctx->width  = luma_width ;
180
    ctx->height = luma_height;
181
 
182
    chroma_width  = FFALIGN(luma_width  >> 2, 4);
183
    chroma_height = FFALIGN(luma_height >> 2, 4);
184
 
185
    luma_pitch   = FFALIGN(luma_width,   16);
186
    chroma_pitch = FFALIGN(chroma_width, 16);
187
 
188
    /* Calculate size of the luminance plane.  */
189
    /* Add one line more for INTRA prediction. */
190
    luma_size = luma_pitch * (luma_height + 1);
191
 
192
    /* Calculate size of a chrominance planes. */
193
    /* Add one line more for INTRA prediction. */
194
    chroma_size = chroma_pitch * (chroma_height + 1);
195
 
196
    /* allocate frame buffers */
197
    for (p = 0; p < 3; p++) {
198
        ctx->planes[p].pitch  = !p ? luma_pitch  : chroma_pitch;
199
        ctx->planes[p].width  = !p ? luma_width  : chroma_width;
200
        ctx->planes[p].height = !p ? luma_height : chroma_height;
201
 
202
        ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
203
        ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);
204
 
205
        if (!ctx->planes[p].buffers[0] || !ctx->planes[p].buffers[1]) {
206
            free_frame_buffers(ctx);
207
            return AVERROR(ENOMEM);
208
        }
209
 
210
        /* fill the INTRA prediction lines with the middle pixel value = 64 */
211
        memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
212
        memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);
213
 
214
        /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
215
        ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
216
        ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
217
        memset(ctx->planes[p].pixels[0], 0, ctx->planes[p].pitch * ctx->planes[p].height);
218
        memset(ctx->planes[p].pixels[1], 0, ctx->planes[p].pitch * ctx->planes[p].height);
219
    }
220
 
221
    return 0;
222
}
223
 
224
/**
225
 *  Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
226
 *  the cell(x, y) in the current frame.
227
 *
228
 *  @param ctx      pointer to the decoder context
229
 *  @param plane    pointer to the plane descriptor
230
 *  @param cell     pointer to the cell  descriptor
231
 */
232
static int copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
233
{
234
    int     h, w, mv_x, mv_y, offset, offset_dst;
235
    uint8_t *src, *dst;
236
 
237
    /* setup output and reference pointers */
238
    offset_dst  = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
239
    dst         = plane->pixels[ctx->buf_sel] + offset_dst;
240
    if(cell->mv_ptr){
241
    mv_y        = cell->mv_ptr[0];
242
    mv_x        = cell->mv_ptr[1];
243
    }else
244
        mv_x= mv_y= 0;
245
 
246
    /* -1 because there is an extra line on top for prediction */
247
    if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
248
        ((cell->ypos + cell->height) << 2) + mv_y > plane->height     ||
249
        ((cell->xpos + cell->width)  << 2) + mv_x > plane->width) {
250
        av_log(ctx->avctx, AV_LOG_ERROR,
251
               "Motion vectors point out of the frame.\n");
252
        return AVERROR_INVALIDDATA;
253
    }
254
 
255
    offset      = offset_dst + mv_y * plane->pitch + mv_x;
256
    src         = plane->pixels[ctx->buf_sel ^ 1] + offset;
257
 
258
    h = cell->height << 2;
259
 
260
    for (w = cell->width; w > 0;) {
261
        /* copy using 16xH blocks */
262
        if (!((cell->xpos << 2) & 15) && w >= 4) {
263
            for (; w >= 4; src += 16, dst += 16, w -= 4)
264
                ctx->hdsp.put_pixels_tab[0][0](dst, src, plane->pitch, h);
265
        }
266
 
267
        /* copy using 8xH blocks */
268
        if (!((cell->xpos << 2) & 7) && w >= 2) {
269
            ctx->hdsp.put_pixels_tab[1][0](dst, src, plane->pitch, h);
270
            w -= 2;
271
            src += 8;
272
            dst += 8;
273
        } else if (w >= 1) {
274
            ctx->hdsp.put_pixels_tab[2][0](dst, src, plane->pitch, h);
275
            w--;
276
            src += 4;
277
            dst += 4;
278
        }
279
    }
280
 
281
    return 0;
282
}
283
 
284
 
285
/* Average 4/8 pixels at once without rounding using SWAR */
286
#define AVG_32(dst, src, ref) \
287
    AV_WN32A(dst, ((AV_RN32(src) + AV_RN32(ref)) >> 1) & 0x7F7F7F7FUL)
288
 
289
#define AVG_64(dst, src, ref) \
290
    AV_WN64A(dst, ((AV_RN64(src) + AV_RN64(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)
291
 
292
 
293
/*
294
 *  Replicate each even pixel as follows:
295
 *  ABCDEFGH -> AACCEEGG
296
 */
297
static inline uint64_t replicate64(uint64_t a) {
298
#if HAVE_BIGENDIAN
299
    a &= 0xFF00FF00FF00FF00ULL;
300
    a |= a >> 8;
301
#else
302
    a &= 0x00FF00FF00FF00FFULL;
303
    a |= a << 8;
304
#endif
305
    return a;
306
}
307
 
308
static inline uint32_t replicate32(uint32_t a) {
309
#if HAVE_BIGENDIAN
310
    a &= 0xFF00FF00UL;
311
    a |= a >> 8;
312
#else
313
    a &= 0x00FF00FFUL;
314
    a |= a << 8;
315
#endif
316
    return a;
317
}
318
 
319
 
320
/* Fill n lines with 64bit pixel value pix */
321
static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
322
                           int32_t row_offset)
323
{
324
    for (; n > 0; dst += row_offset, n--)
325
        AV_WN64A(dst, pix);
326
}
327
 
328
 
329
/* Error codes for cell decoding. */
330
enum {
331
    IV3_NOERR       = 0,
332
    IV3_BAD_RLE     = 1,
333
    IV3_BAD_DATA    = 2,
334
    IV3_BAD_COUNTER = 3,
335
    IV3_UNSUPPORTED = 4,
336
    IV3_OUT_OF_DATA = 5
337
};
338
 
339
 
340
#define BUFFER_PRECHECK \
341
if (*data_ptr >= last_ptr) \
342
    return IV3_OUT_OF_DATA; \
343
 
344
#define RLE_BLOCK_COPY \
345
    if (cell->mv_ptr || !skip_flag) \
346
        copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)
347
 
348
#define RLE_BLOCK_COPY_8 \
349
    pix64 = AV_RN64(ref);\
350
    if (is_first_row) {/* special prediction case: top line of a cell */\
351
        pix64 = replicate64(pix64);\
352
        fill_64(dst + row_offset, pix64, 7, row_offset);\
353
        AVG_64(dst, ref, dst + row_offset);\
354
    } else \
355
        fill_64(dst, pix64, 8, row_offset)
356
 
357
#define RLE_LINES_COPY \
358
    copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)
359
 
360
#define RLE_LINES_COPY_M10 \
361
    pix64 = AV_RN64(ref);\
362
    if (is_top_of_cell) {\
363
        pix64 = replicate64(pix64);\
364
        fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
365
        AVG_64(dst, ref, dst + row_offset);\
366
    } else \
367
        fill_64(dst, pix64, num_lines << 1, row_offset)
368
 
369
#define APPLY_DELTA_4 \
370
    AV_WN16A(dst + line_offset    ,\
371
             (AV_RN16(ref    ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
372
    AV_WN16A(dst + line_offset + 2,\
373
             (AV_RN16(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
374
    if (mode >= 3) {\
375
        if (is_top_of_cell && !cell->ypos) {\
376
            AV_COPY32U(dst, dst + row_offset);\
377
        } else {\
378
            AVG_32(dst, ref, dst + row_offset);\
379
        }\
380
    }
381
 
382
#define APPLY_DELTA_8 \
383
    /* apply two 32-bit VQ deltas to next even line */\
384
    if (is_top_of_cell) { \
385
        AV_WN32A(dst + row_offset    , \
386
                 (replicate32(AV_RN32(ref    )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
387
        AV_WN32A(dst + row_offset + 4, \
388
                 (replicate32(AV_RN32(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
389
    } else { \
390
        AV_WN32A(dst + row_offset    , \
391
                 (AV_RN32(ref    ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
392
        AV_WN32A(dst + row_offset + 4, \
393
                 (AV_RN32(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
394
    } \
395
    /* odd lines are not coded but rather interpolated/replicated */\
396
    /* first line of the cell on the top of image? - replicate */\
397
    /* otherwise - interpolate */\
398
    if (is_top_of_cell && !cell->ypos) {\
399
        AV_COPY64U(dst, dst + row_offset);\
400
    } else \
401
        AVG_64(dst, ref, dst + row_offset);
402
 
403
 
404
#define APPLY_DELTA_1011_INTER \
405
    if (mode == 10) { \
406
        AV_WN32A(dst                 , \
407
                 (AV_RN32(dst                 ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
408
        AV_WN32A(dst + 4             , \
409
                 (AV_RN32(dst + 4             ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
410
        AV_WN32A(dst + row_offset    , \
411
                 (AV_RN32(dst + row_offset    ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
412
        AV_WN32A(dst + row_offset + 4, \
413
                 (AV_RN32(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
414
    } else { \
415
        AV_WN16A(dst                 , \
416
                 (AV_RN16(dst                 ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
417
        AV_WN16A(dst + 2             , \
418
                 (AV_RN16(dst + 2             ) + delta_tab->deltas[dyad2]) & 0x7F7F);\
419
        AV_WN16A(dst + row_offset    , \
420
                 (AV_RN16(dst + row_offset    ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
421
        AV_WN16A(dst + row_offset + 2, \
422
                 (AV_RN16(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
423
    }
424
 
425
 
426
static int decode_cell_data(Indeo3DecodeContext *ctx, Cell *cell,
427
                            uint8_t *block, uint8_t *ref_block,
428
                            int pitch, int h_zoom, int v_zoom, int mode,
429
                            const vqEntry *delta[2], int swap_quads[2],
430
                            const uint8_t **data_ptr, const uint8_t *last_ptr)
431
{
432
    int           x, y, line, num_lines;
433
    int           rle_blocks = 0;
434
    uint8_t       code, *dst, *ref;
435
    const vqEntry *delta_tab;
436
    unsigned int  dyad1, dyad2;
437
    uint64_t      pix64;
438
    int           skip_flag = 0, is_top_of_cell, is_first_row = 1;
439
    int           row_offset, blk_row_offset, line_offset;
440
 
441
    row_offset     =  pitch;
442
    blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
443
    line_offset    = v_zoom ? row_offset : 0;
444
 
445
    if (cell->height & v_zoom || cell->width & h_zoom)
446
        return IV3_BAD_DATA;
447
 
448
    for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
449
        for (x = 0; x < cell->width; x += 1 + h_zoom) {
450
            ref = ref_block;
451
            dst = block;
452
 
453
            if (rle_blocks > 0) {
454
                if (mode <= 4) {
455
                    RLE_BLOCK_COPY;
456
                } else if (mode == 10 && !cell->mv_ptr) {
457
                    RLE_BLOCK_COPY_8;
458
                }
459
                rle_blocks--;
460
            } else {
461
                for (line = 0; line < 4;) {
462
                    num_lines = 1;
463
                    is_top_of_cell = is_first_row && !line;
464
 
465
                    /* select primary VQ table for odd, secondary for even lines */
466
                    if (mode <= 4)
467
                        delta_tab = delta[line & 1];
468
                    else
469
                        delta_tab = delta[1];
470
                    BUFFER_PRECHECK;
471
                    code = bytestream_get_byte(data_ptr);
472
                    if (code < 248) {
473
                        if (code < delta_tab->num_dyads) {
474
                            BUFFER_PRECHECK;
475
                            dyad1 = bytestream_get_byte(data_ptr);
476
                            dyad2 = code;
477
                            if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
478
                                return IV3_BAD_DATA;
479
                        } else {
480
                            /* process QUADS */
481
                            code -= delta_tab->num_dyads;
482
                            dyad1 = code / delta_tab->quad_exp;
483
                            dyad2 = code % delta_tab->quad_exp;
484
                            if (swap_quads[line & 1])
485
                                FFSWAP(unsigned int, dyad1, dyad2);
486
                        }
487
                        if (mode <= 4) {
488
                            APPLY_DELTA_4;
489
                        } else if (mode == 10 && !cell->mv_ptr) {
490
                            APPLY_DELTA_8;
491
                        } else {
492
                            APPLY_DELTA_1011_INTER;
493
                        }
494
                    } else {
495
                        /* process RLE codes */
496
                        switch (code) {
497
                        case RLE_ESC_FC:
498
                            skip_flag  = 0;
499
                            rle_blocks = 1;
500
                            code       = 253;
501
                            /* FALLTHROUGH */
502
                        case RLE_ESC_FF:
503
                        case RLE_ESC_FE:
504
                        case RLE_ESC_FD:
505
                            num_lines = 257 - code - line;
506
                            if (num_lines <= 0)
507
                                return IV3_BAD_RLE;
508
                            if (mode <= 4) {
509
                                RLE_LINES_COPY;
510
                            } else if (mode == 10 && !cell->mv_ptr) {
511
                                RLE_LINES_COPY_M10;
512
                            }
513
                            break;
514
                        case RLE_ESC_FB:
515
                            BUFFER_PRECHECK;
516
                            code = bytestream_get_byte(data_ptr);
517
                            rle_blocks = (code & 0x1F) - 1; /* set block counter */
518
                            if (code >= 64 || rle_blocks < 0)
519
                                return IV3_BAD_COUNTER;
520
                            skip_flag = code & 0x20;
521
                            num_lines = 4 - line; /* enforce next block processing */
522
                            if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
523
                                if (mode <= 4) {
524
                                    RLE_LINES_COPY;
525
                                } else if (mode == 10 && !cell->mv_ptr) {
526
                                    RLE_LINES_COPY_M10;
527
                                }
528
                            }
529
                            break;
530
                        case RLE_ESC_F9:
531
                            skip_flag  = 1;
532
                            rle_blocks = 1;
533
                            /* FALLTHROUGH */
534
                        case RLE_ESC_FA:
535
                            if (line)
536
                                return IV3_BAD_RLE;
537
                            num_lines = 4; /* enforce next block processing */
538
                            if (cell->mv_ptr) {
539
                                if (mode <= 4) {
540
                                    RLE_LINES_COPY;
541
                                } else if (mode == 10 && !cell->mv_ptr) {
542
                                    RLE_LINES_COPY_M10;
543
                                }
544
                            }
545
                            break;
546
                        default:
547
                            return IV3_UNSUPPORTED;
548
                        }
549
                    }
550
 
551
                    line += num_lines;
552
                    ref  += row_offset * (num_lines << v_zoom);
553
                    dst  += row_offset * (num_lines << v_zoom);
554
                }
555
            }
556
 
557
            /* move to next horizontal block */
558
            block     += 4 << h_zoom;
559
            ref_block += 4 << h_zoom;
560
        }
561
 
562
        /* move to next line of blocks */
563
        ref_block += blk_row_offset;
564
        block     += blk_row_offset;
565
    }
566
    return IV3_NOERR;
567
}
568
 
569
 
570
/**
571
 *  Decode a vector-quantized cell.
572
 *  It consists of several routines, each of which handles one or more "modes"
573
 *  with which a cell can be encoded.
574
 *
575
 *  @param ctx      pointer to the decoder context
576
 *  @param avctx    ptr to the AVCodecContext
577
 *  @param plane    pointer to the plane descriptor
578
 *  @param cell     pointer to the cell  descriptor
579
 *  @param data_ptr pointer to the compressed data
580
 *  @param last_ptr pointer to the last byte to catch reads past end of buffer
581
 *  @return         number of consumed bytes or negative number in case of error
582
 */
583
static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
584
                       Plane *plane, Cell *cell, const uint8_t *data_ptr,
585
                       const uint8_t *last_ptr)
586
{
587
    int           x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
588
    int           zoom_fac;
589
    int           offset, error = 0, swap_quads[2];
590
    uint8_t       code, *block, *ref_block = 0;
591
    const vqEntry *delta[2];
592
    const uint8_t *data_start = data_ptr;
593
 
594
    /* get coding mode and VQ table index from the VQ descriptor byte */
595
    code     = *data_ptr++;
596
    mode     = code >> 4;
597
    vq_index = code & 0xF;
598
 
599
    /* setup output and reference pointers */
600
    offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
601
    block  =  plane->pixels[ctx->buf_sel] + offset;
602
 
603
    if (!cell->mv_ptr) {
604
        /* use previous line as reference for INTRA cells */
605
        ref_block = block - plane->pitch;
606
    } else if (mode >= 10) {
607
        /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
608
        /* so we don't need to do data copying for each RLE code later */
609
        int ret = copy_cell(ctx, plane, cell);
610
        if (ret < 0)
611
            return ret;
612
    } else {
613
        /* set the pointer to the reference pixels for modes 0-4 INTER */
614
        mv_y      = cell->mv_ptr[0];
615
        mv_x      = cell->mv_ptr[1];
616
 
617
        /* -1 because there is an extra line on top for prediction */
618
        if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
619
            ((cell->ypos + cell->height) << 2) + mv_y > plane->height     ||
620
            ((cell->xpos + cell->width)  << 2) + mv_x > plane->width) {
621
            av_log(ctx->avctx, AV_LOG_ERROR,
622
                   "Motion vectors point out of the frame.\n");
623
            return AVERROR_INVALIDDATA;
624
        }
625
 
626
        offset   += mv_y * plane->pitch + mv_x;
627
        ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
628
    }
629
 
630
    /* select VQ tables as follows: */
631
    /* modes 0 and 3 use only the primary table for all lines in a block */
632
    /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
633
    if (mode == 1 || mode == 4) {
634
        code        = ctx->alt_quant[vq_index];
635
        prim_indx   = (code >> 4)  + ctx->cb_offset;
636
        second_indx = (code & 0xF) + ctx->cb_offset;
637
    } else {
638
        vq_index += ctx->cb_offset;
639
        prim_indx = second_indx = vq_index;
640
    }
641
 
642
    if (prim_indx >= 24 || second_indx >= 24) {
643
        av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
644
               prim_indx, second_indx);
645
        return AVERROR_INVALIDDATA;
646
    }
647
 
648
    delta[0] = &vq_tab[second_indx];
649
    delta[1] = &vq_tab[prim_indx];
650
    swap_quads[0] = second_indx >= 16;
651
    swap_quads[1] = prim_indx   >= 16;
652
 
653
    /* requantize the prediction if VQ index of this cell differs from VQ index */
654
    /* of the predicted cell in order to avoid overflows. */
655
    if (vq_index >= 8 && ref_block) {
656
        for (x = 0; x < cell->width << 2; x++)
657
            ref_block[x] = requant_tab[vq_index & 7][ref_block[x] & 127];
658
    }
659
 
660
    error = IV3_NOERR;
661
 
662
    switch (mode) {
663
    case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
664
    case 1:
665
    case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
666
    case 4:
667
        if (mode >= 3 && cell->mv_ptr) {
668
            av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
669
            return AVERROR_INVALIDDATA;
670
        }
671
 
672
        zoom_fac = mode >= 3;
673
        error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
674
                                 0, zoom_fac, mode, delta, swap_quads,
675
                                 &data_ptr, last_ptr);
676
        break;
677
    case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
678
    case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
679
        if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
680
            error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
681
                                     1, 1, mode, delta, swap_quads,
682
                                     &data_ptr, last_ptr);
683
        } else { /* mode 10 and 11 INTER processing */
684
            if (mode == 11 && !cell->mv_ptr) {
685
               av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
686
               return AVERROR_INVALIDDATA;
687
            }
688
 
689
            zoom_fac = mode == 10;
690
            error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
691
                                     zoom_fac, 1, mode, delta, swap_quads,
692
                                     &data_ptr, last_ptr);
693
        }
694
        break;
695
    default:
696
        av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
697
        return AVERROR_INVALIDDATA;
698
    }//switch mode
699
 
700
    switch (error) {
701
    case IV3_BAD_RLE:
702
        av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
703
               mode, data_ptr[-1]);
704
        return AVERROR_INVALIDDATA;
705
    case IV3_BAD_DATA:
706
        av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
707
        return AVERROR_INVALIDDATA;
708
    case IV3_BAD_COUNTER:
709
        av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
710
        return AVERROR_INVALIDDATA;
711
    case IV3_UNSUPPORTED:
712
        av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
713
        return AVERROR_INVALIDDATA;
714
    case IV3_OUT_OF_DATA:
715
        av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
716
        return AVERROR_INVALIDDATA;
717
    }
718
 
719
    return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
720
}
721
 
722
 
723
/* Binary tree codes. */
724
enum {
725
    H_SPLIT    = 0,
726
    V_SPLIT    = 1,
727
    INTRA_NULL = 2,
728
    INTER_DATA = 3
729
};
730
 
731
 
732
#define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1
733
 
734
#define UPDATE_BITPOS(n) \
735
    ctx->skip_bits  += (n); \
736
    ctx->need_resync = 1
737
 
738
#define RESYNC_BITSTREAM \
739
    if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
740
        skip_bits_long(&ctx->gb, ctx->skip_bits);              \
741
        ctx->skip_bits   = 0;                                  \
742
        ctx->need_resync = 0;                                  \
743
    }
744
 
745
#define CHECK_CELL \
746
    if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) ||               \
747
        curr_cell.ypos + curr_cell.height > (plane->height >> 2)) {             \
748
        av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n",   \
749
               curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
750
        return AVERROR_INVALIDDATA;                                                              \
751
    }
752
 
753
 
754
static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
755
                         Plane *plane, int code, Cell *ref_cell,
756
                         const int depth, const int strip_width)
757
{
758
    Cell    curr_cell;
759
    int     bytes_used, ret;
760
 
761
    if (depth <= 0) {
762
        av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
763
        return AVERROR_INVALIDDATA; // unwind recursion
764
    }
765
 
766
    curr_cell = *ref_cell; // clone parent cell
767
    if (code == H_SPLIT) {
768
        SPLIT_CELL(ref_cell->height, curr_cell.height);
769
        ref_cell->ypos   += curr_cell.height;
770
        ref_cell->height -= curr_cell.height;
771
        if (ref_cell->height <= 0 || curr_cell.height <= 0)
772
            return AVERROR_INVALIDDATA;
773
    } else if (code == V_SPLIT) {
774
        if (curr_cell.width > strip_width) {
775
            /* split strip */
776
            curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
777
        } else
778
            SPLIT_CELL(ref_cell->width, curr_cell.width);
779
        ref_cell->xpos  += curr_cell.width;
780
        ref_cell->width -= curr_cell.width;
781
        if (ref_cell->width <= 0 || curr_cell.width <= 0)
782
            return AVERROR_INVALIDDATA;
783
    }
784
 
785
    while (get_bits_left(&ctx->gb) >= 2) { /* loop until return */
786
        RESYNC_BITSTREAM;
787
        switch (code = get_bits(&ctx->gb, 2)) {
788
        case H_SPLIT:
789
        case V_SPLIT:
790
            if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
791
                return AVERROR_INVALIDDATA;
792
            break;
793
        case INTRA_NULL:
794
            if (!curr_cell.tree) { /* MC tree INTRA code */
795
                curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
796
                curr_cell.tree   = 1; /* enter the VQ tree */
797
            } else { /* VQ tree NULL code */
798
                RESYNC_BITSTREAM;
799
                code = get_bits(&ctx->gb, 2);
800
                if (code >= 2) {
801
                    av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
802
                    return AVERROR_INVALIDDATA;
803
                }
804
                if (code == 1)
805
                    av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");
806
 
807
                CHECK_CELL
808
                if (!curr_cell.mv_ptr)
809
                    return AVERROR_INVALIDDATA;
810
 
811
                ret = copy_cell(ctx, plane, &curr_cell);
812
                return ret;
813
            }
814
            break;
815
        case INTER_DATA:
816
            if (!curr_cell.tree) { /* MC tree INTER code */
817
                unsigned mv_idx;
818
                /* get motion vector index and setup the pointer to the mv set */
819
                if (!ctx->need_resync)
820
                    ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
821
                if (ctx->next_cell_data >= ctx->last_byte) {
822
                    av_log(avctx, AV_LOG_ERROR, "motion vector out of array\n");
823
                    return AVERROR_INVALIDDATA;
824
                }
825
                mv_idx = *(ctx->next_cell_data++);
826
                if (mv_idx >= ctx->num_vectors) {
827
                    av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n");
828
                    return AVERROR_INVALIDDATA;
829
                }
830
                curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1];
831
                curr_cell.tree   = 1; /* enter the VQ tree */
832
                UPDATE_BITPOS(8);
833
            } else { /* VQ tree DATA code */
834
                if (!ctx->need_resync)
835
                    ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
836
 
837
                CHECK_CELL
838
                bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
839
                                         ctx->next_cell_data, ctx->last_byte);
840
                if (bytes_used < 0)
841
                    return AVERROR_INVALIDDATA;
842
 
843
                UPDATE_BITPOS(bytes_used << 3);
844
                ctx->next_cell_data += bytes_used;
845
                return 0;
846
            }
847
            break;
848
        }
849
    }//while
850
 
851
    return AVERROR_INVALIDDATA;
852
}
853
 
854
 
855
static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
856
                        Plane *plane, const uint8_t *data, int32_t data_size,
857
                        int32_t strip_width)
858
{
859
    Cell            curr_cell;
860
    unsigned        num_vectors;
861
 
862
    /* each plane data starts with mc_vector_count field, */
863
    /* an optional array of motion vectors followed by the vq data */
864
    num_vectors = bytestream_get_le32(&data); data_size -= 4;
865
    if (num_vectors > 256) {
866
        av_log(ctx->avctx, AV_LOG_ERROR,
867
               "Read invalid number of motion vectors %d\n", num_vectors);
868
        return AVERROR_INVALIDDATA;
869
    }
870
    if (num_vectors * 2 > data_size)
871
        return AVERROR_INVALIDDATA;
872
 
873
    ctx->num_vectors = num_vectors;
874
    ctx->mc_vectors  = num_vectors ? data : 0;
875
 
876
    /* init the bitreader */
877
    init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3);
878
    ctx->skip_bits   = 0;
879
    ctx->need_resync = 0;
880
 
881
    ctx->last_byte = data + data_size;
882
 
883
    /* initialize the 1st cell and set its dimensions to whole plane */
884
    curr_cell.xpos   = curr_cell.ypos = 0;
885
    curr_cell.width  = plane->width  >> 2;
886
    curr_cell.height = plane->height >> 2;
887
    curr_cell.tree   = 0; // we are in the MC tree now
888
    curr_cell.mv_ptr = 0; // no motion vector = INTRA cell
889
 
890
    return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
891
}
892
 
893
 
894
#define OS_HDR_ID   MKBETAG('F', 'R', 'M', 'H')
895
 
896
static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
897
                                const uint8_t *buf, int buf_size)
898
{
899
    GetByteContext gb;
900
    const uint8_t   *bs_hdr;
901
    uint32_t        frame_num, word2, check_sum, data_size;
902
    uint32_t        y_offset, u_offset, v_offset, starts[3], ends[3];
903
    uint16_t        height, width;
904
    int             i, j;
905
 
906
    bytestream2_init(&gb, buf, buf_size);
907
 
908
    /* parse and check the OS header */
909
    frame_num = bytestream2_get_le32(&gb);
910
    word2     = bytestream2_get_le32(&gb);
911
    check_sum = bytestream2_get_le32(&gb);
912
    data_size = bytestream2_get_le32(&gb);
913
 
914
    if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
915
        av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
916
        return AVERROR_INVALIDDATA;
917
    }
918
 
919
    /* parse the bitstream header */
920
    bs_hdr = gb.buffer;
921
 
922
    if (bytestream2_get_le16(&gb) != 32) {
923
        av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
924
        return AVERROR_INVALIDDATA;
925
    }
926
 
927
    ctx->frame_num   =  frame_num;
928
    ctx->frame_flags =  bytestream2_get_le16(&gb);
929
    ctx->data_size   = (bytestream2_get_le32(&gb) + 7) >> 3;
930
    ctx->cb_offset   =  bytestream2_get_byte(&gb);
931
 
932
    if (ctx->data_size == 16)
933
        return 4;
934
    ctx->data_size = FFMIN(ctx->data_size, buf_size - 16);
935
 
936
    bytestream2_skip(&gb, 3); // skip reserved byte and checksum
937
 
938
    /* check frame dimensions */
939
    height = bytestream2_get_le16(&gb);
940
    width  = bytestream2_get_le16(&gb);
941
    if (av_image_check_size(width, height, 0, avctx))
942
        return AVERROR_INVALIDDATA;
943
 
944
    if (width != ctx->width || height != ctx->height) {
945
        int res;
946
 
947
        av_dlog(avctx, "Frame dimensions changed!\n");
948
 
949
        if (width  < 16 || width  > 640 ||
950
            height < 16 || height > 480 ||
951
            width  &  3 || height &   3) {
952
            av_log(avctx, AV_LOG_ERROR,
953
                   "Invalid picture dimensions: %d x %d!\n", width, height);
954
            return AVERROR_INVALIDDATA;
955
        }
956
        free_frame_buffers(ctx);
957
        if ((res = allocate_frame_buffers(ctx, avctx, width, height)) < 0)
958
             return res;
959
        avcodec_set_dimensions(avctx, width, height);
960
    }
961
 
962
    y_offset = bytestream2_get_le32(&gb);
963
    v_offset = bytestream2_get_le32(&gb);
964
    u_offset = bytestream2_get_le32(&gb);
965
    bytestream2_skip(&gb, 4);
966
 
967
    /* unfortunately there is no common order of planes in the buffer */
968
    /* so we use that sorting algo for determining planes data sizes  */
969
    starts[0] = y_offset;
970
    starts[1] = v_offset;
971
    starts[2] = u_offset;
972
 
973
    for (j = 0; j < 3; j++) {
974
        ends[j] = ctx->data_size;
975
        for (i = 2; i >= 0; i--)
976
            if (starts[i] < ends[j] && starts[i] > starts[j])
977
                ends[j] = starts[i];
978
    }
979
 
980
    ctx->y_data_size = ends[0] - starts[0];
981
    ctx->v_data_size = ends[1] - starts[1];
982
    ctx->u_data_size = ends[2] - starts[2];
983
    if (FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
984
        FFMIN3(y_offset, v_offset, u_offset) < gb.buffer - bs_hdr + 16 ||
985
        FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
986
        av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
987
        return AVERROR_INVALIDDATA;
988
    }
989
 
990
    ctx->y_data_ptr = bs_hdr + y_offset;
991
    ctx->v_data_ptr = bs_hdr + v_offset;
992
    ctx->u_data_ptr = bs_hdr + u_offset;
993
    ctx->alt_quant  = gb.buffer;
994
 
995
    if (ctx->data_size == 16) {
996
        av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
997
        return 16;
998
    }
999
 
1000
    if (ctx->frame_flags & BS_8BIT_PEL) {
1001
        avpriv_request_sample(avctx, "8-bit pixel format");
1002
        return AVERROR_PATCHWELCOME;
1003
    }
1004
 
1005
    if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
1006
        avpriv_request_sample(avctx, "Halfpel motion vectors");
1007
        return AVERROR_PATCHWELCOME;
1008
    }
1009
 
1010
    return 0;
1011
}
1012
 
1013
 
1014
/**
1015
 *  Convert and output the current plane.
1016
 *  All pixel values will be upsampled by shifting right by one bit.
1017
 *
1018
 *  @param[in]  plane        pointer to the descriptor of the plane being processed
1019
 *  @param[in]  buf_sel      indicates which frame buffer the input data stored in
1020
 *  @param[out] dst          pointer to the buffer receiving converted pixels
1021
 *  @param[in]  dst_pitch    pitch for moving to the next y line
1022
 *  @param[in]  dst_height   output plane height
1023
 */
1024
static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst,
1025
                         int dst_pitch, int dst_height)
1026
{
1027
    int             x,y;
1028
    const uint8_t   *src  = plane->pixels[buf_sel];
1029
    uint32_t        pitch = plane->pitch;
1030
 
1031
    dst_height = FFMIN(dst_height, plane->height);
1032
    for (y = 0; y < dst_height; y++) {
1033
        /* convert four pixels at once using SWAR */
1034
        for (x = 0; x < plane->width >> 2; x++) {
1035
            AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
1036
            src += 4;
1037
            dst += 4;
1038
        }
1039
 
1040
        for (x <<= 2; x < plane->width; x++)
1041
            *dst++ = *src++ << 1;
1042
 
1043
        src += pitch     - plane->width;
1044
        dst += dst_pitch - plane->width;
1045
    }
1046
}
1047
 
1048
 
1049
static av_cold int decode_init(AVCodecContext *avctx)
1050
{
1051
    Indeo3DecodeContext *ctx = avctx->priv_data;
1052
 
1053
    ctx->avctx     = avctx;
1054
    avctx->pix_fmt = AV_PIX_FMT_YUV410P;
1055
 
1056
    build_requant_tab();
1057
 
1058
    ff_hpeldsp_init(&ctx->hdsp, avctx->flags);
1059
 
1060
    return allocate_frame_buffers(ctx, avctx, avctx->width, avctx->height);
1061
}
1062
 
1063
 
1064
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
1065
                        AVPacket *avpkt)
1066
{
1067
    Indeo3DecodeContext *ctx = avctx->priv_data;
1068
    const uint8_t *buf = avpkt->data;
1069
    int buf_size       = avpkt->size;
1070
    AVFrame *frame     = data;
1071
    int res;
1072
 
1073
    res = decode_frame_headers(ctx, avctx, buf, buf_size);
1074
    if (res < 0)
1075
        return res;
1076
 
1077
    /* skip sync(null) frames */
1078
    if (res) {
1079
        // we have processed 16 bytes but no data was decoded
1080
        *got_frame = 0;
1081
        return buf_size;
1082
    }
1083
 
1084
    /* skip droppable INTER frames if requested */
1085
    if (ctx->frame_flags & BS_NONREF &&
1086
       (avctx->skip_frame >= AVDISCARD_NONREF))
1087
        return 0;
1088
 
1089
    /* skip INTER frames if requested */
1090
    if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
1091
        return 0;
1092
 
1093
    /* use BS_BUFFER flag for buffer switching */
1094
    ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;
1095
 
1096
    if ((res = ff_get_buffer(avctx, frame, 0)) < 0)
1097
        return res;
1098
 
1099
    /* decode luma plane */
1100
    if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
1101
        return res;
1102
 
1103
    /* decode chroma planes */
1104
    if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
1105
        return res;
1106
 
1107
    if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
1108
        return res;
1109
 
1110
    output_plane(&ctx->planes[0], ctx->buf_sel,
1111
                 frame->data[0], frame->linesize[0],
1112
                 avctx->height);
1113
    output_plane(&ctx->planes[1], ctx->buf_sel,
1114
                 frame->data[1], frame->linesize[1],
1115
                 (avctx->height + 3) >> 2);
1116
    output_plane(&ctx->planes[2], ctx->buf_sel,
1117
                 frame->data[2], frame->linesize[2],
1118
                 (avctx->height + 3) >> 2);
1119
 
1120
    *got_frame = 1;
1121
 
1122
    return buf_size;
1123
}
1124
 
1125
 
1126
static av_cold int decode_close(AVCodecContext *avctx)
1127
{
1128
    free_frame_buffers(avctx->priv_data);
1129
 
1130
    return 0;
1131
}
1132
 
1133
AVCodec ff_indeo3_decoder = {
1134
    .name           = "indeo3",
1135
    .long_name      = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
1136
    .type           = AVMEDIA_TYPE_VIDEO,
1137
    .id             = AV_CODEC_ID_INDEO3,
1138
    .priv_data_size = sizeof(Indeo3DecodeContext),
1139
    .init           = decode_init,
1140
    .close          = decode_close,
1141
    .decode         = decode_frame,
1142
    .capabilities   = CODEC_CAP_DR1,
1143
};