Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * AAC coefficients encoder
3
 * Copyright (C) 2008-2009 Konstantin Shishkov
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
 
22
/**
23
 * @file
24
 * AAC coefficients encoder
25
 */
26
 
27
/***********************************
28
 *              TODOs:
29
 * speedup quantizer selection
30
 * add sane pulse detection
31
 ***********************************/
32
 
33
#include "libavutil/libm.h" // brought forward to work around cygwin header breakage
34
 
35
#include 
36
#include "libavutil/mathematics.h"
37
#include "avcodec.h"
38
#include "put_bits.h"
39
#include "aac.h"
40
#include "aacenc.h"
41
#include "aactab.h"
42
 
43
/** bits needed to code codebook run value for long windows */
44
static const uint8_t run_value_bits_long[64] = {
45
     5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,
46
     5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5, 10,
47
    10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
48
    10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 15
49
};
50
 
51
/** bits needed to code codebook run value for short windows */
52
static const uint8_t run_value_bits_short[16] = {
53
    3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 9
54
};
55
 
56
static const uint8_t *run_value_bits[2] = {
57
    run_value_bits_long, run_value_bits_short
58
};
59
 
60
 
61
/**
62
 * Quantize one coefficient.
63
 * @return absolute value of the quantized coefficient
64
 * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
65
 */
66
static av_always_inline int quant(float coef, const float Q)
67
{
68
    float a = coef * Q;
69
    return sqrtf(a * sqrtf(a)) + 0.4054;
70
}
71
 
72
static void quantize_bands(int *out, const float *in, const float *scaled,
73
                           int size, float Q34, int is_signed, int maxval)
74
{
75
    int i;
76
    double qc;
77
    for (i = 0; i < size; i++) {
78
        qc = scaled[i] * Q34;
79
        out[i] = (int)FFMIN(qc + 0.4054, (double)maxval);
80
        if (is_signed && in[i] < 0.0f) {
81
            out[i] = -out[i];
82
        }
83
    }
84
}
85
 
86
static void abs_pow34_v(float *out, const float *in, const int size)
87
{
88
#ifndef USE_REALLY_FULL_SEARCH
89
    int i;
90
    for (i = 0; i < size; i++) {
91
        float a = fabsf(in[i]);
92
        out[i] = sqrtf(a * sqrtf(a));
93
    }
94
#endif /* USE_REALLY_FULL_SEARCH */
95
}
96
 
97
static const uint8_t aac_cb_range [12] = {0, 3, 3, 3, 3, 9, 9, 8, 8, 13, 13, 17};
98
static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16};
99
 
100
/**
101
 * Calculate rate distortion cost for quantizing with given codebook
102
 *
103
 * @return quantization distortion
104
 */
105
static av_always_inline float quantize_and_encode_band_cost_template(
106
                                struct AACEncContext *s,
107
                                PutBitContext *pb, const float *in,
108
                                const float *scaled, int size, int scale_idx,
109
                                int cb, const float lambda, const float uplim,
110
                                int *bits, int BT_ZERO, int BT_UNSIGNED,
111
                                int BT_PAIR, int BT_ESC)
112
{
113
    const int q_idx = POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512;
114
    const float Q   = ff_aac_pow2sf_tab [q_idx];
115
    const float Q34 = ff_aac_pow34sf_tab[q_idx];
116
    const float IQ  = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
117
    const float CLIPPED_ESCAPE = 165140.0f*IQ;
118
    int i, j;
119
    float cost = 0;
120
    const int dim = BT_PAIR ? 2 : 4;
121
    int resbits = 0;
122
    const int range  = aac_cb_range[cb];
123
    const int maxval = aac_cb_maxval[cb];
124
    int off;
125
 
126
    if (BT_ZERO) {
127
        for (i = 0; i < size; i++)
128
            cost += in[i]*in[i];
129
        if (bits)
130
            *bits = 0;
131
        return cost * lambda;
132
    }
133
    if (!scaled) {
134
        abs_pow34_v(s->scoefs, in, size);
135
        scaled = s->scoefs;
136
    }
137
    quantize_bands(s->qcoefs, in, scaled, size, Q34, !BT_UNSIGNED, maxval);
138
    if (BT_UNSIGNED) {
139
        off = 0;
140
    } else {
141
        off = maxval;
142
    }
143
    for (i = 0; i < size; i += dim) {
144
        const float *vec;
145
        int *quants = s->qcoefs + i;
146
        int curidx = 0;
147
        int curbits;
148
        float rd = 0.0f;
149
        for (j = 0; j < dim; j++) {
150
            curidx *= range;
151
            curidx += quants[j] + off;
152
        }
153
        curbits =  ff_aac_spectral_bits[cb-1][curidx];
154
        vec     = &ff_aac_codebook_vectors[cb-1][curidx*dim];
155
        if (BT_UNSIGNED) {
156
            for (j = 0; j < dim; j++) {
157
                float t = fabsf(in[i+j]);
158
                float di;
159
                if (BT_ESC && vec[j] == 64.0f) { //FIXME: slow
160
                    if (t >= CLIPPED_ESCAPE) {
161
                        di = t - CLIPPED_ESCAPE;
162
                        curbits += 21;
163
                    } else {
164
                        int c = av_clip(quant(t, Q), 0, 8191);
165
                        di = t - c*cbrtf(c)*IQ;
166
                        curbits += av_log2(c)*2 - 4 + 1;
167
                    }
168
                } else {
169
                    di = t - vec[j]*IQ;
170
                }
171
                if (vec[j] != 0.0f)
172
                    curbits++;
173
                rd += di*di;
174
            }
175
        } else {
176
            for (j = 0; j < dim; j++) {
177
                float di = in[i+j] - vec[j]*IQ;
178
                rd += di*di;
179
            }
180
        }
181
        cost    += rd * lambda + curbits;
182
        resbits += curbits;
183
        if (cost >= uplim)
184
            return uplim;
185
        if (pb) {
186
            put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]);
187
            if (BT_UNSIGNED)
188
                for (j = 0; j < dim; j++)
189
                    if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f)
190
                        put_bits(pb, 1, in[i+j] < 0.0f);
191
            if (BT_ESC) {
192
                for (j = 0; j < 2; j++) {
193
                    if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) {
194
                        int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191);
195
                        int len = av_log2(coef);
196
 
197
                        put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
198
                        put_bits(pb, len, coef & ((1 << len) - 1));
199
                    }
200
                }
201
            }
202
        }
203
    }
204
 
205
    if (bits)
206
        *bits = resbits;
207
    return cost;
208
}
209
 
210
#define QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NAME, BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC) \
211
static float quantize_and_encode_band_cost_ ## NAME(                                        \
212
                                struct AACEncContext *s,                                \
213
                                PutBitContext *pb, const float *in,                     \
214
                                const float *scaled, int size, int scale_idx,           \
215
                                int cb, const float lambda, const float uplim,          \
216
                                int *bits) {                                            \
217
    return quantize_and_encode_band_cost_template(                                      \
218
                                s, pb, in, scaled, size, scale_idx,                     \
219
                                BT_ESC ? ESC_BT : cb, lambda, uplim, bits,              \
220
                                BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC);                 \
221
}
222
 
223
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ZERO,  1, 0, 0, 0)
224
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SQUAD, 0, 0, 0, 0)
225
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UQUAD, 0, 1, 0, 0)
226
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SPAIR, 0, 0, 1, 0)
227
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UPAIR, 0, 1, 1, 0)
228
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC,   0, 1, 1, 1)
229
 
230
static float (*const quantize_and_encode_band_cost_arr[])(
231
                                struct AACEncContext *s,
232
                                PutBitContext *pb, const float *in,
233
                                const float *scaled, int size, int scale_idx,
234
                                int cb, const float lambda, const float uplim,
235
                                int *bits) = {
236
    quantize_and_encode_band_cost_ZERO,
237
    quantize_and_encode_band_cost_SQUAD,
238
    quantize_and_encode_band_cost_SQUAD,
239
    quantize_and_encode_band_cost_UQUAD,
240
    quantize_and_encode_band_cost_UQUAD,
241
    quantize_and_encode_band_cost_SPAIR,
242
    quantize_and_encode_band_cost_SPAIR,
243
    quantize_and_encode_band_cost_UPAIR,
244
    quantize_and_encode_band_cost_UPAIR,
245
    quantize_and_encode_band_cost_UPAIR,
246
    quantize_and_encode_band_cost_UPAIR,
247
    quantize_and_encode_band_cost_ESC,
248
};
249
 
250
#define quantize_and_encode_band_cost(                                  \
251
                                s, pb, in, scaled, size, scale_idx, cb, \
252
                                lambda, uplim, bits)                    \
253
    quantize_and_encode_band_cost_arr[cb](                              \
254
                                s, pb, in, scaled, size, scale_idx, cb, \
255
                                lambda, uplim, bits)
256
 
257
static float quantize_band_cost(struct AACEncContext *s, const float *in,
258
                                const float *scaled, int size, int scale_idx,
259
                                int cb, const float lambda, const float uplim,
260
                                int *bits)
261
{
262
    return quantize_and_encode_band_cost(s, NULL, in, scaled, size, scale_idx,
263
                                         cb, lambda, uplim, bits);
264
}
265
 
266
static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
267
                                     const float *in, int size, int scale_idx,
268
                                     int cb, const float lambda)
269
{
270
    quantize_and_encode_band_cost(s, pb, in, NULL, size, scale_idx, cb, lambda,
271
                                  INFINITY, NULL);
272
}
273
 
274
static float find_max_val(int group_len, int swb_size, const float *scaled) {
275
    float maxval = 0.0f;
276
    int w2, i;
277
    for (w2 = 0; w2 < group_len; w2++) {
278
        for (i = 0; i < swb_size; i++) {
279
            maxval = FFMAX(maxval, scaled[w2*128+i]);
280
        }
281
    }
282
    return maxval;
283
}
284
 
285
static int find_min_book(float maxval, int sf) {
286
    float Q = ff_aac_pow2sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512];
287
    float Q34 = sqrtf(Q * sqrtf(Q));
288
    int qmaxval, cb;
289
    qmaxval = maxval * Q34 + 0.4054f;
290
    if      (qmaxval ==  0) cb = 0;
291
    else if (qmaxval ==  1) cb = 1;
292
    else if (qmaxval ==  2) cb = 3;
293
    else if (qmaxval <=  4) cb = 5;
294
    else if (qmaxval <=  7) cb = 7;
295
    else if (qmaxval <= 12) cb = 9;
296
    else                    cb = 11;
297
    return cb;
298
}
299
 
300
/**
301
 * structure used in optimal codebook search
302
 */
303
typedef struct BandCodingPath {
304
    int prev_idx; ///< pointer to the previous path point
305
    float cost;   ///< path cost
306
    int run;
307
} BandCodingPath;
308
 
309
/**
310
 * Encode band info for single window group bands.
311
 */
312
static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
313
                                     int win, int group_len, const float lambda)
314
{
315
    BandCodingPath path[120][12];
316
    int w, swb, cb, start, size;
317
    int i, j;
318
    const int max_sfb  = sce->ics.max_sfb;
319
    const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
320
    const int run_esc  = (1 << run_bits) - 1;
321
    int idx, ppos, count;
322
    int stackrun[120], stackcb[120], stack_len;
323
    float next_minrd = INFINITY;
324
    int next_mincb = 0;
325
 
326
    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
327
    start = win*128;
328
    for (cb = 0; cb < 12; cb++) {
329
        path[0][cb].cost     = 0.0f;
330
        path[0][cb].prev_idx = -1;
331
        path[0][cb].run      = 0;
332
    }
333
    for (swb = 0; swb < max_sfb; swb++) {
334
        size = sce->ics.swb_sizes[swb];
335
        if (sce->zeroes[win*16 + swb]) {
336
            for (cb = 0; cb < 12; cb++) {
337
                path[swb+1][cb].prev_idx = cb;
338
                path[swb+1][cb].cost     = path[swb][cb].cost;
339
                path[swb+1][cb].run      = path[swb][cb].run + 1;
340
            }
341
        } else {
342
            float minrd = next_minrd;
343
            int mincb = next_mincb;
344
            next_minrd = INFINITY;
345
            next_mincb = 0;
346
            for (cb = 0; cb < 12; cb++) {
347
                float cost_stay_here, cost_get_here;
348
                float rd = 0.0f;
349
                for (w = 0; w < group_len; w++) {
350
                    FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb];
351
                    rd += quantize_band_cost(s, sce->coeffs + start + w*128,
352
                                             s->scoefs + start + w*128, size,
353
                                             sce->sf_idx[(win+w)*16+swb], cb,
354
                                             lambda / band->threshold, INFINITY, NULL);
355
                }
356
                cost_stay_here = path[swb][cb].cost + rd;
357
                cost_get_here  = minrd              + rd + run_bits + 4;
358
                if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
359
                    != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
360
                    cost_stay_here += run_bits;
361
                if (cost_get_here < cost_stay_here) {
362
                    path[swb+1][cb].prev_idx = mincb;
363
                    path[swb+1][cb].cost     = cost_get_here;
364
                    path[swb+1][cb].run      = 1;
365
                } else {
366
                    path[swb+1][cb].prev_idx = cb;
367
                    path[swb+1][cb].cost     = cost_stay_here;
368
                    path[swb+1][cb].run      = path[swb][cb].run + 1;
369
                }
370
                if (path[swb+1][cb].cost < next_minrd) {
371
                    next_minrd = path[swb+1][cb].cost;
372
                    next_mincb = cb;
373
                }
374
            }
375
        }
376
        start += sce->ics.swb_sizes[swb];
377
    }
378
 
379
    //convert resulting path from backward-linked list
380
    stack_len = 0;
381
    idx       = 0;
382
    for (cb = 1; cb < 12; cb++)
383
        if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
384
            idx = cb;
385
    ppos = max_sfb;
386
    while (ppos > 0) {
387
        cb = idx;
388
        stackrun[stack_len] = path[ppos][cb].run;
389
        stackcb [stack_len] = cb;
390
        idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
391
        ppos -= path[ppos][cb].run;
392
        stack_len++;
393
    }
394
    //perform actual band info encoding
395
    start = 0;
396
    for (i = stack_len - 1; i >= 0; i--) {
397
        put_bits(&s->pb, 4, stackcb[i]);
398
        count = stackrun[i];
399
        memset(sce->zeroes + win*16 + start, !stackcb[i], count);
400
        //XXX: memset when band_type is also uint8_t
401
        for (j = 0; j < count; j++) {
402
            sce->band_type[win*16 + start] =  stackcb[i];
403
            start++;
404
        }
405
        while (count >= run_esc) {
406
            put_bits(&s->pb, run_bits, run_esc);
407
            count -= run_esc;
408
        }
409
        put_bits(&s->pb, run_bits, count);
410
    }
411
}
412
 
413
static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce,
414
                                  int win, int group_len, const float lambda)
415
{
416
    BandCodingPath path[120][12];
417
    int w, swb, cb, start, size;
418
    int i, j;
419
    const int max_sfb  = sce->ics.max_sfb;
420
    const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
421
    const int run_esc  = (1 << run_bits) - 1;
422
    int idx, ppos, count;
423
    int stackrun[120], stackcb[120], stack_len;
424
    float next_minbits = INFINITY;
425
    int next_mincb = 0;
426
 
427
    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
428
    start = win*128;
429
    for (cb = 0; cb < 12; cb++) {
430
        path[0][cb].cost     = run_bits+4;
431
        path[0][cb].prev_idx = -1;
432
        path[0][cb].run      = 0;
433
    }
434
    for (swb = 0; swb < max_sfb; swb++) {
435
        size = sce->ics.swb_sizes[swb];
436
        if (sce->zeroes[win*16 + swb]) {
437
            float cost_stay_here = path[swb][0].cost;
438
            float cost_get_here  = next_minbits + run_bits + 4;
439
            if (   run_value_bits[sce->ics.num_windows == 8][path[swb][0].run]
440
                != run_value_bits[sce->ics.num_windows == 8][path[swb][0].run+1])
441
                cost_stay_here += run_bits;
442
            if (cost_get_here < cost_stay_here) {
443
                path[swb+1][0].prev_idx = next_mincb;
444
                path[swb+1][0].cost     = cost_get_here;
445
                path[swb+1][0].run      = 1;
446
            } else {
447
                path[swb+1][0].prev_idx = 0;
448
                path[swb+1][0].cost     = cost_stay_here;
449
                path[swb+1][0].run      = path[swb][0].run + 1;
450
            }
451
            next_minbits = path[swb+1][0].cost;
452
            next_mincb = 0;
453
            for (cb = 1; cb < 12; cb++) {
454
                path[swb+1][cb].cost = 61450;
455
                path[swb+1][cb].prev_idx = -1;
456
                path[swb+1][cb].run = 0;
457
            }
458
        } else {
459
            float minbits = next_minbits;
460
            int mincb = next_mincb;
461
            int startcb = sce->band_type[win*16+swb];
462
            next_minbits = INFINITY;
463
            next_mincb = 0;
464
            for (cb = 0; cb < startcb; cb++) {
465
                path[swb+1][cb].cost = 61450;
466
                path[swb+1][cb].prev_idx = -1;
467
                path[swb+1][cb].run = 0;
468
            }
469
            for (cb = startcb; cb < 12; cb++) {
470
                float cost_stay_here, cost_get_here;
471
                float bits = 0.0f;
472
                for (w = 0; w < group_len; w++) {
473
                    bits += quantize_band_cost(s, sce->coeffs + start + w*128,
474
                                               s->scoefs + start + w*128, size,
475
                                               sce->sf_idx[(win+w)*16+swb], cb,
476
                                               0, INFINITY, NULL);
477
                }
478
                cost_stay_here = path[swb][cb].cost + bits;
479
                cost_get_here  = minbits            + bits + run_bits + 4;
480
                if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
481
                    != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
482
                    cost_stay_here += run_bits;
483
                if (cost_get_here < cost_stay_here) {
484
                    path[swb+1][cb].prev_idx = mincb;
485
                    path[swb+1][cb].cost     = cost_get_here;
486
                    path[swb+1][cb].run      = 1;
487
                } else {
488
                    path[swb+1][cb].prev_idx = cb;
489
                    path[swb+1][cb].cost     = cost_stay_here;
490
                    path[swb+1][cb].run      = path[swb][cb].run + 1;
491
                }
492
                if (path[swb+1][cb].cost < next_minbits) {
493
                    next_minbits = path[swb+1][cb].cost;
494
                    next_mincb = cb;
495
                }
496
            }
497
        }
498
        start += sce->ics.swb_sizes[swb];
499
    }
500
 
501
    //convert resulting path from backward-linked list
502
    stack_len = 0;
503
    idx       = 0;
504
    for (cb = 1; cb < 12; cb++)
505
        if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
506
            idx = cb;
507
    ppos = max_sfb;
508
    while (ppos > 0) {
509
        av_assert1(idx >= 0);
510
        cb = idx;
511
        stackrun[stack_len] = path[ppos][cb].run;
512
        stackcb [stack_len] = cb;
513
        idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
514
        ppos -= path[ppos][cb].run;
515
        stack_len++;
516
    }
517
    //perform actual band info encoding
518
    start = 0;
519
    for (i = stack_len - 1; i >= 0; i--) {
520
        put_bits(&s->pb, 4, stackcb[i]);
521
        count = stackrun[i];
522
        memset(sce->zeroes + win*16 + start, !stackcb[i], count);
523
        //XXX: memset when band_type is also uint8_t
524
        for (j = 0; j < count; j++) {
525
            sce->band_type[win*16 + start] =  stackcb[i];
526
            start++;
527
        }
528
        while (count >= run_esc) {
529
            put_bits(&s->pb, run_bits, run_esc);
530
            count -= run_esc;
531
        }
532
        put_bits(&s->pb, run_bits, count);
533
    }
534
}
535
 
536
/** Return the minimum scalefactor where the quantized coef does not clip. */
537
static av_always_inline uint8_t coef2minsf(float coef) {
538
    return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
539
}
540
 
541
/** Return the maximum scalefactor where the quantized coef is not zero. */
542
static av_always_inline uint8_t coef2maxsf(float coef) {
543
    return av_clip_uint8(log2f(coef)*4 +  6 + SCALE_ONE_POS - SCALE_DIV_512);
544
}
545
 
546
typedef struct TrellisPath {
547
    float cost;
548
    int prev;
549
} TrellisPath;
550
 
551
#define TRELLIS_STAGES 121
552
#define TRELLIS_STATES (SCALE_MAX_DIFF+1)
553
 
554
static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
555
                                       SingleChannelElement *sce,
556
                                       const float lambda)
557
{
558
    int q, w, w2, g, start = 0;
559
    int i, j;
560
    int idx;
561
    TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
562
    int bandaddr[TRELLIS_STAGES];
563
    int minq;
564
    float mincost;
565
    float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
566
    int q0, q1, qcnt = 0;
567
 
568
    for (i = 0; i < 1024; i++) {
569
        float t = fabsf(sce->coeffs[i]);
570
        if (t > 0.0f) {
571
            q0f = FFMIN(q0f, t);
572
            q1f = FFMAX(q1f, t);
573
            qnrgf += t*t;
574
            qcnt++;
575
        }
576
    }
577
 
578
    if (!qcnt) {
579
        memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
580
        memset(sce->zeroes, 1, sizeof(sce->zeroes));
581
        return;
582
    }
583
 
584
    //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
585
    q0 = coef2minsf(q0f);
586
    //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
587
    q1 = coef2maxsf(q1f);
588
    if (q1 - q0 > 60) {
589
        int q0low  = q0;
590
        int q1high = q1;
591
        //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
592
        int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
593
        q1 = qnrg + 30;
594
        q0 = qnrg - 30;
595
        if (q0 < q0low) {
596
            q1 += q0low - q0;
597
            q0  = q0low;
598
        } else if (q1 > q1high) {
599
            q0 -= q1 - q1high;
600
            q1  = q1high;
601
        }
602
    }
603
 
604
    for (i = 0; i < TRELLIS_STATES; i++) {
605
        paths[0][i].cost    = 0.0f;
606
        paths[0][i].prev    = -1;
607
    }
608
    for (j = 1; j < TRELLIS_STAGES; j++) {
609
        for (i = 0; i < TRELLIS_STATES; i++) {
610
            paths[j][i].cost    = INFINITY;
611
            paths[j][i].prev    = -2;
612
        }
613
    }
614
    idx = 1;
615
    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
616
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
617
        start = w*128;
618
        for (g = 0; g < sce->ics.num_swb; g++) {
619
            const float *coefs = sce->coeffs + start;
620
            float qmin, qmax;
621
            int nz = 0;
622
 
623
            bandaddr[idx] = w * 16 + g;
624
            qmin = INT_MAX;
625
            qmax = 0.0f;
626
            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
627
                FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
628
                if (band->energy <= band->threshold || band->threshold == 0.0f) {
629
                    sce->zeroes[(w+w2)*16+g] = 1;
630
                    continue;
631
                }
632
                sce->zeroes[(w+w2)*16+g] = 0;
633
                nz = 1;
634
                for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
635
                    float t = fabsf(coefs[w2*128+i]);
636
                    if (t > 0.0f)
637
                        qmin = FFMIN(qmin, t);
638
                    qmax = FFMAX(qmax, t);
639
                }
640
            }
641
            if (nz) {
642
                int minscale, maxscale;
643
                float minrd = INFINITY;
644
                float maxval;
645
                //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
646
                minscale = coef2minsf(qmin);
647
                //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
648
                maxscale = coef2maxsf(qmax);
649
                minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
650
                maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
651
                maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
652
                for (q = minscale; q < maxscale; q++) {
653
                    float dist = 0;
654
                    int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
655
                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
656
                        FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
657
                        dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
658
                                                   q + q0, cb, lambda / band->threshold, INFINITY, NULL);
659
                    }
660
                    minrd = FFMIN(minrd, dist);
661
 
662
                    for (i = 0; i < q1 - q0; i++) {
663
                        float cost;
664
                        cost = paths[idx - 1][i].cost + dist
665
                               + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
666
                        if (cost < paths[idx][q].cost) {
667
                            paths[idx][q].cost    = cost;
668
                            paths[idx][q].prev    = i;
669
                        }
670
                    }
671
                }
672
            } else {
673
                for (q = 0; q < q1 - q0; q++) {
674
                    paths[idx][q].cost = paths[idx - 1][q].cost + 1;
675
                    paths[idx][q].prev = q;
676
                }
677
            }
678
            sce->zeroes[w*16+g] = !nz;
679
            start += sce->ics.swb_sizes[g];
680
            idx++;
681
        }
682
    }
683
    idx--;
684
    mincost = paths[idx][0].cost;
685
    minq    = 0;
686
    for (i = 1; i < TRELLIS_STATES; i++) {
687
        if (paths[idx][i].cost < mincost) {
688
            mincost = paths[idx][i].cost;
689
            minq = i;
690
        }
691
    }
692
    while (idx) {
693
        sce->sf_idx[bandaddr[idx]] = minq + q0;
694
        minq = paths[idx][minq].prev;
695
        idx--;
696
    }
697
    //set the same quantizers inside window groups
698
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
699
        for (g = 0;  g < sce->ics.num_swb; g++)
700
            for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
701
                sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
702
}
703
 
704
/**
705
 * two-loop quantizers search taken from ISO 13818-7 Appendix C
706
 */
707
static void search_for_quantizers_twoloop(AVCodecContext *avctx,
708
                                          AACEncContext *s,
709
                                          SingleChannelElement *sce,
710
                                          const float lambda)
711
{
712
    int start = 0, i, w, w2, g;
713
    int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels * (lambda / 120.f);
714
    float dists[128] = { 0 }, uplims[128];
715
    float maxvals[128];
716
    int fflag, minscaler;
717
    int its  = 0;
718
    int allz = 0;
719
    float minthr = INFINITY;
720
 
721
    // for values above this the decoder might end up in an endless loop
722
    // due to always having more bits than what can be encoded.
723
    destbits = FFMIN(destbits, 5800);
724
    //XXX: some heuristic to determine initial quantizers will reduce search time
725
    //determine zero bands and upper limits
726
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
727
        for (g = 0;  g < sce->ics.num_swb; g++) {
728
            int nz = 0;
729
            float uplim = 0.0f;
730
            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
731
                FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
732
                uplim += band->threshold;
733
                if (band->energy <= band->threshold || band->threshold == 0.0f) {
734
                    sce->zeroes[(w+w2)*16+g] = 1;
735
                    continue;
736
                }
737
                nz = 1;
738
            }
739
            uplims[w*16+g] = uplim *512;
740
            sce->zeroes[w*16+g] = !nz;
741
            if (nz)
742
                minthr = FFMIN(minthr, uplim);
743
            allz |= nz;
744
        }
745
    }
746
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
747
        for (g = 0;  g < sce->ics.num_swb; g++) {
748
            if (sce->zeroes[w*16+g]) {
749
                sce->sf_idx[w*16+g] = SCALE_ONE_POS;
750
                continue;
751
            }
752
            sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
753
        }
754
    }
755
 
756
    if (!allz)
757
        return;
758
    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
759
 
760
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
761
        start = w*128;
762
        for (g = 0;  g < sce->ics.num_swb; g++) {
763
            const float *scaled = s->scoefs + start;
764
            maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
765
            start += sce->ics.swb_sizes[g];
766
        }
767
    }
768
 
769
    //perform two-loop search
770
    //outer loop - improve quality
771
    do {
772
        int tbits, qstep;
773
        minscaler = sce->sf_idx[0];
774
        //inner loop - quantize spectrum to fit into given number of bits
775
        qstep = its ? 1 : 32;
776
        do {
777
            int prev = -1;
778
            tbits = 0;
779
            fflag = 0;
780
            for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
781
                start = w*128;
782
                for (g = 0;  g < sce->ics.num_swb; g++) {
783
                    const float *coefs = sce->coeffs + start;
784
                    const float *scaled = s->scoefs + start;
785
                    int bits = 0;
786
                    int cb;
787
                    float dist = 0.0f;
788
 
789
                    if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
790
                        start += sce->ics.swb_sizes[g];
791
                        continue;
792
                    }
793
                    minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
794
                    cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
795
                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
796
                        int b;
797
                        dist += quantize_band_cost(s, coefs + w2*128,
798
                                                   scaled + w2*128,
799
                                                   sce->ics.swb_sizes[g],
800
                                                   sce->sf_idx[w*16+g],
801
                                                   cb,
802
                                                   1.0f,
803
                                                   INFINITY,
804
                                                   &b);
805
                        bits += b;
806
                    }
807
                    dists[w*16+g] = dist - bits;
808
                    if (prev != -1) {
809
                        bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
810
                    }
811
                    tbits += bits;
812
                    start += sce->ics.swb_sizes[g];
813
                    prev = sce->sf_idx[w*16+g];
814
                }
815
            }
816
            if (tbits > destbits) {
817
                for (i = 0; i < 128; i++)
818
                    if (sce->sf_idx[i] < 218 - qstep)
819
                        sce->sf_idx[i] += qstep;
820
            } else {
821
                for (i = 0; i < 128; i++)
822
                    if (sce->sf_idx[i] > 60 - qstep)
823
                        sce->sf_idx[i] -= qstep;
824
            }
825
            qstep >>= 1;
826
            if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
827
                qstep = 1;
828
        } while (qstep);
829
 
830
        fflag = 0;
831
        minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
832
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
833
            for (g = 0; g < sce->ics.num_swb; g++) {
834
                int prevsc = sce->sf_idx[w*16+g];
835
                if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
836
                    if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
837
                        sce->sf_idx[w*16+g]--;
838
                    else //Try to make sure there is some energy in every band
839
                        sce->sf_idx[w*16+g]-=2;
840
                }
841
                sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
842
                sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
843
                if (sce->sf_idx[w*16+g] != prevsc)
844
                    fflag = 1;
845
                sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
846
            }
847
        }
848
        its++;
849
    } while (fflag && its < 10);
850
}
851
 
852
static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
853
                                       SingleChannelElement *sce,
854
                                       const float lambda)
855
{
856
    int start = 0, i, w, w2, g;
857
    float uplim[128], maxq[128];
858
    int minq, maxsf;
859
    float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
860
    int last = 0, lastband = 0, curband = 0;
861
    float avg_energy = 0.0;
862
    if (sce->ics.num_windows == 1) {
863
        start = 0;
864
        for (i = 0; i < 1024; i++) {
865
            if (i - start >= sce->ics.swb_sizes[curband]) {
866
                start += sce->ics.swb_sizes[curband];
867
                curband++;
868
            }
869
            if (sce->coeffs[i]) {
870
                avg_energy += sce->coeffs[i] * sce->coeffs[i];
871
                last = i;
872
                lastband = curband;
873
            }
874
        }
875
    } else {
876
        for (w = 0; w < 8; w++) {
877
            const float *coeffs = sce->coeffs + w*128;
878
            curband = start = 0;
879
            for (i = 0; i < 128; i++) {
880
                if (i - start >= sce->ics.swb_sizes[curband]) {
881
                    start += sce->ics.swb_sizes[curband];
882
                    curband++;
883
                }
884
                if (coeffs[i]) {
885
                    avg_energy += coeffs[i] * coeffs[i];
886
                    last = FFMAX(last, i);
887
                    lastband = FFMAX(lastband, curband);
888
                }
889
            }
890
        }
891
    }
892
    last++;
893
    avg_energy /= last;
894
    if (avg_energy == 0.0f) {
895
        for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
896
            sce->sf_idx[i] = SCALE_ONE_POS;
897
        return;
898
    }
899
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
900
        start = w*128;
901
        for (g = 0; g < sce->ics.num_swb; g++) {
902
            float *coefs   = sce->coeffs + start;
903
            const int size = sce->ics.swb_sizes[g];
904
            int start2 = start, end2 = start + size, peakpos = start;
905
            float maxval = -1, thr = 0.0f, t;
906
            maxq[w*16+g] = 0.0f;
907
            if (g > lastband) {
908
                maxq[w*16+g] = 0.0f;
909
                start += size;
910
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
911
                    memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
912
                continue;
913
            }
914
            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
915
                for (i = 0; i < size; i++) {
916
                    float t = coefs[w2*128+i]*coefs[w2*128+i];
917
                    maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
918
                    thr += t;
919
                    if (sce->ics.num_windows == 1 && maxval < t) {
920
                        maxval  = t;
921
                        peakpos = start+i;
922
                    }
923
                }
924
            }
925
            if (sce->ics.num_windows == 1) {
926
                start2 = FFMAX(peakpos - 2, start2);
927
                end2   = FFMIN(peakpos + 3, end2);
928
            } else {
929
                start2 -= start;
930
                end2   -= start;
931
            }
932
            start += size;
933
            thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
934
            t   = 1.0 - (1.0 * start2 / last);
935
            uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
936
        }
937
    }
938
    memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
939
    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
940
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
941
        start = w*128;
942
        for (g = 0;  g < sce->ics.num_swb; g++) {
943
            const float *coefs  = sce->coeffs + start;
944
            const float *scaled = s->scoefs   + start;
945
            const int size      = sce->ics.swb_sizes[g];
946
            int scf, prev_scf, step;
947
            int min_scf = -1, max_scf = 256;
948
            float curdiff;
949
            if (maxq[w*16+g] < 21.544) {
950
                sce->zeroes[w*16+g] = 1;
951
                start += size;
952
                continue;
953
            }
954
            sce->zeroes[w*16+g] = 0;
955
            scf  = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218);
956
            step = 16;
957
            for (;;) {
958
                float dist = 0.0f;
959
                int quant_max;
960
 
961
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
962
                    int b;
963
                    dist += quantize_band_cost(s, coefs + w2*128,
964
                                               scaled + w2*128,
965
                                               sce->ics.swb_sizes[g],
966
                                               scf,
967
                                               ESC_BT,
968
                                               lambda,
969
                                               INFINITY,
970
                                               &b);
971
                    dist -= b;
972
                }
973
                dist *= 1.0f / 512.0f / lambda;
974
                quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[POW_SF2_ZERO - scf + SCALE_ONE_POS - SCALE_DIV_512]);
975
                if (quant_max >= 8191) { // too much, return to the previous quantizer
976
                    sce->sf_idx[w*16+g] = prev_scf;
977
                    break;
978
                }
979
                prev_scf = scf;
980
                curdiff = fabsf(dist - uplim[w*16+g]);
981
                if (curdiff <= 1.0f)
982
                    step = 0;
983
                else
984
                    step = log2f(curdiff);
985
                if (dist > uplim[w*16+g])
986
                    step = -step;
987
                scf += step;
988
                scf = av_clip_uint8(scf);
989
                step = scf - prev_scf;
990
                if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
991
                    sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf);
992
                    break;
993
                }
994
                if (step > 0)
995
                    min_scf = prev_scf;
996
                else
997
                    max_scf = prev_scf;
998
            }
999
            start += size;
1000
        }
1001
    }
1002
    minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
1003
    for (i = 1; i < 128; i++) {
1004
        if (!sce->sf_idx[i])
1005
            sce->sf_idx[i] = sce->sf_idx[i-1];
1006
        else
1007
            minq = FFMIN(minq, sce->sf_idx[i]);
1008
    }
1009
    if (minq == INT_MAX)
1010
        minq = 0;
1011
    minq = FFMIN(minq, SCALE_MAX_POS);
1012
    maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
1013
    for (i = 126; i >= 0; i--) {
1014
        if (!sce->sf_idx[i])
1015
            sce->sf_idx[i] = sce->sf_idx[i+1];
1016
        sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
1017
    }
1018
}
1019
 
1020
static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
1021
                                       SingleChannelElement *sce,
1022
                                       const float lambda)
1023
{
1024
    int i, w, w2, g;
1025
    int minq = 255;
1026
 
1027
    memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
1028
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
1029
        for (g = 0; g < sce->ics.num_swb; g++) {
1030
            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
1031
                FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
1032
                if (band->energy <= band->threshold) {
1033
                    sce->sf_idx[(w+w2)*16+g] = 218;
1034
                    sce->zeroes[(w+w2)*16+g] = 1;
1035
                } else {
1036
                    sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218);
1037
                    sce->zeroes[(w+w2)*16+g] = 0;
1038
                }
1039
                minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
1040
            }
1041
        }
1042
    }
1043
    for (i = 0; i < 128; i++) {
1044
        sce->sf_idx[i] = 140;
1045
        //av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
1046
    }
1047
    //set the same quantizers inside window groups
1048
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
1049
        for (g = 0;  g < sce->ics.num_swb; g++)
1050
            for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
1051
                sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
1052
}
1053
 
1054
static void search_for_ms(AACEncContext *s, ChannelElement *cpe,
1055
                          const float lambda)
1056
{
1057
    int start = 0, i, w, w2, g;
1058
    float M[128], S[128];
1059
    float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
1060
    SingleChannelElement *sce0 = &cpe->ch[0];
1061
    SingleChannelElement *sce1 = &cpe->ch[1];
1062
    if (!cpe->common_window)
1063
        return;
1064
    for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
1065
        for (g = 0;  g < sce0->ics.num_swb; g++) {
1066
            if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
1067
                float dist1 = 0.0f, dist2 = 0.0f;
1068
                for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
1069
                    FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
1070
                    FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
1071
                    float minthr = FFMIN(band0->threshold, band1->threshold);
1072
                    float maxthr = FFMAX(band0->threshold, band1->threshold);
1073
                    for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
1074
                        M[i] = (sce0->coeffs[start+w2*128+i]
1075
                              + sce1->coeffs[start+w2*128+i]) * 0.5;
1076
                        S[i] =  M[i]
1077
                              - sce1->coeffs[start+w2*128+i];
1078
                    }
1079
                    abs_pow34_v(L34, sce0->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
1080
                    abs_pow34_v(R34, sce1->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
1081
                    abs_pow34_v(M34, M,                         sce0->ics.swb_sizes[g]);
1082
                    abs_pow34_v(S34, S,                         sce0->ics.swb_sizes[g]);
1083
                    dist1 += quantize_band_cost(s, sce0->coeffs + start + w2*128,
1084
                                                L34,
1085
                                                sce0->ics.swb_sizes[g],
1086
                                                sce0->sf_idx[(w+w2)*16+g],
1087
                                                sce0->band_type[(w+w2)*16+g],
1088
                                                lambda / band0->threshold, INFINITY, NULL);
1089
                    dist1 += quantize_band_cost(s, sce1->coeffs + start + w2*128,
1090
                                                R34,
1091
                                                sce1->ics.swb_sizes[g],
1092
                                                sce1->sf_idx[(w+w2)*16+g],
1093
                                                sce1->band_type[(w+w2)*16+g],
1094
                                                lambda / band1->threshold, INFINITY, NULL);
1095
                    dist2 += quantize_band_cost(s, M,
1096
                                                M34,
1097
                                                sce0->ics.swb_sizes[g],
1098
                                                sce0->sf_idx[(w+w2)*16+g],
1099
                                                sce0->band_type[(w+w2)*16+g],
1100
                                                lambda / maxthr, INFINITY, NULL);
1101
                    dist2 += quantize_band_cost(s, S,
1102
                                                S34,
1103
                                                sce1->ics.swb_sizes[g],
1104
                                                sce1->sf_idx[(w+w2)*16+g],
1105
                                                sce1->band_type[(w+w2)*16+g],
1106
                                                lambda / minthr, INFINITY, NULL);
1107
                }
1108
                cpe->ms_mask[w*16+g] = dist2 < dist1;
1109
            }
1110
            start += sce0->ics.swb_sizes[g];
1111
        }
1112
    }
1113
}
1114
 
1115
AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = {
1116
    [AAC_CODER_FAAC] = {
1117
        search_for_quantizers_faac,
1118
        encode_window_bands_info,
1119
        quantize_and_encode_band,
1120
        search_for_ms,
1121
    },
1122
    [AAC_CODER_ANMR] = {
1123
        search_for_quantizers_anmr,
1124
        encode_window_bands_info,
1125
        quantize_and_encode_band,
1126
        search_for_ms,
1127
    },
1128
    [AAC_CODER_TWOLOOP] = {
1129
        search_for_quantizers_twoloop,
1130
        codebook_trellis_rate,
1131
        quantize_and_encode_band,
1132
        search_for_ms,
1133
    },
1134
    [AAC_CODER_FAST] = {
1135
        search_for_quantizers_fast,
1136
        encode_window_bands_info,
1137
        quantize_and_encode_band,
1138
        search_for_ms,
1139
    },
1140
};