Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * Copyright (c) 2001-2003 The ffmpeg Project
3
 *
4
 * first version by Francois Revol (revol@free.fr)
5
 * fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
6
 *   by Mike Melanson (melanson@pcisys.net)
7
 *
8
 * This file is part of FFmpeg.
9
 *
10
 * FFmpeg is free software; you can redistribute it and/or
11
 * modify it under the terms of the GNU Lesser General Public
12
 * License as published by the Free Software Foundation; either
13
 * version 2.1 of the License, or (at your option) any later version.
14
 *
15
 * FFmpeg is distributed in the hope that it will be useful,
16
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18
 * Lesser General Public License for more details.
19
 *
20
 * You should have received a copy of the GNU Lesser General Public
21
 * License along with FFmpeg; if not, write to the Free Software
22
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23
 */
24
 
25
#include "avcodec.h"
26
#include "put_bits.h"
27
#include "bytestream.h"
28
#include "adpcm.h"
29
#include "adpcm_data.h"
30
#include "internal.h"
31
 
32
/**
33
 * @file
34
 * ADPCM encoders
35
 * See ADPCM decoder reference documents for codec information.
36
 */
37
 
38
typedef struct TrellisPath {
39
    int nibble;
40
    int prev;
41
} TrellisPath;
42
 
43
typedef struct TrellisNode {
44
    uint32_t ssd;
45
    int path;
46
    int sample1;
47
    int sample2;
48
    int step;
49
} TrellisNode;
50
 
51
typedef struct ADPCMEncodeContext {
52
    ADPCMChannelStatus status[6];
53
    TrellisPath *paths;
54
    TrellisNode *node_buf;
55
    TrellisNode **nodep_buf;
56
    uint8_t *trellis_hash;
57
} ADPCMEncodeContext;
58
 
59
#define FREEZE_INTERVAL 128
60
 
61
static av_cold int adpcm_encode_close(AVCodecContext *avctx);
62
 
63
static av_cold int adpcm_encode_init(AVCodecContext *avctx)
64
{
65
    ADPCMEncodeContext *s = avctx->priv_data;
66
    uint8_t *extradata;
67
    int i;
68
    int ret = AVERROR(ENOMEM);
69
 
70
    if (avctx->channels > 2) {
71
        av_log(avctx, AV_LOG_ERROR, "only stereo or mono is supported\n");
72
        return AVERROR(EINVAL);
73
    }
74
 
75
    if (avctx->trellis && (unsigned)avctx->trellis > 16U) {
76
        av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
77
        return AVERROR(EINVAL);
78
    }
79
 
80
    if (avctx->trellis) {
81
        int frontier  = 1 << avctx->trellis;
82
        int max_paths =  frontier * FREEZE_INTERVAL;
83
        FF_ALLOC_OR_GOTO(avctx, s->paths,
84
                         max_paths * sizeof(*s->paths), error);
85
        FF_ALLOC_OR_GOTO(avctx, s->node_buf,
86
                         2 * frontier * sizeof(*s->node_buf),  error);
87
        FF_ALLOC_OR_GOTO(avctx, s->nodep_buf,
88
                         2 * frontier * sizeof(*s->nodep_buf), error);
89
        FF_ALLOC_OR_GOTO(avctx, s->trellis_hash,
90
                         65536 * sizeof(*s->trellis_hash), error);
91
    }
92
 
93
    avctx->bits_per_coded_sample = av_get_bits_per_sample(avctx->codec->id);
94
 
95
    switch (avctx->codec->id) {
96
    case AV_CODEC_ID_ADPCM_IMA_WAV:
97
        /* each 16 bits sample gives one nibble
98
           and we have 4 bytes per channel overhead */
99
        avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 /
100
                            (4 * avctx->channels) + 1;
101
        /* seems frame_size isn't taken into account...
102
           have to buffer the samples :-( */
103
        avctx->block_align = BLKSIZE;
104
        avctx->bits_per_coded_sample = 4;
105
        break;
106
    case AV_CODEC_ID_ADPCM_IMA_QT:
107
        avctx->frame_size  = 64;
108
        avctx->block_align = 34 * avctx->channels;
109
        break;
110
    case AV_CODEC_ID_ADPCM_MS:
111
        /* each 16 bits sample gives one nibble
112
           and we have 7 bytes per channel overhead */
113
        avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2;
114
        avctx->bits_per_coded_sample = 4;
115
        avctx->block_align    = BLKSIZE;
116
        if (!(avctx->extradata = av_malloc(32 + FF_INPUT_BUFFER_PADDING_SIZE)))
117
            goto error;
118
        avctx->extradata_size = 32;
119
        extradata = avctx->extradata;
120
        bytestream_put_le16(&extradata, avctx->frame_size);
121
        bytestream_put_le16(&extradata, 7); /* wNumCoef */
122
        for (i = 0; i < 7; i++) {
123
            bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff1[i] * 4);
124
            bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff2[i] * 4);
125
        }
126
        break;
127
    case AV_CODEC_ID_ADPCM_YAMAHA:
128
        avctx->frame_size  = BLKSIZE * 2 / avctx->channels;
129
        avctx->block_align = BLKSIZE;
130
        break;
131
    case AV_CODEC_ID_ADPCM_SWF:
132
        if (avctx->sample_rate != 11025 &&
133
            avctx->sample_rate != 22050 &&
134
            avctx->sample_rate != 44100) {
135
            av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, "
136
                   "22050 or 44100\n");
137
            ret = AVERROR(EINVAL);
138
            goto error;
139
        }
140
        avctx->frame_size = 512 * (avctx->sample_rate / 11025);
141
        break;
142
    default:
143
        ret = AVERROR(EINVAL);
144
        goto error;
145
    }
146
 
147
    return 0;
148
error:
149
    adpcm_encode_close(avctx);
150
    return ret;
151
}
152
 
153
static av_cold int adpcm_encode_close(AVCodecContext *avctx)
154
{
155
    ADPCMEncodeContext *s = avctx->priv_data;
156
    av_freep(&s->paths);
157
    av_freep(&s->node_buf);
158
    av_freep(&s->nodep_buf);
159
    av_freep(&s->trellis_hash);
160
 
161
    return 0;
162
}
163
 
164
 
165
static inline uint8_t adpcm_ima_compress_sample(ADPCMChannelStatus *c,
166
                                                int16_t sample)
167
{
168
    int delta  = sample - c->prev_sample;
169
    int nibble = FFMIN(7, abs(delta) * 4 /
170
                       ff_adpcm_step_table[c->step_index]) + (delta < 0) * 8;
171
    c->prev_sample += ((ff_adpcm_step_table[c->step_index] *
172
                        ff_adpcm_yamaha_difflookup[nibble]) / 8);
173
    c->prev_sample = av_clip_int16(c->prev_sample);
174
    c->step_index  = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
175
    return nibble;
176
}
177
 
178
static inline uint8_t adpcm_ima_qt_compress_sample(ADPCMChannelStatus *c,
179
                                                   int16_t sample)
180
{
181
    int delta  = sample - c->prev_sample;
182
    int diff, step = ff_adpcm_step_table[c->step_index];
183
    int nibble = 8*(delta < 0);
184
 
185
    delta= abs(delta);
186
    diff = delta + (step >> 3);
187
 
188
    if (delta >= step) {
189
        nibble |= 4;
190
        delta  -= step;
191
    }
192
    step >>= 1;
193
    if (delta >= step) {
194
        nibble |= 2;
195
        delta  -= step;
196
    }
197
    step >>= 1;
198
    if (delta >= step) {
199
        nibble |= 1;
200
        delta  -= step;
201
    }
202
    diff -= delta;
203
 
204
    if (nibble & 8)
205
        c->prev_sample -= diff;
206
    else
207
        c->prev_sample += diff;
208
 
209
    c->prev_sample = av_clip_int16(c->prev_sample);
210
    c->step_index  = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
211
 
212
    return nibble;
213
}
214
 
215
static inline uint8_t adpcm_ms_compress_sample(ADPCMChannelStatus *c,
216
                                               int16_t sample)
217
{
218
    int predictor, nibble, bias;
219
 
220
    predictor = (((c->sample1) * (c->coeff1)) +
221
                (( c->sample2) * (c->coeff2))) / 64;
222
 
223
    nibble = sample - predictor;
224
    if (nibble >= 0)
225
        bias =  c->idelta / 2;
226
    else
227
        bias = -c->idelta / 2;
228
 
229
    nibble = (nibble + bias) / c->idelta;
230
    nibble = av_clip(nibble, -8, 7) & 0x0F;
231
 
232
    predictor += ((nibble & 0x08) ? (nibble - 0x10) : nibble) * c->idelta;
233
 
234
    c->sample2 = c->sample1;
235
    c->sample1 = av_clip_int16(predictor);
236
 
237
    c->idelta = (ff_adpcm_AdaptationTable[nibble] * c->idelta) >> 8;
238
    if (c->idelta < 16)
239
        c->idelta = 16;
240
 
241
    return nibble;
242
}
243
 
244
static inline uint8_t adpcm_yamaha_compress_sample(ADPCMChannelStatus *c,
245
                                                   int16_t sample)
246
{
247
    int nibble, delta;
248
 
249
    if (!c->step) {
250
        c->predictor = 0;
251
        c->step      = 127;
252
    }
253
 
254
    delta = sample - c->predictor;
255
 
256
    nibble = FFMIN(7, abs(delta) * 4 / c->step) + (delta < 0) * 8;
257
 
258
    c->predictor += ((c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8);
259
    c->predictor = av_clip_int16(c->predictor);
260
    c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
261
    c->step = av_clip(c->step, 127, 24567);
262
 
263
    return nibble;
264
}
265
 
266
static void adpcm_compress_trellis(AVCodecContext *avctx,
267
                                   const int16_t *samples, uint8_t *dst,
268
                                   ADPCMChannelStatus *c, int n, int stride)
269
{
270
    //FIXME 6% faster if frontier is a compile-time constant
271
    ADPCMEncodeContext *s = avctx->priv_data;
272
    const int frontier = 1 << avctx->trellis;
273
    const int version  = avctx->codec->id;
274
    TrellisPath *paths       = s->paths, *p;
275
    TrellisNode *node_buf    = s->node_buf;
276
    TrellisNode **nodep_buf  = s->nodep_buf;
277
    TrellisNode **nodes      = nodep_buf; // nodes[] is always sorted by .ssd
278
    TrellisNode **nodes_next = nodep_buf + frontier;
279
    int pathn = 0, froze = -1, i, j, k, generation = 0;
280
    uint8_t *hash = s->trellis_hash;
281
    memset(hash, 0xff, 65536 * sizeof(*hash));
282
 
283
    memset(nodep_buf, 0, 2 * frontier * sizeof(*nodep_buf));
284
    nodes[0]          = node_buf + frontier;
285
    nodes[0]->ssd     = 0;
286
    nodes[0]->path    = 0;
287
    nodes[0]->step    = c->step_index;
288
    nodes[0]->sample1 = c->sample1;
289
    nodes[0]->sample2 = c->sample2;
290
    if (version == AV_CODEC_ID_ADPCM_IMA_WAV ||
291
        version == AV_CODEC_ID_ADPCM_IMA_QT  ||
292
        version == AV_CODEC_ID_ADPCM_SWF)
293
        nodes[0]->sample1 = c->prev_sample;
294
    if (version == AV_CODEC_ID_ADPCM_MS)
295
        nodes[0]->step = c->idelta;
296
    if (version == AV_CODEC_ID_ADPCM_YAMAHA) {
297
        if (c->step == 0) {
298
            nodes[0]->step    = 127;
299
            nodes[0]->sample1 = 0;
300
        } else {
301
            nodes[0]->step    = c->step;
302
            nodes[0]->sample1 = c->predictor;
303
        }
304
    }
305
 
306
    for (i = 0; i < n; i++) {
307
        TrellisNode *t = node_buf + frontier*(i&1);
308
        TrellisNode **u;
309
        int sample   = samples[i * stride];
310
        int heap_pos = 0;
311
        memset(nodes_next, 0, frontier * sizeof(TrellisNode*));
312
        for (j = 0; j < frontier && nodes[j]; j++) {
313
            // higher j have higher ssd already, so they're likely
314
            // to yield a suboptimal next sample too
315
            const int range = (j < frontier / 2) ? 1 : 0;
316
            const int step  = nodes[j]->step;
317
            int nidx;
318
            if (version == AV_CODEC_ID_ADPCM_MS) {
319
                const int predictor = ((nodes[j]->sample1 * c->coeff1) +
320
                                       (nodes[j]->sample2 * c->coeff2)) / 64;
321
                const int div  = (sample - predictor) / step;
322
                const int nmin = av_clip(div-range, -8, 6);
323
                const int nmax = av_clip(div+range, -7, 7);
324
                for (nidx = nmin; nidx <= nmax; nidx++) {
325
                    const int nibble = nidx & 0xf;
326
                    int dec_sample   = predictor + nidx * step;
327
#define STORE_NODE(NAME, STEP_INDEX)\
328
                    int d;\
329
                    uint32_t ssd;\
330
                    int pos;\
331
                    TrellisNode *u;\
332
                    uint8_t *h;\
333
                    dec_sample = av_clip_int16(dec_sample);\
334
                    d = sample - dec_sample;\
335
                    ssd = nodes[j]->ssd + d*d;\
336
                    /* Check for wraparound, skip such samples completely. \
337
                     * Note, changing ssd to a 64 bit variable would be \
338
                     * simpler, avoiding this check, but it's slower on \
339
                     * x86 32 bit at the moment. */\
340
                    if (ssd < nodes[j]->ssd)\
341
                        goto next_##NAME;\
342
                    /* Collapse any two states with the same previous sample value. \
343
                     * One could also distinguish states by step and by 2nd to last
344
                     * sample, but the effects of that are negligible.
345
                     * Since nodes in the previous generation are iterated
346
                     * through a heap, they're roughly ordered from better to
347
                     * worse, but not strictly ordered. Therefore, an earlier
348
                     * node with the same sample value is better in most cases
349
                     * (and thus the current is skipped), but not strictly
350
                     * in all cases. Only skipping samples where ssd >=
351
                     * ssd of the earlier node with the same sample gives
352
                     * slightly worse quality, though, for some reason. */ \
353
                    h = &hash[(uint16_t) dec_sample];\
354
                    if (*h == generation)\
355
                        goto next_##NAME;\
356
                    if (heap_pos < frontier) {\
357
                        pos = heap_pos++;\
358
                    } else {\
359
                        /* Try to replace one of the leaf nodes with the new \
360
                         * one, but try a different slot each time. */\
361
                        pos = (frontier >> 1) +\
362
                              (heap_pos & ((frontier >> 1) - 1));\
363
                        if (ssd > nodes_next[pos]->ssd)\
364
                            goto next_##NAME;\
365
                        heap_pos++;\
366
                    }\
367
                    *h = generation;\
368
                    u  = nodes_next[pos];\
369
                    if (!u) {\
370
                        av_assert1(pathn < FREEZE_INTERVAL << avctx->trellis);\
371
                        u = t++;\
372
                        nodes_next[pos] = u;\
373
                        u->path = pathn++;\
374
                    }\
375
                    u->ssd  = ssd;\
376
                    u->step = STEP_INDEX;\
377
                    u->sample2 = nodes[j]->sample1;\
378
                    u->sample1 = dec_sample;\
379
                    paths[u->path].nibble = nibble;\
380
                    paths[u->path].prev   = nodes[j]->path;\
381
                    /* Sift the newly inserted node up in the heap to \
382
                     * restore the heap property. */\
383
                    while (pos > 0) {\
384
                        int parent = (pos - 1) >> 1;\
385
                        if (nodes_next[parent]->ssd <= ssd)\
386
                            break;\
387
                        FFSWAP(TrellisNode*, nodes_next[parent], nodes_next[pos]);\
388
                        pos = parent;\
389
                    }\
390
                    next_##NAME:;
391
                    STORE_NODE(ms, FFMAX(16,
392
                               (ff_adpcm_AdaptationTable[nibble] * step) >> 8));
393
                }
394
            } else if (version == AV_CODEC_ID_ADPCM_IMA_WAV ||
395
                       version == AV_CODEC_ID_ADPCM_IMA_QT  ||
396
                       version == AV_CODEC_ID_ADPCM_SWF) {
397
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
398
                const int predictor = nodes[j]->sample1;\
399
                const int div = (sample - predictor) * 4 / STEP_TABLE;\
400
                int nmin = av_clip(div - range, -7, 6);\
401
                int nmax = av_clip(div + range, -6, 7);\
402
                if (nmin <= 0)\
403
                    nmin--; /* distinguish -0 from +0 */\
404
                if (nmax < 0)\
405
                    nmax--;\
406
                for (nidx = nmin; nidx <= nmax; nidx++) {\
407
                    const int nibble = nidx < 0 ? 7 - nidx : nidx;\
408
                    int dec_sample = predictor +\
409
                                    (STEP_TABLE *\
410
                                     ff_adpcm_yamaha_difflookup[nibble]) / 8;\
411
                    STORE_NODE(NAME, STEP_INDEX);\
412
                }
413
                LOOP_NODES(ima, ff_adpcm_step_table[step],
414
                           av_clip(step + ff_adpcm_index_table[nibble], 0, 88));
415
            } else { //AV_CODEC_ID_ADPCM_YAMAHA
416
                LOOP_NODES(yamaha, step,
417
                           av_clip((step * ff_adpcm_yamaha_indexscale[nibble]) >> 8,
418
                                   127, 24567));
419
#undef LOOP_NODES
420
#undef STORE_NODE
421
            }
422
        }
423
 
424
        u = nodes;
425
        nodes = nodes_next;
426
        nodes_next = u;
427
 
428
        generation++;
429
        if (generation == 255) {
430
            memset(hash, 0xff, 65536 * sizeof(*hash));
431
            generation = 0;
432
        }
433
 
434
        // prevent overflow
435
        if (nodes[0]->ssd > (1 << 28)) {
436
            for (j = 1; j < frontier && nodes[j]; j++)
437
                nodes[j]->ssd -= nodes[0]->ssd;
438
            nodes[0]->ssd = 0;
439
        }
440
 
441
        // merge old paths to save memory
442
        if (i == froze + FREEZE_INTERVAL) {
443
            p = &paths[nodes[0]->path];
444
            for (k = i; k > froze; k--) {
445
                dst[k] = p->nibble;
446
                p = &paths[p->prev];
447
            }
448
            froze = i;
449
            pathn = 0;
450
            // other nodes might use paths that don't coincide with the frozen one.
451
            // checking which nodes do so is too slow, so just kill them all.
452
            // this also slightly improves quality, but I don't know why.
453
            memset(nodes + 1, 0, (frontier - 1) * sizeof(TrellisNode*));
454
        }
455
    }
456
 
457
    p = &paths[nodes[0]->path];
458
    for (i = n - 1; i > froze; i--) {
459
        dst[i] = p->nibble;
460
        p = &paths[p->prev];
461
    }
462
 
463
    c->predictor  = nodes[0]->sample1;
464
    c->sample1    = nodes[0]->sample1;
465
    c->sample2    = nodes[0]->sample2;
466
    c->step_index = nodes[0]->step;
467
    c->step       = nodes[0]->step;
468
    c->idelta     = nodes[0]->step;
469
}
470
 
471
static int adpcm_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
472
                              const AVFrame *frame, int *got_packet_ptr)
473
{
474
    int n, i, ch, st, pkt_size, ret;
475
    const int16_t *samples;
476
    int16_t **samples_p;
477
    uint8_t *dst;
478
    ADPCMEncodeContext *c = avctx->priv_data;
479
    uint8_t *buf;
480
 
481
    samples = (const int16_t *)frame->data[0];
482
    samples_p = (int16_t **)frame->extended_data;
483
    st = avctx->channels == 2;
484
 
485
    if (avctx->codec_id == AV_CODEC_ID_ADPCM_SWF)
486
        pkt_size = (2 + avctx->channels * (22 + 4 * (frame->nb_samples - 1)) + 7) / 8;
487
    else
488
        pkt_size = avctx->block_align;
489
    if ((ret = ff_alloc_packet2(avctx, avpkt, pkt_size)) < 0)
490
        return ret;
491
    dst = avpkt->data;
492
 
493
    switch(avctx->codec->id) {
494
    case AV_CODEC_ID_ADPCM_IMA_WAV:
495
    {
496
        int blocks, j;
497
 
498
        blocks = (frame->nb_samples - 1) / 8;
499
 
500
        for (ch = 0; ch < avctx->channels; ch++) {
501
            ADPCMChannelStatus *status = &c->status[ch];
502
            status->prev_sample = samples_p[ch][0];
503
            /* status->step_index = 0;
504
               XXX: not sure how to init the state machine */
505
            bytestream_put_le16(&dst, status->prev_sample);
506
            *dst++ = status->step_index;
507
            *dst++ = 0; /* unknown */
508
        }
509
 
510
        /* stereo: 4 bytes (8 samples) for left, 4 bytes for right */
511
        if (avctx->trellis > 0) {
512
            FF_ALLOC_OR_GOTO(avctx, buf, avctx->channels * blocks * 8, error);
513
            for (ch = 0; ch < avctx->channels; ch++) {
514
                adpcm_compress_trellis(avctx, &samples_p[ch][1],
515
                                       buf + ch * blocks * 8, &c->status[ch],
516
                                       blocks * 8, 1);
517
            }
518
            for (i = 0; i < blocks; i++) {
519
                for (ch = 0; ch < avctx->channels; ch++) {
520
                    uint8_t *buf1 = buf + ch * blocks * 8 + i * 8;
521
                    for (j = 0; j < 8; j += 2)
522
                        *dst++ = buf1[j] | (buf1[j + 1] << 4);
523
                }
524
            }
525
            av_free(buf);
526
        } else {
527
            for (i = 0; i < blocks; i++) {
528
                for (ch = 0; ch < avctx->channels; ch++) {
529
                    ADPCMChannelStatus *status = &c->status[ch];
530
                    const int16_t *smp = &samples_p[ch][1 + i * 8];
531
                    for (j = 0; j < 8; j += 2) {
532
                        uint8_t v = adpcm_ima_compress_sample(status, smp[j    ]);
533
                        v        |= adpcm_ima_compress_sample(status, smp[j + 1]) << 4;
534
                        *dst++ = v;
535
                    }
536
                }
537
            }
538
        }
539
        break;
540
    }
541
    case AV_CODEC_ID_ADPCM_IMA_QT:
542
    {
543
        PutBitContext pb;
544
        init_put_bits(&pb, dst, pkt_size * 8);
545
 
546
        for (ch = 0; ch < avctx->channels; ch++) {
547
            ADPCMChannelStatus *status = &c->status[ch];
548
            put_bits(&pb, 9, (status->prev_sample & 0xFFFF) >> 7);
549
            put_bits(&pb, 7,  status->step_index);
550
            if (avctx->trellis > 0) {
551
                uint8_t buf[64];
552
                adpcm_compress_trellis(avctx, &samples_p[ch][1], buf, status,
553
                                       64, 1);
554
                for (i = 0; i < 64; i++)
555
                    put_bits(&pb, 4, buf[i ^ 1]);
556
            } else {
557
                for (i = 0; i < 64; i += 2) {
558
                    int t1, t2;
559
                    t1 = adpcm_ima_qt_compress_sample(status, samples_p[ch][i    ]);
560
                    t2 = adpcm_ima_qt_compress_sample(status, samples_p[ch][i + 1]);
561
                    put_bits(&pb, 4, t2);
562
                    put_bits(&pb, 4, t1);
563
                }
564
            }
565
        }
566
 
567
        flush_put_bits(&pb);
568
        break;
569
    }
570
    case AV_CODEC_ID_ADPCM_SWF:
571
    {
572
        PutBitContext pb;
573
        init_put_bits(&pb, dst, pkt_size * 8);
574
 
575
        n = frame->nb_samples - 1;
576
 
577
        // store AdpcmCodeSize
578
        put_bits(&pb, 2, 2);    // set 4-bit flash adpcm format
579
 
580
        // init the encoder state
581
        for (i = 0; i < avctx->channels; i++) {
582
            // clip step so it fits 6 bits
583
            c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63);
584
            put_sbits(&pb, 16, samples[i]);
585
            put_bits(&pb, 6, c->status[i].step_index);
586
            c->status[i].prev_sample = samples[i];
587
        }
588
 
589
        if (avctx->trellis > 0) {
590
            FF_ALLOC_OR_GOTO(avctx, buf, 2 * n, error);
591
            adpcm_compress_trellis(avctx, samples + avctx->channels, buf,
592
                                   &c->status[0], n, avctx->channels);
593
            if (avctx->channels == 2)
594
                adpcm_compress_trellis(avctx, samples + avctx->channels + 1,
595
                                       buf + n, &c->status[1], n,
596
                                       avctx->channels);
597
            for (i = 0; i < n; i++) {
598
                put_bits(&pb, 4, buf[i]);
599
                if (avctx->channels == 2)
600
                    put_bits(&pb, 4, buf[n + i]);
601
            }
602
            av_free(buf);
603
        } else {
604
            for (i = 1; i < frame->nb_samples; i++) {
605
                put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0],
606
                         samples[avctx->channels * i]));
607
                if (avctx->channels == 2)
608
                    put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1],
609
                             samples[2 * i + 1]));
610
            }
611
        }
612
        flush_put_bits(&pb);
613
        break;
614
    }
615
    case AV_CODEC_ID_ADPCM_MS:
616
        for (i = 0; i < avctx->channels; i++) {
617
            int predictor = 0;
618
            *dst++ = predictor;
619
            c->status[i].coeff1 = ff_adpcm_AdaptCoeff1[predictor];
620
            c->status[i].coeff2 = ff_adpcm_AdaptCoeff2[predictor];
621
        }
622
        for (i = 0; i < avctx->channels; i++) {
623
            if (c->status[i].idelta < 16)
624
                c->status[i].idelta = 16;
625
            bytestream_put_le16(&dst, c->status[i].idelta);
626
        }
627
        for (i = 0; i < avctx->channels; i++)
628
            c->status[i].sample2= *samples++;
629
        for (i = 0; i < avctx->channels; i++) {
630
            c->status[i].sample1 = *samples++;
631
            bytestream_put_le16(&dst, c->status[i].sample1);
632
        }
633
        for (i = 0; i < avctx->channels; i++)
634
            bytestream_put_le16(&dst, c->status[i].sample2);
635
 
636
        if (avctx->trellis > 0) {
637
            n = avctx->block_align - 7 * avctx->channels;
638
            FF_ALLOC_OR_GOTO(avctx, buf, 2 * n, error);
639
            if (avctx->channels == 1) {
640
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n,
641
                                       avctx->channels);
642
                for (i = 0; i < n; i += 2)
643
                    *dst++ = (buf[i] << 4) | buf[i + 1];
644
            } else {
645
                adpcm_compress_trellis(avctx, samples,     buf,
646
                                       &c->status[0], n, avctx->channels);
647
                adpcm_compress_trellis(avctx, samples + 1, buf + n,
648
                                       &c->status[1], n, avctx->channels);
649
                for (i = 0; i < n; i++)
650
                    *dst++ = (buf[i] << 4) | buf[n + i];
651
            }
652
            av_free(buf);
653
        } else {
654
            for (i = 7 * avctx->channels; i < avctx->block_align; i++) {
655
                int nibble;
656
                nibble  = adpcm_ms_compress_sample(&c->status[ 0], *samples++) << 4;
657
                nibble |= adpcm_ms_compress_sample(&c->status[st], *samples++);
658
                *dst++  = nibble;
659
            }
660
        }
661
        break;
662
    case AV_CODEC_ID_ADPCM_YAMAHA:
663
        n = frame->nb_samples / 2;
664
        if (avctx->trellis > 0) {
665
            FF_ALLOC_OR_GOTO(avctx, buf, 2 * n * 2, error);
666
            n *= 2;
667
            if (avctx->channels == 1) {
668
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n,
669
                                       avctx->channels);
670
                for (i = 0; i < n; i += 2)
671
                    *dst++ = buf[i] | (buf[i + 1] << 4);
672
            } else {
673
                adpcm_compress_trellis(avctx, samples,     buf,
674
                                       &c->status[0], n, avctx->channels);
675
                adpcm_compress_trellis(avctx, samples + 1, buf + n,
676
                                       &c->status[1], n, avctx->channels);
677
                for (i = 0; i < n; i++)
678
                    *dst++ = buf[i] | (buf[n + i] << 4);
679
            }
680
            av_free(buf);
681
        } else
682
            for (n *= avctx->channels; n > 0; n--) {
683
                int nibble;
684
                nibble  = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
685
                nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
686
                *dst++  = nibble;
687
            }
688
        break;
689
    default:
690
        return AVERROR(EINVAL);
691
    }
692
 
693
    avpkt->size = pkt_size;
694
    *got_packet_ptr = 1;
695
    return 0;
696
error:
697
    return AVERROR(ENOMEM);
698
}
699
 
700
static const enum AVSampleFormat sample_fmts[] = {
701
    AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
702
};
703
 
704
static const enum AVSampleFormat sample_fmts_p[] = {
705
    AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_NONE
706
};
707
 
708
#define ADPCM_ENCODER(id_, name_, sample_fmts_, long_name_) \
709
AVCodec ff_ ## name_ ## _encoder = {                        \
710
    .name           = #name_,                               \
711
    .long_name      = NULL_IF_CONFIG_SMALL(long_name_),     \
712
    .type           = AVMEDIA_TYPE_AUDIO,                   \
713
    .id             = id_,                                  \
714
    .priv_data_size = sizeof(ADPCMEncodeContext),           \
715
    .init           = adpcm_encode_init,                    \
716
    .encode2        = adpcm_encode_frame,                   \
717
    .close          = adpcm_encode_close,                   \
718
    .sample_fmts    = sample_fmts_,                         \
719
}
720
 
721
ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_QT,  adpcm_ima_qt,  sample_fmts_p, "ADPCM IMA QuickTime");
722
ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, sample_fmts_p, "ADPCM IMA WAV");
723
ADPCM_ENCODER(AV_CODEC_ID_ADPCM_MS,      adpcm_ms,      sample_fmts,   "ADPCM Microsoft");
724
ADPCM_ENCODER(AV_CODEC_ID_ADPCM_SWF,     adpcm_swf,     sample_fmts,   "ADPCM Shockwave Flash");
725
ADPCM_ENCODER(AV_CODEC_ID_ADPCM_YAMAHA,  adpcm_yamaha,  sample_fmts,   "ADPCM Yamaha");