Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * MPEG-4 ALS decoder
3
 * Copyright (c) 2009 Thilo Borgmann 
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
 
22
/**
23
 * @file
24
 * MPEG-4 ALS decoder
25
 * @author Thilo Borgmann 
26
 */
27
 
28
#include "avcodec.h"
29
#include "get_bits.h"
30
#include "unary.h"
31
#include "mpeg4audio.h"
32
#include "bytestream.h"
33
#include "bgmc.h"
34
#include "dsputil.h"
35
#include "internal.h"
36
#include "libavutil/samplefmt.h"
37
#include "libavutil/crc.h"
38
 
39
#include 
40
 
41
/** Rice parameters and corresponding index offsets for decoding the
42
 *  indices of scaled PARCOR values. The table chosen is set globally
43
 *  by the encoder and stored in ALSSpecificConfig.
44
 */
45
static const int8_t parcor_rice_table[3][20][2] = {
46
    { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
47
      { 12, 3}, { -7, 3}, {  9, 3}, { -5, 3}, {  6, 3},
48
      { -4, 3}, {  3, 3}, { -3, 2}, {  3, 2}, { -2, 2},
49
      {  3, 2}, { -1, 2}, {  2, 2}, { -1, 2}, {  2, 2} },
50
    { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
51
      { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
52
      {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
53
      {  7, 3}, { -4, 4}, {  3, 3}, { -1, 3}, {  1, 3} },
54
    { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
55
      { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
56
      {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
57
      {  3, 3}, {  0, 3}, { -1, 3}, {  2, 3}, { -1, 2} }
58
};
59
 
60
 
61
/** Scaled PARCOR values used for the first two PARCOR coefficients.
62
 *  To be indexed by the Rice coded indices.
63
 *  Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
64
 *  Actual values are divided by 32 in order to be stored in 16 bits.
65
 */
66
static const int16_t parcor_scaled_values[] = {
67
    -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
68
    -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
69
    -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
70
    -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
71
    -1013728 / 32, -1009376 / 32, -1004768 / 32,  -999904 / 32,
72
     -994784 / 32,  -989408 / 32,  -983776 / 32,  -977888 / 32,
73
     -971744 / 32,  -965344 / 32,  -958688 / 32,  -951776 / 32,
74
     -944608 / 32,  -937184 / 32,  -929504 / 32,  -921568 / 32,
75
     -913376 / 32,  -904928 / 32,  -896224 / 32,  -887264 / 32,
76
     -878048 / 32,  -868576 / 32,  -858848 / 32,  -848864 / 32,
77
     -838624 / 32,  -828128 / 32,  -817376 / 32,  -806368 / 32,
78
     -795104 / 32,  -783584 / 32,  -771808 / 32,  -759776 / 32,
79
     -747488 / 32,  -734944 / 32,  -722144 / 32,  -709088 / 32,
80
     -695776 / 32,  -682208 / 32,  -668384 / 32,  -654304 / 32,
81
     -639968 / 32,  -625376 / 32,  -610528 / 32,  -595424 / 32,
82
     -580064 / 32,  -564448 / 32,  -548576 / 32,  -532448 / 32,
83
     -516064 / 32,  -499424 / 32,  -482528 / 32,  -465376 / 32,
84
     -447968 / 32,  -430304 / 32,  -412384 / 32,  -394208 / 32,
85
     -375776 / 32,  -357088 / 32,  -338144 / 32,  -318944 / 32,
86
     -299488 / 32,  -279776 / 32,  -259808 / 32,  -239584 / 32,
87
     -219104 / 32,  -198368 / 32,  -177376 / 32,  -156128 / 32,
88
     -134624 / 32,  -112864 / 32,   -90848 / 32,   -68576 / 32,
89
      -46048 / 32,   -23264 / 32,     -224 / 32,    23072 / 32,
90
       46624 / 32,    70432 / 32,    94496 / 32,   118816 / 32,
91
      143392 / 32,   168224 / 32,   193312 / 32,   218656 / 32,
92
      244256 / 32,   270112 / 32,   296224 / 32,   322592 / 32,
93
      349216 / 32,   376096 / 32,   403232 / 32,   430624 / 32,
94
      458272 / 32,   486176 / 32,   514336 / 32,   542752 / 32,
95
      571424 / 32,   600352 / 32,   629536 / 32,   658976 / 32,
96
      688672 / 32,   718624 / 32,   748832 / 32,   779296 / 32,
97
      810016 / 32,   840992 / 32,   872224 / 32,   903712 / 32,
98
      935456 / 32,   967456 / 32,   999712 / 32,  1032224 / 32
99
};
100
 
101
 
102
/** Gain values of p(0) for long-term prediction.
103
 *  To be indexed by the Rice coded indices.
104
 */
105
static const uint8_t ltp_gain_values [4][4] = {
106
    { 0,  8, 16,  24},
107
    {32, 40, 48,  56},
108
    {64, 70, 76,  82},
109
    {88, 92, 96, 100}
110
};
111
 
112
 
113
/** Inter-channel weighting factors for multi-channel correlation.
114
 *  To be indexed by the Rice coded indices.
115
 */
116
static const int16_t mcc_weightings[] = {
117
    204,  192,  179,  166,  153,  140,  128,  115,
118
    102,   89,   76,   64,   51,   38,   25,   12,
119
      0,  -12,  -25,  -38,  -51,  -64,  -76,  -89,
120
   -102, -115, -128, -140, -153, -166, -179, -192
121
};
122
 
123
 
124
/** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
125
 */
126
static const uint8_t tail_code[16][6] = {
127
    { 74, 44, 25, 13,  7, 3},
128
    { 68, 42, 24, 13,  7, 3},
129
    { 58, 39, 23, 13,  7, 3},
130
    {126, 70, 37, 19, 10, 5},
131
    {132, 70, 37, 20, 10, 5},
132
    {124, 70, 38, 20, 10, 5},
133
    {120, 69, 37, 20, 11, 5},
134
    {116, 67, 37, 20, 11, 5},
135
    {108, 66, 36, 20, 10, 5},
136
    {102, 62, 36, 20, 10, 5},
137
    { 88, 58, 34, 19, 10, 5},
138
    {162, 89, 49, 25, 13, 7},
139
    {156, 87, 49, 26, 14, 7},
140
    {150, 86, 47, 26, 14, 7},
141
    {142, 84, 47, 26, 14, 7},
142
    {131, 79, 46, 26, 14, 7}
143
};
144
 
145
 
146
enum RA_Flag {
147
    RA_FLAG_NONE,
148
    RA_FLAG_FRAMES,
149
    RA_FLAG_HEADER
150
};
151
 
152
 
153
typedef struct {
154
    uint32_t samples;         ///< number of samples, 0xFFFFFFFF if unknown
155
    int resolution;           ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
156
    int floating;             ///< 1 = IEEE 32-bit floating-point, 0 = integer
157
    int msb_first;            ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
158
    int frame_length;         ///< frame length for each frame (last frame may differ)
159
    int ra_distance;          ///< distance between RA frames (in frames, 0...255)
160
    enum RA_Flag ra_flag;     ///< indicates where the size of ra units is stored
161
    int adapt_order;          ///< adaptive order: 1 = on, 0 = off
162
    int coef_table;           ///< table index of Rice code parameters
163
    int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
164
    int max_order;            ///< maximum prediction order (0..1023)
165
    int block_switching;      ///< number of block switching levels
166
    int bgmc;                 ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
167
    int sb_part;              ///< sub-block partition
168
    int joint_stereo;         ///< joint stereo: 1 = on, 0 = off
169
    int mc_coding;            ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
170
    int chan_config;          ///< indicates that a chan_config_info field is present
171
    int chan_sort;            ///< channel rearrangement: 1 = on, 0 = off
172
    int rlslms;               ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
173
    int chan_config_info;     ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
174
    int *chan_pos;            ///< original channel positions
175
    int crc_enabled;          ///< enable Cyclic Redundancy Checksum
176
} ALSSpecificConfig;
177
 
178
 
179
typedef struct {
180
    int stop_flag;
181
    int master_channel;
182
    int time_diff_flag;
183
    int time_diff_sign;
184
    int time_diff_index;
185
    int weighting[6];
186
} ALSChannelData;
187
 
188
 
189
typedef struct {
190
    AVCodecContext *avctx;
191
    ALSSpecificConfig sconf;
192
    GetBitContext gb;
193
    DSPContext dsp;
194
    const AVCRC *crc_table;
195
    uint32_t crc_org;               ///< CRC value of the original input data
196
    uint32_t crc;                   ///< CRC value calculated from decoded data
197
    unsigned int cur_frame_length;  ///< length of the current frame to decode
198
    unsigned int frame_id;          ///< the frame ID / number of the current frame
199
    unsigned int js_switch;         ///< if true, joint-stereo decoding is enforced
200
    unsigned int cs_switch;         ///< if true, channel rearrangement is done
201
    unsigned int num_blocks;        ///< number of blocks used in the current frame
202
    unsigned int s_max;             ///< maximum Rice parameter allowed in entropy coding
203
    uint8_t *bgmc_lut;              ///< pointer at lookup tables used for BGMC
204
    int *bgmc_lut_status;           ///< pointer at lookup table status flags used for BGMC
205
    int ltp_lag_length;             ///< number of bits used for ltp lag value
206
    int *const_block;               ///< contains const_block flags for all channels
207
    unsigned int *shift_lsbs;       ///< contains shift_lsbs flags for all channels
208
    unsigned int *opt_order;        ///< contains opt_order flags for all channels
209
    int *store_prev_samples;        ///< contains store_prev_samples flags for all channels
210
    int *use_ltp;                   ///< contains use_ltp flags for all channels
211
    int *ltp_lag;                   ///< contains ltp lag values for all channels
212
    int **ltp_gain;                 ///< gain values for ltp 5-tap filter for a channel
213
    int *ltp_gain_buffer;           ///< contains all gain values for ltp 5-tap filter
214
    int32_t **quant_cof;            ///< quantized parcor coefficients for a channel
215
    int32_t *quant_cof_buffer;      ///< contains all quantized parcor coefficients
216
    int32_t **lpc_cof;              ///< coefficients of the direct form prediction filter for a channel
217
    int32_t *lpc_cof_buffer;        ///< contains all coefficients of the direct form prediction filter
218
    int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
219
    ALSChannelData **chan_data;     ///< channel data for multi-channel correlation
220
    ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
221
    int *reverted_channels;         ///< stores a flag for each reverted channel
222
    int32_t *prev_raw_samples;      ///< contains unshifted raw samples from the previous block
223
    int32_t **raw_samples;          ///< decoded raw samples for each channel
224
    int32_t *raw_buffer;            ///< contains all decoded raw samples including carryover samples
225
    uint8_t *crc_buffer;            ///< buffer of byte order corrected samples used for CRC check
226
} ALSDecContext;
227
 
228
 
229
typedef struct {
230
    unsigned int block_length;      ///< number of samples within the block
231
    unsigned int ra_block;          ///< if true, this is a random access block
232
    int          *const_block;      ///< if true, this is a constant value block
233
    int          js_blocks;         ///< true if this block contains a difference signal
234
    unsigned int *shift_lsbs;       ///< shift of values for this block
235
    unsigned int *opt_order;        ///< prediction order of this block
236
    int          *store_prev_samples;///< if true, carryover samples have to be stored
237
    int          *use_ltp;          ///< if true, long-term prediction is used
238
    int          *ltp_lag;          ///< lag value for long-term prediction
239
    int          *ltp_gain;         ///< gain values for ltp 5-tap filter
240
    int32_t      *quant_cof;        ///< quantized parcor coefficients
241
    int32_t      *lpc_cof;          ///< coefficients of the direct form prediction
242
    int32_t      *raw_samples;      ///< decoded raw samples / residuals for this block
243
    int32_t      *prev_raw_samples; ///< contains unshifted raw samples from the previous block
244
    int32_t      *raw_other;        ///< decoded raw samples of the other channel of a channel pair
245
} ALSBlockData;
246
 
247
 
248
static av_cold void dprint_specific_config(ALSDecContext *ctx)
249
{
250
#ifdef DEBUG
251
    AVCodecContext *avctx    = ctx->avctx;
252
    ALSSpecificConfig *sconf = &ctx->sconf;
253
 
254
    av_dlog(avctx, "resolution = %i\n",           sconf->resolution);
255
    av_dlog(avctx, "floating = %i\n",             sconf->floating);
256
    av_dlog(avctx, "frame_length = %i\n",         sconf->frame_length);
257
    av_dlog(avctx, "ra_distance = %i\n",          sconf->ra_distance);
258
    av_dlog(avctx, "ra_flag = %i\n",              sconf->ra_flag);
259
    av_dlog(avctx, "adapt_order = %i\n",          sconf->adapt_order);
260
    av_dlog(avctx, "coef_table = %i\n",           sconf->coef_table);
261
    av_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
262
    av_dlog(avctx, "max_order = %i\n",            sconf->max_order);
263
    av_dlog(avctx, "block_switching = %i\n",      sconf->block_switching);
264
    av_dlog(avctx, "bgmc = %i\n",                 sconf->bgmc);
265
    av_dlog(avctx, "sb_part = %i\n",              sconf->sb_part);
266
    av_dlog(avctx, "joint_stereo = %i\n",         sconf->joint_stereo);
267
    av_dlog(avctx, "mc_coding = %i\n",            sconf->mc_coding);
268
    av_dlog(avctx, "chan_config = %i\n",          sconf->chan_config);
269
    av_dlog(avctx, "chan_sort = %i\n",            sconf->chan_sort);
270
    av_dlog(avctx, "RLSLMS = %i\n",               sconf->rlslms);
271
    av_dlog(avctx, "chan_config_info = %i\n",     sconf->chan_config_info);
272
#endif
273
}
274
 
275
 
276
/** Read an ALSSpecificConfig from a buffer into the output struct.
277
 */
278
static av_cold int read_specific_config(ALSDecContext *ctx)
279
{
280
    GetBitContext gb;
281
    uint64_t ht_size;
282
    int i, config_offset;
283
    MPEG4AudioConfig m4ac;
284
    ALSSpecificConfig *sconf = &ctx->sconf;
285
    AVCodecContext *avctx    = ctx->avctx;
286
    uint32_t als_id, header_size, trailer_size;
287
    int ret;
288
 
289
    if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
290
        return ret;
291
 
292
    config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
293
                                                 avctx->extradata_size * 8, 1);
294
 
295
    if (config_offset < 0)
296
        return AVERROR_INVALIDDATA;
297
 
298
    skip_bits_long(&gb, config_offset);
299
 
300
    if (get_bits_left(&gb) < (30 << 3))
301
        return AVERROR_INVALIDDATA;
302
 
303
    // read the fixed items
304
    als_id                      = get_bits_long(&gb, 32);
305
    avctx->sample_rate          = m4ac.sample_rate;
306
    skip_bits_long(&gb, 32); // sample rate already known
307
    sconf->samples              = get_bits_long(&gb, 32);
308
    avctx->channels             = m4ac.channels;
309
    skip_bits(&gb, 16);      // number of channels already known
310
    skip_bits(&gb, 3);       // skip file_type
311
    sconf->resolution           = get_bits(&gb, 3);
312
    sconf->floating             = get_bits1(&gb);
313
    sconf->msb_first            = get_bits1(&gb);
314
    sconf->frame_length         = get_bits(&gb, 16) + 1;
315
    sconf->ra_distance          = get_bits(&gb, 8);
316
    sconf->ra_flag              = get_bits(&gb, 2);
317
    sconf->adapt_order          = get_bits1(&gb);
318
    sconf->coef_table           = get_bits(&gb, 2);
319
    sconf->long_term_prediction = get_bits1(&gb);
320
    sconf->max_order            = get_bits(&gb, 10);
321
    sconf->block_switching      = get_bits(&gb, 2);
322
    sconf->bgmc                 = get_bits1(&gb);
323
    sconf->sb_part              = get_bits1(&gb);
324
    sconf->joint_stereo         = get_bits1(&gb);
325
    sconf->mc_coding            = get_bits1(&gb);
326
    sconf->chan_config          = get_bits1(&gb);
327
    sconf->chan_sort            = get_bits1(&gb);
328
    sconf->crc_enabled          = get_bits1(&gb);
329
    sconf->rlslms               = get_bits1(&gb);
330
    skip_bits(&gb, 5);       // skip 5 reserved bits
331
    skip_bits1(&gb);         // skip aux_data_enabled
332
 
333
 
334
    // check for ALSSpecificConfig struct
335
    if (als_id != MKBETAG('A','L','S','\0'))
336
        return AVERROR_INVALIDDATA;
337
 
338
    ctx->cur_frame_length = sconf->frame_length;
339
 
340
    // read channel config
341
    if (sconf->chan_config)
342
        sconf->chan_config_info = get_bits(&gb, 16);
343
    // TODO: use this to set avctx->channel_layout
344
 
345
 
346
    // read channel sorting
347
    if (sconf->chan_sort && avctx->channels > 1) {
348
        int chan_pos_bits = av_ceil_log2(avctx->channels);
349
        int bits_needed  = avctx->channels * chan_pos_bits + 7;
350
        if (get_bits_left(&gb) < bits_needed)
351
            return AVERROR_INVALIDDATA;
352
 
353
        if (!(sconf->chan_pos = av_malloc(avctx->channels * sizeof(*sconf->chan_pos))))
354
            return AVERROR(ENOMEM);
355
 
356
        ctx->cs_switch = 1;
357
 
358
        for (i = 0; i < avctx->channels; i++) {
359
            int idx;
360
 
361
            idx = get_bits(&gb, chan_pos_bits);
362
            if (idx >= avctx->channels) {
363
                av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
364
                ctx->cs_switch = 0;
365
                break;
366
            }
367
            sconf->chan_pos[idx] = i;
368
        }
369
 
370
        align_get_bits(&gb);
371
    }
372
 
373
 
374
    // read fixed header and trailer sizes,
375
    // if size = 0xFFFFFFFF then there is no data field!
376
    if (get_bits_left(&gb) < 64)
377
        return AVERROR_INVALIDDATA;
378
 
379
    header_size  = get_bits_long(&gb, 32);
380
    trailer_size = get_bits_long(&gb, 32);
381
    if (header_size  == 0xFFFFFFFF)
382
        header_size  = 0;
383
    if (trailer_size == 0xFFFFFFFF)
384
        trailer_size = 0;
385
 
386
    ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
387
 
388
 
389
    // skip the header and trailer data
390
    if (get_bits_left(&gb) < ht_size)
391
        return AVERROR_INVALIDDATA;
392
 
393
    if (ht_size > INT32_MAX)
394
        return AVERROR_PATCHWELCOME;
395
 
396
    skip_bits_long(&gb, ht_size);
397
 
398
 
399
    // initialize CRC calculation
400
    if (sconf->crc_enabled) {
401
        if (get_bits_left(&gb) < 32)
402
            return AVERROR_INVALIDDATA;
403
 
404
        if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
405
            ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
406
            ctx->crc       = 0xFFFFFFFF;
407
            ctx->crc_org   = ~get_bits_long(&gb, 32);
408
        } else
409
            skip_bits_long(&gb, 32);
410
    }
411
 
412
 
413
    // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
414
 
415
    dprint_specific_config(ctx);
416
 
417
    return 0;
418
}
419
 
420
 
421
/** Check the ALSSpecificConfig for unsupported features.
422
 */
423
static int check_specific_config(ALSDecContext *ctx)
424
{
425
    ALSSpecificConfig *sconf = &ctx->sconf;
426
    int error = 0;
427
 
428
    // report unsupported feature and set error value
429
    #define MISSING_ERR(cond, str, errval)              \
430
    {                                                   \
431
        if (cond) {                                     \
432
            avpriv_report_missing_feature(ctx->avctx,   \
433
                                          str);         \
434
            error = errval;                             \
435
        }                                               \
436
    }
437
 
438
    MISSING_ERR(sconf->floating,  "Floating point decoding",     AVERROR_PATCHWELCOME);
439
    MISSING_ERR(sconf->rlslms,    "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
440
 
441
    return error;
442
}
443
 
444
 
445
/** Parse the bs_info field to extract the block partitioning used in
446
 *  block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
447
 */
448
static void parse_bs_info(const uint32_t bs_info, unsigned int n,
449
                          unsigned int div, unsigned int **div_blocks,
450
                          unsigned int *num_blocks)
451
{
452
    if (n < 31 && ((bs_info << n) & 0x40000000)) {
453
        // if the level is valid and the investigated bit n is set
454
        // then recursively check both children at bits (2n+1) and (2n+2)
455
        n   *= 2;
456
        div += 1;
457
        parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
458
        parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
459
    } else {
460
        // else the bit is not set or the last level has been reached
461
        // (bit implicitly not set)
462
        **div_blocks = div;
463
        (*div_blocks)++;
464
        (*num_blocks)++;
465
    }
466
}
467
 
468
 
469
/** Read and decode a Rice codeword.
470
 */
471
static int32_t decode_rice(GetBitContext *gb, unsigned int k)
472
{
473
    int max = get_bits_left(gb) - k;
474
    int q   = get_unary(gb, 0, max);
475
    int r   = k ? get_bits1(gb) : !(q & 1);
476
 
477
    if (k > 1) {
478
        q <<= (k - 1);
479
        q  += get_bits_long(gb, k - 1);
480
    } else if (!k) {
481
        q >>= 1;
482
    }
483
    return r ? q : ~q;
484
}
485
 
486
 
487
/** Convert PARCOR coefficient k to direct filter coefficient.
488
 */
489
static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
490
{
491
    int i, j;
492
 
493
    for (i = 0, j = k - 1; i < j; i++, j--) {
494
        int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
495
        cof[j]  += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
496
        cof[i]  += tmp1;
497
    }
498
    if (i == j)
499
        cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
500
 
501
    cof[k] = par[k];
502
}
503
 
504
 
505
/** Read block switching field if necessary and set actual block sizes.
506
 *  Also assure that the block sizes of the last frame correspond to the
507
 *  actual number of samples.
508
 */
509
static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
510
                            uint32_t *bs_info)
511
{
512
    ALSSpecificConfig *sconf     = &ctx->sconf;
513
    GetBitContext *gb            = &ctx->gb;
514
    unsigned int *ptr_div_blocks = div_blocks;
515
    unsigned int b;
516
 
517
    if (sconf->block_switching) {
518
        unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
519
        *bs_info = get_bits_long(gb, bs_info_len);
520
        *bs_info <<= (32 - bs_info_len);
521
    }
522
 
523
    ctx->num_blocks = 0;
524
    parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
525
 
526
    // The last frame may have an overdetermined block structure given in
527
    // the bitstream. In that case the defined block structure would need
528
    // more samples than available to be consistent.
529
    // The block structure is actually used but the block sizes are adapted
530
    // to fit the actual number of available samples.
531
    // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
532
    // This results in the actual block sizes:    2 2 1 0.
533
    // This is not specified in 14496-3 but actually done by the reference
534
    // codec RM22 revision 2.
535
    // This appears to happen in case of an odd number of samples in the last
536
    // frame which is actually not allowed by the block length switching part
537
    // of 14496-3.
538
    // The ALS conformance files feature an odd number of samples in the last
539
    // frame.
540
 
541
    for (b = 0; b < ctx->num_blocks; b++)
542
        div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
543
 
544
    if (ctx->cur_frame_length != ctx->sconf.frame_length) {
545
        unsigned int remaining = ctx->cur_frame_length;
546
 
547
        for (b = 0; b < ctx->num_blocks; b++) {
548
            if (remaining <= div_blocks[b]) {
549
                div_blocks[b] = remaining;
550
                ctx->num_blocks = b + 1;
551
                break;
552
            }
553
 
554
            remaining -= div_blocks[b];
555
        }
556
    }
557
}
558
 
559
 
560
/** Read the block data for a constant block
561
 */
562
static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
563
{
564
    ALSSpecificConfig *sconf = &ctx->sconf;
565
    AVCodecContext *avctx    = ctx->avctx;
566
    GetBitContext *gb        = &ctx->gb;
567
 
568
    if (bd->block_length <= 0)
569
        return AVERROR_INVALIDDATA;
570
 
571
    *bd->raw_samples = 0;
572
    *bd->const_block = get_bits1(gb);    // 1 = constant value, 0 = zero block (silence)
573
    bd->js_blocks    = get_bits1(gb);
574
 
575
    // skip 5 reserved bits
576
    skip_bits(gb, 5);
577
 
578
    if (*bd->const_block) {
579
        unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
580
        *bd->raw_samples = get_sbits_long(gb, const_val_bits);
581
    }
582
 
583
    // ensure constant block decoding by reusing this field
584
    *bd->const_block = 1;
585
 
586
    return 0;
587
}
588
 
589
 
590
/** Decode the block data for a constant block
591
 */
592
static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
593
{
594
    int      smp = bd->block_length - 1;
595
    int32_t  val = *bd->raw_samples;
596
    int32_t *dst = bd->raw_samples + 1;
597
 
598
    // write raw samples into buffer
599
    for (; smp; smp--)
600
        *dst++ = val;
601
}
602
 
603
 
604
/** Read the block data for a non-constant block
605
 */
606
static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
607
{
608
    ALSSpecificConfig *sconf = &ctx->sconf;
609
    AVCodecContext *avctx    = ctx->avctx;
610
    GetBitContext *gb        = &ctx->gb;
611
    unsigned int k;
612
    unsigned int s[8];
613
    unsigned int sx[8];
614
    unsigned int sub_blocks, log2_sub_blocks, sb_length;
615
    unsigned int start      = 0;
616
    unsigned int opt_order;
617
    int          sb;
618
    int32_t      *quant_cof = bd->quant_cof;
619
    int32_t      *current_res;
620
 
621
 
622
    // ensure variable block decoding by reusing this field
623
    *bd->const_block = 0;
624
 
625
    *bd->opt_order  = 1;
626
    bd->js_blocks   = get_bits1(gb);
627
 
628
    opt_order       = *bd->opt_order;
629
 
630
    // determine the number of subblocks for entropy decoding
631
    if (!sconf->bgmc && !sconf->sb_part) {
632
        log2_sub_blocks = 0;
633
    } else {
634
        if (sconf->bgmc && sconf->sb_part)
635
            log2_sub_blocks = get_bits(gb, 2);
636
        else
637
            log2_sub_blocks = 2 * get_bits1(gb);
638
    }
639
 
640
    sub_blocks = 1 << log2_sub_blocks;
641
 
642
    // do not continue in case of a damaged stream since
643
    // block_length must be evenly divisible by sub_blocks
644
    if (bd->block_length & (sub_blocks - 1)) {
645
        av_log(avctx, AV_LOG_WARNING,
646
               "Block length is not evenly divisible by the number of subblocks.\n");
647
        return AVERROR_INVALIDDATA;
648
    }
649
 
650
    sb_length = bd->block_length >> log2_sub_blocks;
651
 
652
    if (sconf->bgmc) {
653
        s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
654
        for (k = 1; k < sub_blocks; k++)
655
            s[k] = s[k - 1] + decode_rice(gb, 2);
656
 
657
        for (k = 0; k < sub_blocks; k++) {
658
            sx[k]   = s[k] & 0x0F;
659
            s [k] >>= 4;
660
        }
661
    } else {
662
        s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
663
        for (k = 1; k < sub_blocks; k++)
664
            s[k] = s[k - 1] + decode_rice(gb, 0);
665
    }
666
    for (k = 1; k < sub_blocks; k++)
667
        if (s[k] > 32) {
668
            av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
669
            return AVERROR_INVALIDDATA;
670
        }
671
 
672
    if (get_bits1(gb))
673
        *bd->shift_lsbs = get_bits(gb, 4) + 1;
674
 
675
    *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
676
 
677
 
678
    if (!sconf->rlslms) {
679
        if (sconf->adapt_order) {
680
            int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
681
                                                2, sconf->max_order + 1));
682
            *bd->opt_order       = get_bits(gb, opt_order_length);
683
            if (*bd->opt_order > sconf->max_order) {
684
                *bd->opt_order = sconf->max_order;
685
                av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
686
                return AVERROR_INVALIDDATA;
687
            }
688
        } else {
689
            *bd->opt_order = sconf->max_order;
690
        }
691
 
692
        opt_order = *bd->opt_order;
693
 
694
        if (opt_order) {
695
            int add_base;
696
 
697
            if (sconf->coef_table == 3) {
698
                add_base = 0x7F;
699
 
700
                // read coefficient 0
701
                quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
702
 
703
                // read coefficient 1
704
                if (opt_order > 1)
705
                    quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
706
 
707
                // read coefficients 2 to opt_order
708
                for (k = 2; k < opt_order; k++)
709
                    quant_cof[k] = get_bits(gb, 7);
710
            } else {
711
                int k_max;
712
                add_base = 1;
713
 
714
                // read coefficient 0 to 19
715
                k_max = FFMIN(opt_order, 20);
716
                for (k = 0; k < k_max; k++) {
717
                    int rice_param = parcor_rice_table[sconf->coef_table][k][1];
718
                    int offset     = parcor_rice_table[sconf->coef_table][k][0];
719
                    quant_cof[k] = decode_rice(gb, rice_param) + offset;
720
                    if (quant_cof[k] < -64 || quant_cof[k] > 63) {
721
                        av_log(avctx, AV_LOG_ERROR, "quant_cof %d is out of range.\n", quant_cof[k]);
722
                        return AVERROR_INVALIDDATA;
723
                    }
724
                }
725
 
726
                // read coefficients 20 to 126
727
                k_max = FFMIN(opt_order, 127);
728
                for (; k < k_max; k++)
729
                    quant_cof[k] = decode_rice(gb, 2) + (k & 1);
730
 
731
                // read coefficients 127 to opt_order
732
                for (; k < opt_order; k++)
733
                    quant_cof[k] = decode_rice(gb, 1);
734
 
735
                quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
736
 
737
                if (opt_order > 1)
738
                    quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
739
            }
740
 
741
            for (k = 2; k < opt_order; k++)
742
                quant_cof[k] = (quant_cof[k] << 14) + (add_base << 13);
743
        }
744
    }
745
 
746
    // read LTP gain and lag values
747
    if (sconf->long_term_prediction) {
748
        *bd->use_ltp = get_bits1(gb);
749
 
750
        if (*bd->use_ltp) {
751
            int r, c;
752
 
753
            bd->ltp_gain[0]   = decode_rice(gb, 1) << 3;
754
            bd->ltp_gain[1]   = decode_rice(gb, 2) << 3;
755
 
756
            r                 = get_unary(gb, 0, 3);
757
            c                 = get_bits(gb, 2);
758
            bd->ltp_gain[2]   = ltp_gain_values[r][c];
759
 
760
            bd->ltp_gain[3]   = decode_rice(gb, 2) << 3;
761
            bd->ltp_gain[4]   = decode_rice(gb, 1) << 3;
762
 
763
            *bd->ltp_lag      = get_bits(gb, ctx->ltp_lag_length);
764
            *bd->ltp_lag     += FFMAX(4, opt_order + 1);
765
        }
766
    }
767
 
768
    // read first value and residuals in case of a random access block
769
    if (bd->ra_block) {
770
        if (opt_order)
771
            bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
772
        if (opt_order > 1)
773
            bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
774
        if (opt_order > 2)
775
            bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
776
 
777
        start = FFMIN(opt_order, 3);
778
    }
779
 
780
    // read all residuals
781
    if (sconf->bgmc) {
782
        int          delta[8];
783
        unsigned int k    [8];
784
        unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
785
 
786
        // read most significant bits
787
        unsigned int high;
788
        unsigned int low;
789
        unsigned int value;
790
 
791
        ff_bgmc_decode_init(gb, &high, &low, &value);
792
 
793
        current_res = bd->raw_samples + start;
794
 
795
        for (sb = 0; sb < sub_blocks; sb++) {
796
            unsigned int sb_len  = sb_length - (sb ? 0 : start);
797
 
798
            k    [sb] = s[sb] > b ? s[sb] - b : 0;
799
            delta[sb] = 5 - s[sb] + k[sb];
800
 
801
            ff_bgmc_decode(gb, sb_len, current_res,
802
                        delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
803
 
804
            current_res += sb_len;
805
        }
806
 
807
        ff_bgmc_decode_end(gb);
808
 
809
 
810
        // read least significant bits and tails
811
        current_res = bd->raw_samples + start;
812
 
813
        for (sb = 0; sb < sub_blocks; sb++, start = 0) {
814
            unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
815
            unsigned int cur_k         = k[sb];
816
            unsigned int cur_s         = s[sb];
817
 
818
            for (; start < sb_length; start++) {
819
                int32_t res = *current_res;
820
 
821
                if (res == cur_tail_code) {
822
                    unsigned int max_msb =   (2 + (sx[sb] > 2) + (sx[sb] > 10))
823
                                          << (5 - delta[sb]);
824
 
825
                    res = decode_rice(gb, cur_s);
826
 
827
                    if (res >= 0) {
828
                        res += (max_msb    ) << cur_k;
829
                    } else {
830
                        res -= (max_msb - 1) << cur_k;
831
                    }
832
                } else {
833
                    if (res > cur_tail_code)
834
                        res--;
835
 
836
                    if (res & 1)
837
                        res = -res;
838
 
839
                    res >>= 1;
840
 
841
                    if (cur_k) {
842
                        res <<= cur_k;
843
                        res  |= get_bits_long(gb, cur_k);
844
                    }
845
                }
846
 
847
                *current_res++ = res;
848
            }
849
        }
850
    } else {
851
        current_res = bd->raw_samples + start;
852
 
853
        for (sb = 0; sb < sub_blocks; sb++, start = 0)
854
            for (; start < sb_length; start++)
855
                *current_res++ = decode_rice(gb, s[sb]);
856
     }
857
 
858
    if (!sconf->mc_coding || ctx->js_switch)
859
        align_get_bits(gb);
860
 
861
    return 0;
862
}
863
 
864
 
865
/** Decode the block data for a non-constant block
866
 */
867
static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
868
{
869
    ALSSpecificConfig *sconf = &ctx->sconf;
870
    unsigned int block_length = bd->block_length;
871
    unsigned int smp = 0;
872
    unsigned int k;
873
    int opt_order             = *bd->opt_order;
874
    int sb;
875
    int64_t y;
876
    int32_t *quant_cof        = bd->quant_cof;
877
    int32_t *lpc_cof          = bd->lpc_cof;
878
    int32_t *raw_samples      = bd->raw_samples;
879
    int32_t *raw_samples_end  = bd->raw_samples + bd->block_length;
880
    int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
881
 
882
    // reverse long-term prediction
883
    if (*bd->use_ltp) {
884
        int ltp_smp;
885
 
886
        for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
887
            int center = ltp_smp - *bd->ltp_lag;
888
            int begin  = FFMAX(0, center - 2);
889
            int end    = center + 3;
890
            int tab    = 5 - (end - begin);
891
            int base;
892
 
893
            y = 1 << 6;
894
 
895
            for (base = begin; base < end; base++, tab++)
896
                y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
897
 
898
            raw_samples[ltp_smp] += y >> 7;
899
        }
900
    }
901
 
902
    // reconstruct all samples from residuals
903
    if (bd->ra_block) {
904
        for (smp = 0; smp < opt_order; smp++) {
905
            y = 1 << 19;
906
 
907
            for (sb = 0; sb < smp; sb++)
908
                y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
909
 
910
            *raw_samples++ -= y >> 20;
911
            parcor_to_lpc(smp, quant_cof, lpc_cof);
912
        }
913
    } else {
914
        for (k = 0; k < opt_order; k++)
915
            parcor_to_lpc(k, quant_cof, lpc_cof);
916
 
917
        // store previous samples in case that they have to be altered
918
        if (*bd->store_prev_samples)
919
            memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
920
                   sizeof(*bd->prev_raw_samples) * sconf->max_order);
921
 
922
        // reconstruct difference signal for prediction (joint-stereo)
923
        if (bd->js_blocks && bd->raw_other) {
924
            int32_t *left, *right;
925
 
926
            if (bd->raw_other > raw_samples) {  // D = R - L
927
                left  = raw_samples;
928
                right = bd->raw_other;
929
            } else {                                // D = R - L
930
                left  = bd->raw_other;
931
                right = raw_samples;
932
            }
933
 
934
            for (sb = -1; sb >= -sconf->max_order; sb--)
935
                raw_samples[sb] = right[sb] - left[sb];
936
        }
937
 
938
        // reconstruct shifted signal
939
        if (*bd->shift_lsbs)
940
            for (sb = -1; sb >= -sconf->max_order; sb--)
941
                raw_samples[sb] >>= *bd->shift_lsbs;
942
    }
943
 
944
    // reverse linear prediction coefficients for efficiency
945
    lpc_cof = lpc_cof + opt_order;
946
 
947
    for (sb = 0; sb < opt_order; sb++)
948
        lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
949
 
950
    // reconstruct raw samples
951
    raw_samples = bd->raw_samples + smp;
952
    lpc_cof     = lpc_cof_reversed + opt_order;
953
 
954
    for (; raw_samples < raw_samples_end; raw_samples++) {
955
        y = 1 << 19;
956
 
957
        for (sb = -opt_order; sb < 0; sb++)
958
            y += MUL64(lpc_cof[sb], raw_samples[sb]);
959
 
960
        *raw_samples -= y >> 20;
961
    }
962
 
963
    raw_samples = bd->raw_samples;
964
 
965
    // restore previous samples in case that they have been altered
966
    if (*bd->store_prev_samples)
967
        memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
968
               sizeof(*raw_samples) * sconf->max_order);
969
 
970
    return 0;
971
}
972
 
973
 
974
/** Read the block data.
975
 */
976
static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
977
{
978
    int ret;
979
    GetBitContext *gb        = &ctx->gb;
980
 
981
    *bd->shift_lsbs = 0;
982
    // read block type flag and read the samples accordingly
983
    if (get_bits1(gb)) {
984
        ret = read_var_block_data(ctx, bd);
985
    } else {
986
        ret = read_const_block_data(ctx, bd);
987
    }
988
 
989
    return ret;
990
}
991
 
992
 
993
/** Decode the block data.
994
 */
995
static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
996
{
997
    unsigned int smp;
998
    int ret = 0;
999
 
1000
    // read block type flag and read the samples accordingly
1001
    if (*bd->const_block)
1002
        decode_const_block_data(ctx, bd);
1003
    else
1004
        ret = decode_var_block_data(ctx, bd); // always return 0
1005
 
1006
    if (ret < 0)
1007
        return ret;
1008
 
1009
    // TODO: read RLSLMS extension data
1010
 
1011
    if (*bd->shift_lsbs)
1012
        for (smp = 0; smp < bd->block_length; smp++)
1013
            bd->raw_samples[smp] <<= *bd->shift_lsbs;
1014
 
1015
    return 0;
1016
}
1017
 
1018
 
1019
/** Read and decode block data successively.
1020
 */
1021
static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
1022
{
1023
    int ret;
1024
 
1025
    if ((ret = read_block(ctx, bd)) < 0)
1026
        return ret;
1027
 
1028
    return decode_block(ctx, bd);
1029
}
1030
 
1031
 
1032
/** Compute the number of samples left to decode for the current frame and
1033
 *  sets these samples to zero.
1034
 */
1035
static void zero_remaining(unsigned int b, unsigned int b_max,
1036
                           const unsigned int *div_blocks, int32_t *buf)
1037
{
1038
    unsigned int count = 0;
1039
 
1040
    while (b < b_max)
1041
        count += div_blocks[b++];
1042
 
1043
    if (count)
1044
        memset(buf, 0, sizeof(*buf) * count);
1045
}
1046
 
1047
 
1048
/** Decode blocks independently.
1049
 */
1050
static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
1051
                             unsigned int c, const unsigned int *div_blocks,
1052
                             unsigned int *js_blocks)
1053
{
1054
    int ret;
1055
    unsigned int b;
1056
    ALSBlockData bd = { 0 };
1057
 
1058
    bd.ra_block         = ra_frame;
1059
    bd.const_block      = ctx->const_block;
1060
    bd.shift_lsbs       = ctx->shift_lsbs;
1061
    bd.opt_order        = ctx->opt_order;
1062
    bd.store_prev_samples = ctx->store_prev_samples;
1063
    bd.use_ltp          = ctx->use_ltp;
1064
    bd.ltp_lag          = ctx->ltp_lag;
1065
    bd.ltp_gain         = ctx->ltp_gain[0];
1066
    bd.quant_cof        = ctx->quant_cof[0];
1067
    bd.lpc_cof          = ctx->lpc_cof[0];
1068
    bd.prev_raw_samples = ctx->prev_raw_samples;
1069
    bd.raw_samples      = ctx->raw_samples[c];
1070
 
1071
 
1072
    for (b = 0; b < ctx->num_blocks; b++) {
1073
        bd.block_length     = div_blocks[b];
1074
 
1075
        if ((ret = read_decode_block(ctx, &bd)) < 0) {
1076
            // damaged block, write zero for the rest of the frame
1077
            zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
1078
            return ret;
1079
        }
1080
        bd.raw_samples += div_blocks[b];
1081
        bd.ra_block     = 0;
1082
    }
1083
 
1084
    return 0;
1085
}
1086
 
1087
 
1088
/** Decode blocks dependently.
1089
 */
1090
static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
1091
                         unsigned int c, const unsigned int *div_blocks,
1092
                         unsigned int *js_blocks)
1093
{
1094
    ALSSpecificConfig *sconf = &ctx->sconf;
1095
    unsigned int offset = 0;
1096
    unsigned int b;
1097
    int ret;
1098
    ALSBlockData bd[2] = { { 0 } };
1099
 
1100
    bd[0].ra_block         = ra_frame;
1101
    bd[0].const_block      = ctx->const_block;
1102
    bd[0].shift_lsbs       = ctx->shift_lsbs;
1103
    bd[0].opt_order        = ctx->opt_order;
1104
    bd[0].store_prev_samples = ctx->store_prev_samples;
1105
    bd[0].use_ltp          = ctx->use_ltp;
1106
    bd[0].ltp_lag          = ctx->ltp_lag;
1107
    bd[0].ltp_gain         = ctx->ltp_gain[0];
1108
    bd[0].quant_cof        = ctx->quant_cof[0];
1109
    bd[0].lpc_cof          = ctx->lpc_cof[0];
1110
    bd[0].prev_raw_samples = ctx->prev_raw_samples;
1111
    bd[0].js_blocks        = *js_blocks;
1112
 
1113
    bd[1].ra_block         = ra_frame;
1114
    bd[1].const_block      = ctx->const_block;
1115
    bd[1].shift_lsbs       = ctx->shift_lsbs;
1116
    bd[1].opt_order        = ctx->opt_order;
1117
    bd[1].store_prev_samples = ctx->store_prev_samples;
1118
    bd[1].use_ltp          = ctx->use_ltp;
1119
    bd[1].ltp_lag          = ctx->ltp_lag;
1120
    bd[1].ltp_gain         = ctx->ltp_gain[0];
1121
    bd[1].quant_cof        = ctx->quant_cof[0];
1122
    bd[1].lpc_cof          = ctx->lpc_cof[0];
1123
    bd[1].prev_raw_samples = ctx->prev_raw_samples;
1124
    bd[1].js_blocks        = *(js_blocks + 1);
1125
 
1126
    // decode all blocks
1127
    for (b = 0; b < ctx->num_blocks; b++) {
1128
        unsigned int s;
1129
 
1130
        bd[0].block_length = div_blocks[b];
1131
        bd[1].block_length = div_blocks[b];
1132
 
1133
        bd[0].raw_samples  = ctx->raw_samples[c    ] + offset;
1134
        bd[1].raw_samples  = ctx->raw_samples[c + 1] + offset;
1135
 
1136
        bd[0].raw_other    = bd[1].raw_samples;
1137
        bd[1].raw_other    = bd[0].raw_samples;
1138
 
1139
        if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
1140
            (ret = read_decode_block(ctx, &bd[1])) < 0)
1141
            goto fail;
1142
 
1143
        // reconstruct joint-stereo blocks
1144
        if (bd[0].js_blocks) {
1145
            if (bd[1].js_blocks)
1146
                av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
1147
 
1148
            for (s = 0; s < div_blocks[b]; s++)
1149
                bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
1150
        } else if (bd[1].js_blocks) {
1151
            for (s = 0; s < div_blocks[b]; s++)
1152
                bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
1153
        }
1154
 
1155
        offset  += div_blocks[b];
1156
        bd[0].ra_block = 0;
1157
        bd[1].ra_block = 0;
1158
    }
1159
 
1160
    // store carryover raw samples,
1161
    // the others channel raw samples are stored by the calling function.
1162
    memmove(ctx->raw_samples[c] - sconf->max_order,
1163
            ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1164
            sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1165
 
1166
    return 0;
1167
fail:
1168
    // damaged block, write zero for the rest of the frame
1169
    zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
1170
    zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
1171
    return ret;
1172
}
1173
 
1174
static inline int als_weighting(GetBitContext *gb, int k, int off)
1175
{
1176
    int idx = av_clip(decode_rice(gb, k) + off,
1177
                      0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
1178
    return mcc_weightings[idx];
1179
}
1180
 
1181
/** Read the channel data.
1182
  */
1183
static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
1184
{
1185
    GetBitContext *gb       = &ctx->gb;
1186
    ALSChannelData *current = cd;
1187
    unsigned int channels   = ctx->avctx->channels;
1188
    int entries             = 0;
1189
 
1190
    while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
1191
        current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
1192
 
1193
        if (current->master_channel >= channels) {
1194
            av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
1195
            return AVERROR_INVALIDDATA;
1196
        }
1197
 
1198
        if (current->master_channel != c) {
1199
            current->time_diff_flag = get_bits1(gb);
1200
            current->weighting[0]   = als_weighting(gb, 1, 16);
1201
            current->weighting[1]   = als_weighting(gb, 2, 14);
1202
            current->weighting[2]   = als_weighting(gb, 1, 16);
1203
 
1204
            if (current->time_diff_flag) {
1205
                current->weighting[3] = als_weighting(gb, 1, 16);
1206
                current->weighting[4] = als_weighting(gb, 1, 16);
1207
                current->weighting[5] = als_weighting(gb, 1, 16);
1208
 
1209
                current->time_diff_sign  = get_bits1(gb);
1210
                current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
1211
            }
1212
        }
1213
 
1214
        current++;
1215
        entries++;
1216
    }
1217
 
1218
    if (entries == channels) {
1219
        av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
1220
        return AVERROR_INVALIDDATA;
1221
    }
1222
 
1223
    align_get_bits(gb);
1224
    return 0;
1225
}
1226
 
1227
 
1228
/** Recursively reverts the inter-channel correlation for a block.
1229
 */
1230
static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
1231
                                       ALSChannelData **cd, int *reverted,
1232
                                       unsigned int offset, int c)
1233
{
1234
    ALSChannelData *ch = cd[c];
1235
    unsigned int   dep = 0;
1236
    unsigned int channels = ctx->avctx->channels;
1237
 
1238
    if (reverted[c])
1239
        return 0;
1240
 
1241
    reverted[c] = 1;
1242
 
1243
    while (dep < channels && !ch[dep].stop_flag) {
1244
        revert_channel_correlation(ctx, bd, cd, reverted, offset,
1245
                                   ch[dep].master_channel);
1246
 
1247
        dep++;
1248
    }
1249
 
1250
    if (dep == channels) {
1251
        av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
1252
        return AVERROR_INVALIDDATA;
1253
    }
1254
 
1255
    bd->const_block = ctx->const_block + c;
1256
    bd->shift_lsbs  = ctx->shift_lsbs + c;
1257
    bd->opt_order   = ctx->opt_order + c;
1258
    bd->store_prev_samples = ctx->store_prev_samples + c;
1259
    bd->use_ltp     = ctx->use_ltp + c;
1260
    bd->ltp_lag     = ctx->ltp_lag + c;
1261
    bd->ltp_gain    = ctx->ltp_gain[c];
1262
    bd->lpc_cof     = ctx->lpc_cof[c];
1263
    bd->quant_cof   = ctx->quant_cof[c];
1264
    bd->raw_samples = ctx->raw_samples[c] + offset;
1265
 
1266
    dep = 0;
1267
    while (!ch[dep].stop_flag) {
1268
        unsigned int smp;
1269
        unsigned int begin = 1;
1270
        unsigned int end   = bd->block_length - 1;
1271
        int64_t y;
1272
        int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
1273
 
1274
        if (ch[dep].time_diff_flag) {
1275
            int t = ch[dep].time_diff_index;
1276
 
1277
            if (ch[dep].time_diff_sign) {
1278
                t      = -t;
1279
                begin -= t;
1280
            } else {
1281
                end   -= t;
1282
            }
1283
 
1284
            for (smp = begin; smp < end; smp++) {
1285
                y  = (1 << 6) +
1286
                     MUL64(ch[dep].weighting[0], master[smp - 1    ]) +
1287
                     MUL64(ch[dep].weighting[1], master[smp        ]) +
1288
                     MUL64(ch[dep].weighting[2], master[smp + 1    ]) +
1289
                     MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
1290
                     MUL64(ch[dep].weighting[4], master[smp     + t]) +
1291
                     MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
1292
 
1293
                bd->raw_samples[smp] += y >> 7;
1294
            }
1295
        } else {
1296
            for (smp = begin; smp < end; smp++) {
1297
                y  = (1 << 6) +
1298
                     MUL64(ch[dep].weighting[0], master[smp - 1]) +
1299
                     MUL64(ch[dep].weighting[1], master[smp    ]) +
1300
                     MUL64(ch[dep].weighting[2], master[smp + 1]);
1301
 
1302
                bd->raw_samples[smp] += y >> 7;
1303
            }
1304
        }
1305
 
1306
        dep++;
1307
    }
1308
 
1309
    return 0;
1310
}
1311
 
1312
 
1313
/** Read the frame data.
1314
 */
1315
static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
1316
{
1317
    ALSSpecificConfig *sconf = &ctx->sconf;
1318
    AVCodecContext *avctx    = ctx->avctx;
1319
    GetBitContext *gb = &ctx->gb;
1320
    unsigned int div_blocks[32];                ///< block sizes.
1321
    unsigned int c;
1322
    unsigned int js_blocks[2];
1323
    uint32_t bs_info = 0;
1324
    int ret;
1325
 
1326
    // skip the size of the ra unit if present in the frame
1327
    if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
1328
        skip_bits_long(gb, 32);
1329
 
1330
    if (sconf->mc_coding && sconf->joint_stereo) {
1331
        ctx->js_switch = get_bits1(gb);
1332
        align_get_bits(gb);
1333
    }
1334
 
1335
    if (!sconf->mc_coding || ctx->js_switch) {
1336
        int independent_bs = !sconf->joint_stereo;
1337
 
1338
        for (c = 0; c < avctx->channels; c++) {
1339
            js_blocks[0] = 0;
1340
            js_blocks[1] = 0;
1341
 
1342
            get_block_sizes(ctx, div_blocks, &bs_info);
1343
 
1344
            // if joint_stereo and block_switching is set, independent decoding
1345
            // is signaled via the first bit of bs_info
1346
            if (sconf->joint_stereo && sconf->block_switching)
1347
                if (bs_info >> 31)
1348
                    independent_bs = 2;
1349
 
1350
            // if this is the last channel, it has to be decoded independently
1351
            if (c == avctx->channels - 1)
1352
                independent_bs = 1;
1353
 
1354
            if (independent_bs) {
1355
                ret = decode_blocks_ind(ctx, ra_frame, c,
1356
                                        div_blocks, js_blocks);
1357
                if (ret < 0)
1358
                    return ret;
1359
                independent_bs--;
1360
            } else {
1361
                ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
1362
                if (ret < 0)
1363
                    return ret;
1364
 
1365
                c++;
1366
            }
1367
 
1368
            // store carryover raw samples
1369
            memmove(ctx->raw_samples[c] - sconf->max_order,
1370
                    ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1371
                    sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1372
        }
1373
    } else { // multi-channel coding
1374
        ALSBlockData   bd = { 0 };
1375
        int            b, ret;
1376
        int            *reverted_channels = ctx->reverted_channels;
1377
        unsigned int   offset             = 0;
1378
 
1379
        for (c = 0; c < avctx->channels; c++)
1380
            if (ctx->chan_data[c] < ctx->chan_data_buffer) {
1381
                av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
1382
                return AVERROR_INVALIDDATA;
1383
            }
1384
 
1385
        memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
1386
 
1387
        bd.ra_block         = ra_frame;
1388
        bd.prev_raw_samples = ctx->prev_raw_samples;
1389
 
1390
        get_block_sizes(ctx, div_blocks, &bs_info);
1391
 
1392
        for (b = 0; b < ctx->num_blocks; b++) {
1393
            bd.block_length = div_blocks[b];
1394
 
1395
            for (c = 0; c < avctx->channels; c++) {
1396
                bd.const_block = ctx->const_block + c;
1397
                bd.shift_lsbs  = ctx->shift_lsbs + c;
1398
                bd.opt_order   = ctx->opt_order + c;
1399
                bd.store_prev_samples = ctx->store_prev_samples + c;
1400
                bd.use_ltp     = ctx->use_ltp + c;
1401
                bd.ltp_lag     = ctx->ltp_lag + c;
1402
                bd.ltp_gain    = ctx->ltp_gain[c];
1403
                bd.lpc_cof     = ctx->lpc_cof[c];
1404
                bd.quant_cof   = ctx->quant_cof[c];
1405
                bd.raw_samples = ctx->raw_samples[c] + offset;
1406
                bd.raw_other   = NULL;
1407
 
1408
                if ((ret = read_block(ctx, &bd)) < 0)
1409
                    return ret;
1410
                if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
1411
                    return ret;
1412
            }
1413
 
1414
            for (c = 0; c < avctx->channels; c++) {
1415
                ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
1416
                                                 reverted_channels, offset, c);
1417
                if (ret < 0)
1418
                    return ret;
1419
            }
1420
            for (c = 0; c < avctx->channels; c++) {
1421
                bd.const_block = ctx->const_block + c;
1422
                bd.shift_lsbs  = ctx->shift_lsbs + c;
1423
                bd.opt_order   = ctx->opt_order + c;
1424
                bd.store_prev_samples = ctx->store_prev_samples + c;
1425
                bd.use_ltp     = ctx->use_ltp + c;
1426
                bd.ltp_lag     = ctx->ltp_lag + c;
1427
                bd.ltp_gain    = ctx->ltp_gain[c];
1428
                bd.lpc_cof     = ctx->lpc_cof[c];
1429
                bd.quant_cof   = ctx->quant_cof[c];
1430
                bd.raw_samples = ctx->raw_samples[c] + offset;
1431
 
1432
                if ((ret = decode_block(ctx, &bd)) < 0)
1433
                    return ret;
1434
            }
1435
 
1436
            memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
1437
            offset      += div_blocks[b];
1438
            bd.ra_block  = 0;
1439
        }
1440
 
1441
        // store carryover raw samples
1442
        for (c = 0; c < avctx->channels; c++)
1443
            memmove(ctx->raw_samples[c] - sconf->max_order,
1444
                    ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1445
                    sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1446
    }
1447
 
1448
    // TODO: read_diff_float_data
1449
 
1450
    return 0;
1451
}
1452
 
1453
 
1454
/** Decode an ALS frame.
1455
 */
1456
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
1457
                        AVPacket *avpkt)
1458
{
1459
    ALSDecContext *ctx       = avctx->priv_data;
1460
    AVFrame *frame           = data;
1461
    ALSSpecificConfig *sconf = &ctx->sconf;
1462
    const uint8_t *buffer    = avpkt->data;
1463
    int buffer_size          = avpkt->size;
1464
    int invalid_frame, ret;
1465
    unsigned int c, sample, ra_frame, bytes_read, shift;
1466
 
1467
    init_get_bits(&ctx->gb, buffer, buffer_size * 8);
1468
 
1469
    // In the case that the distance between random access frames is set to zero
1470
    // (sconf->ra_distance == 0) no frame is treated as a random access frame.
1471
    // For the first frame, if prediction is used, all samples used from the
1472
    // previous frame are assumed to be zero.
1473
    ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
1474
 
1475
    // the last frame to decode might have a different length
1476
    if (sconf->samples != 0xFFFFFFFF)
1477
        ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
1478
                                      sconf->frame_length);
1479
    else
1480
        ctx->cur_frame_length = sconf->frame_length;
1481
 
1482
    // decode the frame data
1483
    if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
1484
        av_log(ctx->avctx, AV_LOG_WARNING,
1485
               "Reading frame data failed. Skipping RA unit.\n");
1486
 
1487
    ctx->frame_id++;
1488
 
1489
    /* get output buffer */
1490
    frame->nb_samples = ctx->cur_frame_length;
1491
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1492
        return ret;
1493
 
1494
    // transform decoded frame into output format
1495
    #define INTERLEAVE_OUTPUT(bps)                                                   \
1496
    {                                                                                \
1497
        int##bps##_t *dest = (int##bps##_t*)frame->data[0];                          \
1498
        shift = bps - ctx->avctx->bits_per_raw_sample;                               \
1499
        if (!ctx->cs_switch) {                                                       \
1500
            for (sample = 0; sample < ctx->cur_frame_length; sample++)               \
1501
                for (c = 0; c < avctx->channels; c++)                                \
1502
                    *dest++ = ctx->raw_samples[c][sample] << shift;                  \
1503
        } else {                                                                     \
1504
            for (sample = 0; sample < ctx->cur_frame_length; sample++)               \
1505
                for (c = 0; c < avctx->channels; c++)                                \
1506
                    *dest++ = ctx->raw_samples[sconf->chan_pos[c]][sample] << shift; \
1507
        }                                                                            \
1508
    }
1509
 
1510
    if (ctx->avctx->bits_per_raw_sample <= 16) {
1511
        INTERLEAVE_OUTPUT(16)
1512
    } else {
1513
        INTERLEAVE_OUTPUT(32)
1514
    }
1515
 
1516
    // update CRC
1517
    if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
1518
        int swap = HAVE_BIGENDIAN != sconf->msb_first;
1519
 
1520
        if (ctx->avctx->bits_per_raw_sample == 24) {
1521
            int32_t *src = (int32_t *)frame->data[0];
1522
 
1523
            for (sample = 0;
1524
                 sample < ctx->cur_frame_length * avctx->channels;
1525
                 sample++) {
1526
                int32_t v;
1527
 
1528
                if (swap)
1529
                    v = av_bswap32(src[sample]);
1530
                else
1531
                    v = src[sample];
1532
                if (!HAVE_BIGENDIAN)
1533
                    v >>= 8;
1534
 
1535
                ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
1536
            }
1537
        } else {
1538
            uint8_t *crc_source;
1539
 
1540
            if (swap) {
1541
                if (ctx->avctx->bits_per_raw_sample <= 16) {
1542
                    int16_t *src  = (int16_t*) frame->data[0];
1543
                    int16_t *dest = (int16_t*) ctx->crc_buffer;
1544
                    for (sample = 0;
1545
                         sample < ctx->cur_frame_length * avctx->channels;
1546
                         sample++)
1547
                        *dest++ = av_bswap16(src[sample]);
1548
                } else {
1549
                    ctx->dsp.bswap_buf((uint32_t*)ctx->crc_buffer,
1550
                                       (uint32_t *)frame->data[0],
1551
                                       ctx->cur_frame_length * avctx->channels);
1552
                }
1553
                crc_source = ctx->crc_buffer;
1554
            } else {
1555
                crc_source = frame->data[0];
1556
            }
1557
 
1558
            ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
1559
                              ctx->cur_frame_length * avctx->channels *
1560
                              av_get_bytes_per_sample(avctx->sample_fmt));
1561
        }
1562
 
1563
 
1564
        // check CRC sums if this is the last frame
1565
        if (ctx->cur_frame_length != sconf->frame_length &&
1566
            ctx->crc_org != ctx->crc) {
1567
            av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
1568
        }
1569
    }
1570
 
1571
    *got_frame_ptr = 1;
1572
 
1573
    bytes_read = invalid_frame ? buffer_size :
1574
                                 (get_bits_count(&ctx->gb) + 7) >> 3;
1575
 
1576
    return bytes_read;
1577
}
1578
 
1579
 
1580
/** Uninitialize the ALS decoder.
1581
 */
1582
static av_cold int decode_end(AVCodecContext *avctx)
1583
{
1584
    ALSDecContext *ctx = avctx->priv_data;
1585
 
1586
    av_freep(&ctx->sconf.chan_pos);
1587
 
1588
    ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
1589
 
1590
    av_freep(&ctx->const_block);
1591
    av_freep(&ctx->shift_lsbs);
1592
    av_freep(&ctx->opt_order);
1593
    av_freep(&ctx->store_prev_samples);
1594
    av_freep(&ctx->use_ltp);
1595
    av_freep(&ctx->ltp_lag);
1596
    av_freep(&ctx->ltp_gain);
1597
    av_freep(&ctx->ltp_gain_buffer);
1598
    av_freep(&ctx->quant_cof);
1599
    av_freep(&ctx->lpc_cof);
1600
    av_freep(&ctx->quant_cof_buffer);
1601
    av_freep(&ctx->lpc_cof_buffer);
1602
    av_freep(&ctx->lpc_cof_reversed_buffer);
1603
    av_freep(&ctx->prev_raw_samples);
1604
    av_freep(&ctx->raw_samples);
1605
    av_freep(&ctx->raw_buffer);
1606
    av_freep(&ctx->chan_data);
1607
    av_freep(&ctx->chan_data_buffer);
1608
    av_freep(&ctx->reverted_channels);
1609
    av_freep(&ctx->crc_buffer);
1610
 
1611
    return 0;
1612
}
1613
 
1614
 
1615
/** Initialize the ALS decoder.
1616
 */
1617
static av_cold int decode_init(AVCodecContext *avctx)
1618
{
1619
    unsigned int c;
1620
    unsigned int channel_size;
1621
    int num_buffers, ret;
1622
    ALSDecContext *ctx = avctx->priv_data;
1623
    ALSSpecificConfig *sconf = &ctx->sconf;
1624
    ctx->avctx = avctx;
1625
 
1626
    if (!avctx->extradata) {
1627
        av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
1628
        return AVERROR_INVALIDDATA;
1629
    }
1630
 
1631
    if ((ret = read_specific_config(ctx)) < 0) {
1632
        av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
1633
        goto fail;
1634
    }
1635
 
1636
    if ((ret = check_specific_config(ctx)) < 0) {
1637
        goto fail;
1638
    }
1639
 
1640
    if (sconf->bgmc) {
1641
        ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
1642
        if (ret < 0)
1643
            goto fail;
1644
    }
1645
    if (sconf->floating) {
1646
        avctx->sample_fmt          = AV_SAMPLE_FMT_FLT;
1647
        avctx->bits_per_raw_sample = 32;
1648
    } else {
1649
        avctx->sample_fmt          = sconf->resolution > 1
1650
                                     ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
1651
        avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
1652
    }
1653
 
1654
    // set maximum Rice parameter for progressive decoding based on resolution
1655
    // This is not specified in 14496-3 but actually done by the reference
1656
    // codec RM22 revision 2.
1657
    ctx->s_max = sconf->resolution > 1 ? 31 : 15;
1658
 
1659
    // set lag value for long-term prediction
1660
    ctx->ltp_lag_length = 8 + (avctx->sample_rate >=  96000) +
1661
                              (avctx->sample_rate >= 192000);
1662
 
1663
    // allocate quantized parcor coefficient buffer
1664
    num_buffers = sconf->mc_coding ? avctx->channels : 1;
1665
 
1666
    ctx->quant_cof        = av_malloc(sizeof(*ctx->quant_cof) * num_buffers);
1667
    ctx->lpc_cof          = av_malloc(sizeof(*ctx->lpc_cof)   * num_buffers);
1668
    ctx->quant_cof_buffer = av_malloc(sizeof(*ctx->quant_cof_buffer) *
1669
                                      num_buffers * sconf->max_order);
1670
    ctx->lpc_cof_buffer   = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
1671
                                      num_buffers * sconf->max_order);
1672
    ctx->lpc_cof_reversed_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
1673
                                             sconf->max_order);
1674
 
1675
    if (!ctx->quant_cof              || !ctx->lpc_cof        ||
1676
        !ctx->quant_cof_buffer       || !ctx->lpc_cof_buffer ||
1677
        !ctx->lpc_cof_reversed_buffer) {
1678
        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1679
        ret = AVERROR(ENOMEM);
1680
        goto fail;
1681
    }
1682
 
1683
    // assign quantized parcor coefficient buffers
1684
    for (c = 0; c < num_buffers; c++) {
1685
        ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
1686
        ctx->lpc_cof[c]   = ctx->lpc_cof_buffer   + c * sconf->max_order;
1687
    }
1688
 
1689
    // allocate and assign lag and gain data buffer for ltp mode
1690
    ctx->const_block     = av_malloc (sizeof(*ctx->const_block) * num_buffers);
1691
    ctx->shift_lsbs      = av_malloc (sizeof(*ctx->shift_lsbs)  * num_buffers);
1692
    ctx->opt_order       = av_malloc (sizeof(*ctx->opt_order)   * num_buffers);
1693
    ctx->store_prev_samples = av_malloc(sizeof(*ctx->store_prev_samples) * num_buffers);
1694
    ctx->use_ltp         = av_mallocz(sizeof(*ctx->use_ltp)  * num_buffers);
1695
    ctx->ltp_lag         = av_malloc (sizeof(*ctx->ltp_lag)  * num_buffers);
1696
    ctx->ltp_gain        = av_malloc (sizeof(*ctx->ltp_gain) * num_buffers);
1697
    ctx->ltp_gain_buffer = av_malloc (sizeof(*ctx->ltp_gain_buffer) *
1698
                                      num_buffers * 5);
1699
 
1700
    if (!ctx->const_block || !ctx->shift_lsbs ||
1701
        !ctx->opt_order || !ctx->store_prev_samples ||
1702
        !ctx->use_ltp  || !ctx->ltp_lag ||
1703
        !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
1704
        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1705
        ret = AVERROR(ENOMEM);
1706
        goto fail;
1707
    }
1708
 
1709
    for (c = 0; c < num_buffers; c++)
1710
        ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
1711
 
1712
    // allocate and assign channel data buffer for mcc mode
1713
    if (sconf->mc_coding) {
1714
        ctx->chan_data_buffer  = av_malloc(sizeof(*ctx->chan_data_buffer) *
1715
                                           num_buffers * num_buffers);
1716
        ctx->chan_data         = av_malloc(sizeof(*ctx->chan_data) *
1717
                                           num_buffers);
1718
        ctx->reverted_channels = av_malloc(sizeof(*ctx->reverted_channels) *
1719
                                           num_buffers);
1720
 
1721
        if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
1722
            av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1723
            ret = AVERROR(ENOMEM);
1724
            goto fail;
1725
        }
1726
 
1727
        for (c = 0; c < num_buffers; c++)
1728
            ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
1729
    } else {
1730
        ctx->chan_data         = NULL;
1731
        ctx->chan_data_buffer  = NULL;
1732
        ctx->reverted_channels = NULL;
1733
    }
1734
 
1735
    channel_size      = sconf->frame_length + sconf->max_order;
1736
 
1737
    ctx->prev_raw_samples = av_malloc (sizeof(*ctx->prev_raw_samples) * sconf->max_order);
1738
    ctx->raw_buffer       = av_mallocz(sizeof(*ctx->     raw_buffer)  * avctx->channels * channel_size);
1739
    ctx->raw_samples      = av_malloc (sizeof(*ctx->     raw_samples) * avctx->channels);
1740
 
1741
    // allocate previous raw sample buffer
1742
    if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
1743
        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1744
        ret = AVERROR(ENOMEM);
1745
        goto fail;
1746
    }
1747
 
1748
    // assign raw samples buffers
1749
    ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
1750
    for (c = 1; c < avctx->channels; c++)
1751
        ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
1752
 
1753
    // allocate crc buffer
1754
    if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
1755
        (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
1756
        ctx->crc_buffer = av_malloc(sizeof(*ctx->crc_buffer) *
1757
                                    ctx->cur_frame_length *
1758
                                    avctx->channels *
1759
                                    av_get_bytes_per_sample(avctx->sample_fmt));
1760
        if (!ctx->crc_buffer) {
1761
            av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1762
            ret = AVERROR(ENOMEM);
1763
            goto fail;
1764
        }
1765
    }
1766
 
1767
    ff_dsputil_init(&ctx->dsp, avctx);
1768
 
1769
    return 0;
1770
 
1771
fail:
1772
    decode_end(avctx);
1773
    return ret;
1774
}
1775
 
1776
 
1777
/** Flush (reset) the frame ID after seeking.
1778
 */
1779
static av_cold void flush(AVCodecContext *avctx)
1780
{
1781
    ALSDecContext *ctx = avctx->priv_data;
1782
 
1783
    ctx->frame_id = 0;
1784
}
1785
 
1786
 
1787
AVCodec ff_als_decoder = {
1788
    .name           = "als",
1789
    .long_name      = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
1790
    .type           = AVMEDIA_TYPE_AUDIO,
1791
    .id             = AV_CODEC_ID_MP4ALS,
1792
    .priv_data_size = sizeof(ALSDecContext),
1793
    .init           = decode_init,
1794
    .close          = decode_end,
1795
    .decode         = decode_frame,
1796
    .flush          = flush,
1797
    .capabilities   = CODEC_CAP_SUBFRAMES | CODEC_CAP_DR1,
1798
};