Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
6147 serge 1
/*
2
 * Copyright (c) 2005 Robert Edele 
3
 * Copyright (c) 2012 Stefano Sabatini
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
 
22
/**
23
 * @file
24
 * Advanced blur-based logo removing filter
25
 *
26
 * This filter loads an image mask file showing where a logo is and
27
 * uses a blur transform to remove the logo.
28
 *
29
 * Based on the libmpcodecs remove-logo filter by Robert Edele.
30
 */
31
 
32
/**
33
 * This code implements a filter to remove annoying TV logos and other annoying
34
 * images placed onto a video stream. It works by filling in the pixels that
35
 * comprise the logo with neighboring pixels. The transform is very loosely
36
 * based on a gaussian blur, but it is different enough to merit its own
37
 * paragraph later on. It is a major improvement on the old delogo filter as it
38
 * both uses a better blurring algorithm and uses a bitmap to use an arbitrary
39
 * and generally much tighter fitting shape than a rectangle.
40
 *
41
 * The logo removal algorithm has two key points. The first is that it
42
 * distinguishes between pixels in the logo and those not in the logo by using
43
 * the passed-in bitmap. Pixels not in the logo are copied over directly without
44
 * being modified and they also serve as source pixels for the logo
45
 * fill-in. Pixels inside the logo have the mask applied.
46
 *
47
 * At init-time the bitmap is reprocessed internally, and the distance to the
48
 * nearest edge of the logo (Manhattan distance), along with a little extra to
49
 * remove rough edges, is stored in each pixel. This is done using an in-place
50
 * erosion algorithm, and incrementing each pixel that survives any given
51
 * erosion.  Once every pixel is eroded, the maximum value is recorded, and a
52
 * set of masks from size 0 to this size are generaged. The masks are circular
53
 * binary masks, where each pixel within a radius N (where N is the size of the
54
 * mask) is a 1, and all other pixels are a 0. Although a gaussian mask would be
55
 * more mathematically accurate, a binary mask works better in practice because
56
 * we generally do not use the central pixels in the mask (because they are in
57
 * the logo region), and thus a gaussian mask will cause too little blur and
58
 * thus a very unstable image.
59
 *
60
 * The mask is applied in a special way. Namely, only pixels in the mask that
61
 * line up to pixels outside the logo are used. The dynamic mask size means that
62
 * the mask is just big enough so that the edges touch pixels outside the logo,
63
 * so the blurring is kept to a minimum and at least the first boundary
64
 * condition is met (that the image function itself is continuous), even if the
65
 * second boundary condition (that the derivative of the image function is
66
 * continuous) is not met. A masking algorithm that does preserve the second
67
 * boundary coundition (perhaps something based on a highly-modified bi-cubic
68
 * algorithm) should offer even better results on paper, but the noise in a
69
 * typical TV signal should make anything based on derivatives hopelessly noisy.
70
 */
71
 
72
#include "libavutil/imgutils.h"
73
#include "libavutil/opt.h"
74
#include "avfilter.h"
75
#include "formats.h"
76
#include "internal.h"
77
#include "video.h"
78
#include "bbox.h"
79
#include "lavfutils.h"
80
#include "lswsutils.h"
81
 
82
typedef struct {
83
    const AVClass *class;
84
    char *filename;
85
    /* Stores our collection of masks. The first is for an array of
86
       the second for the y axis, and the third for the x axis. */
87
    int ***mask;
88
    int max_mask_size;
89
    int mask_w, mask_h;
90
 
91
    uint8_t      *full_mask_data;
92
    FFBoundingBox full_mask_bbox;
93
    uint8_t      *half_mask_data;
94
    FFBoundingBox half_mask_bbox;
95
} RemovelogoContext;
96
 
97
#define OFFSET(x) offsetof(RemovelogoContext, x)
98
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
99
static const AVOption removelogo_options[] = {
100
    { "filename", "set bitmap filename", OFFSET(filename), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
101
    { "f",        "set bitmap filename", OFFSET(filename), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
102
    { NULL }
103
};
104
 
105
AVFILTER_DEFINE_CLASS(removelogo);
106
 
107
/**
108
 * Choose a slightly larger mask size to improve performance.
109
 *
110
 * This function maps the absolute minimum mask size needed to the
111
 * mask size we'll actually use. f(x) = x (the smallest that will
112
 * work) will produce the sharpest results, but will be quite
113
 * jittery. f(x) = 1.25x (what I'm using) is a good tradeoff in my
114
 * opinion. This will calculate only at init-time, so you can put a
115
 * long expression here without effecting performance.
116
 */
117
#define apply_mask_fudge_factor(x) (((x) >> 2) + (x))
118
 
119
/**
120
 * Pre-process an image to give distance information.
121
 *
122
 * This function takes a bitmap image and converts it in place into a
123
 * distance image. A distance image is zero for pixels outside of the
124
 * logo and is the Manhattan distance (|dx| + |dy|) from the logo edge
125
 * for pixels inside of the logo. This will overestimate the distance,
126
 * but that is safe, and is far easier to implement than a proper
127
 * pythagorean distance since I'm using a modified erosion algorithm
128
 * to compute the distances.
129
 *
130
 * @param mask image which will be converted from a greyscale image
131
 * into a distance image.
132
 */
133
static void convert_mask_to_strength_mask(uint8_t *data, int linesize,
134
                                          int w, int h, int min_val,
135
                                          int *max_mask_size)
136
{
137
    int x, y;
138
 
139
    /* How many times we've gone through the loop. Used in the
140
       in-place erosion algorithm and to get us max_mask_size later on. */
141
    int current_pass = 0;
142
 
143
    /* set all non-zero values to 1 */
144
    for (y = 0; y < h; y++)
145
        for (x = 0; x < w; x++)
146
            data[y*linesize + x] = data[y*linesize + x] > min_val;
147
 
148
    /* For each pass, if a pixel is itself the same value as the
149
       current pass, and its four neighbors are too, then it is
150
       incremented. If no pixels are incremented by the end of the
151
       pass, then we go again. Edge pixels are counted as always
152
       excluded (this should be true anyway for any sane mask, but if
153
       it isn't this will ensure that we eventually exit). */
154
    while (1) {
155
        /* If this doesn't get set by the end of this pass, then we're done. */
156
        int has_anything_changed = 0;
157
        uint8_t *current_pixel0 = data + 1 + linesize, *current_pixel;
158
        current_pass++;
159
 
160
        for (y = 1; y < h-1; y++) {
161
            current_pixel = current_pixel0;
162
            for (x = 1; x < w-1; x++) {
163
                /* Apply the in-place erosion transform. It is based
164
                   on the following two premises:
165
                   1 - Any pixel that fails 1 erosion will fail all
166
                       future erosions.
167
 
168
                   2 - Only pixels having survived all erosions up to
169
                       the present will be >= to current_pass.
170
                   It doesn't matter if it survived the current pass,
171
                   failed it, or hasn't been tested yet.  By using >=
172
                   instead of ==, we allow the algorithm to work in
173
                   place. */
174
                if ( *current_pixel      >= current_pass &&
175
                    *(current_pixel + 1) >= current_pass &&
176
                    *(current_pixel - 1) >= current_pass &&
177
                    *(current_pixel + linesize) >= current_pass &&
178
                    *(current_pixel - linesize) >= current_pass) {
179
                    /* Increment the value since it still has not been
180
                     * eroded, as evidenced by the if statement that
181
                     * just evaluated to true. */
182
                    (*current_pixel)++;
183
                    has_anything_changed = 1;
184
                }
185
                current_pixel++;
186
            }
187
            current_pixel0 += linesize;
188
        }
189
        if (!has_anything_changed)
190
            break;
191
    }
192
 
193
    /* Apply the fudge factor, which will increase the size of the
194
     * mask a little to reduce jitter at the cost of more blur. */
195
    for (y = 1; y < h - 1; y++)
196
        for (x = 1; x < w - 1; x++)
197
            data[(y * linesize) + x] = apply_mask_fudge_factor(data[(y * linesize) + x]);
198
 
199
    /* As a side-effect, we now know the maximum mask size, which
200
     * we'll use to generate our masks. */
201
    /* Apply the fudge factor to this number too, since we must ensure
202
     * that enough masks are generated. */
203
    *max_mask_size = apply_mask_fudge_factor(current_pass + 1);
204
}
205
 
206
static int query_formats(AVFilterContext *ctx)
207
{
208
    static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE };
209
    AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
210
    if (!fmts_list)
211
        return AVERROR(ENOMEM);
212
    return ff_set_common_formats(ctx, fmts_list);
213
}
214
 
215
static int load_mask(uint8_t **mask, int *w, int *h,
216
                     const char *filename, void *log_ctx)
217
{
218
    int ret;
219
    enum AVPixelFormat pix_fmt;
220
    uint8_t *src_data[4], *gray_data[4];
221
    int src_linesize[4], gray_linesize[4];
222
 
223
    /* load image from file */
224
    if ((ret = ff_load_image(src_data, src_linesize, w, h, &pix_fmt, filename, log_ctx)) < 0)
225
        return ret;
226
 
227
    /* convert the image to GRAY8 */
228
    if ((ret = ff_scale_image(gray_data, gray_linesize, *w, *h, AV_PIX_FMT_GRAY8,
229
                              src_data, src_linesize, *w, *h, pix_fmt,
230
                              log_ctx)) < 0)
231
        goto end;
232
 
233
    /* copy mask to a newly allocated array */
234
    *mask = av_malloc(*w * *h);
235
    if (!*mask)
236
        ret = AVERROR(ENOMEM);
237
    av_image_copy_plane(*mask, *w, gray_data[0], gray_linesize[0], *w, *h);
238
 
239
end:
240
    av_freep(&src_data[0]);
241
    av_freep(&gray_data[0]);
242
    return ret;
243
}
244
 
245
/**
246
 * Generate a scaled down image with half width, height, and intensity.
247
 *
248
 * This function not only scales down an image, but halves the value
249
 * in each pixel too. The purpose of this is to produce a chroma
250
 * filter image out of a luma filter image. The pixel values store the
251
 * distance to the edge of the logo and halving the dimensions halves
252
 * the distance. This function rounds up, because a downwards rounding
253
 * error could cause the filter to fail, but an upwards rounding error
254
 * will only cause a minor amount of excess blur in the chroma planes.
255
 */
256
static void generate_half_size_image(const uint8_t *src_data, int src_linesize,
257
                                     uint8_t *dst_data, int dst_linesize,
258
                                     int src_w, int src_h,
259
                                     int *max_mask_size)
260
{
261
    int x, y;
262
 
263
    /* Copy over the image data, using the average of 4 pixels for to
264
     * calculate each downsampled pixel. */
265
    for (y = 0; y < src_h/2; y++) {
266
        for (x = 0; x < src_w/2; x++) {
267
            /* Set the pixel if there exists a non-zero value in the
268
             * source pixels, else clear it. */
269
            dst_data[(y * dst_linesize) + x] =
270
                src_data[((y << 1) * src_linesize) + (x << 1)] ||
271
                src_data[((y << 1) * src_linesize) + (x << 1) + 1] ||
272
                src_data[(((y << 1) + 1) * src_linesize) + (x << 1)] ||
273
                src_data[(((y << 1) + 1) * src_linesize) + (x << 1) + 1];
274
            dst_data[(y * dst_linesize) + x] = FFMIN(1, dst_data[(y * dst_linesize) + x]);
275
        }
276
    }
277
 
278
    convert_mask_to_strength_mask(dst_data, dst_linesize,
279
                                  src_w/2, src_h/2, 0, max_mask_size);
280
}
281
 
282
static av_cold int init(AVFilterContext *ctx)
283
{
284
    RemovelogoContext *s = ctx->priv;
285
    int ***mask;
286
    int ret = 0;
287
    int a, b, c, w, h;
288
    int full_max_mask_size, half_max_mask_size;
289
 
290
    if (!s->filename) {
291
        av_log(ctx, AV_LOG_ERROR, "The bitmap file name is mandatory\n");
292
        return AVERROR(EINVAL);
293
    }
294
 
295
    /* Load our mask image. */
296
    if ((ret = load_mask(&s->full_mask_data, &w, &h, s->filename, ctx)) < 0)
297
        return ret;
298
    s->mask_w = w;
299
    s->mask_h = h;
300
 
301
    convert_mask_to_strength_mask(s->full_mask_data, w, w, h,
302
                                  16, &full_max_mask_size);
303
 
304
    /* Create the scaled down mask image for the chroma planes. */
305
    if (!(s->half_mask_data = av_mallocz(w/2 * h/2)))
306
        return AVERROR(ENOMEM);
307
    generate_half_size_image(s->full_mask_data, w,
308
                             s->half_mask_data, w/2,
309
                             w, h, &half_max_mask_size);
310
 
311
    s->max_mask_size = FFMAX(full_max_mask_size, half_max_mask_size);
312
 
313
    /* Create a circular mask for each size up to max_mask_size. When
314
       the filter is applied, the mask size is determined on a pixel
315
       by pixel basis, with pixels nearer the edge of the logo getting
316
       smaller mask sizes. */
317
    mask = (int ***)av_malloc_array(s->max_mask_size + 1, sizeof(int **));
318
    if (!mask)
319
        return AVERROR(ENOMEM);
320
 
321
    for (a = 0; a <= s->max_mask_size; a++) {
322
        mask[a] = (int **)av_malloc_array((a * 2) + 1, sizeof(int *));
323
        if (!mask[a]) {
324
            av_free(mask);
325
            return AVERROR(ENOMEM);
326
        }
327
        for (b = -a; b <= a; b++) {
328
            mask[a][b + a] = (int *)av_malloc_array((a * 2) + 1, sizeof(int));
329
            if (!mask[a][b + a]) {
330
                av_free(mask);
331
                return AVERROR(ENOMEM);
332
            }
333
            for (c = -a; c <= a; c++) {
334
                if ((b * b) + (c * c) <= (a * a)) /* Circular 0/1 mask. */
335
                    mask[a][b + a][c + a] = 1;
336
                else
337
                    mask[a][b + a][c + a] = 0;
338
            }
339
        }
340
    }
341
    s->mask = mask;
342
 
343
    /* Calculate our bounding rectangles, which determine in what
344
     * region the logo resides for faster processing. */
345
    ff_calculate_bounding_box(&s->full_mask_bbox, s->full_mask_data, w, w, h, 0);
346
    ff_calculate_bounding_box(&s->half_mask_bbox, s->half_mask_data, w/2, w/2, h/2, 0);
347
 
348
#define SHOW_LOGO_INFO(mask_type)                                       \
349
    av_log(ctx, AV_LOG_VERBOSE, #mask_type " x1:%d x2:%d y1:%d y2:%d max_mask_size:%d\n", \
350
           s->mask_type##_mask_bbox.x1, s->mask_type##_mask_bbox.x2, \
351
           s->mask_type##_mask_bbox.y1, s->mask_type##_mask_bbox.y2, \
352
           mask_type##_max_mask_size);
353
    SHOW_LOGO_INFO(full);
354
    SHOW_LOGO_INFO(half);
355
 
356
    return 0;
357
}
358
 
359
static int config_props_input(AVFilterLink *inlink)
360
{
361
    AVFilterContext *ctx = inlink->dst;
362
    RemovelogoContext *s = ctx->priv;
363
 
364
    if (inlink->w != s->mask_w || inlink->h != s->mask_h) {
365
        av_log(ctx, AV_LOG_INFO,
366
               "Mask image size %dx%d does not match with the input video size %dx%d\n",
367
               s->mask_w, s->mask_h, inlink->w, inlink->h);
368
        return AVERROR(EINVAL);
369
    }
370
 
371
    return 0;
372
}
373
 
374
/**
375
 * Blur image.
376
 *
377
 * It takes a pixel that is inside the mask and blurs it. It does so
378
 * by finding the average of all the pixels within the mask and
379
 * outside of the mask.
380
 *
381
 * @param mask_data  the mask plane to use for averaging
382
 * @param image_data the image plane to blur
383
 * @param w width of the image
384
 * @param h height of the image
385
 * @param x x-coordinate of the pixel to blur
386
 * @param y y-coordinate of the pixel to blur
387
 */
388
static unsigned int blur_pixel(int ***mask,
389
                               const uint8_t *mask_data, int mask_linesize,
390
                               uint8_t       *image_data, int image_linesize,
391
                               int w, int h, int x, int y)
392
{
393
    /* Mask size tells how large a circle to use. The radius is about
394
     * (slightly larger than) mask size. */
395
    int mask_size;
396
    int start_posx, start_posy, end_posx, end_posy;
397
    int i, j;
398
    unsigned int accumulator = 0, divisor = 0;
399
    /* What pixel we are reading out of the circular blur mask. */
400
    const uint8_t *image_read_position;
401
    /* What pixel we are reading out of the filter image. */
402
    const uint8_t *mask_read_position;
403
 
404
    /* Prepare our bounding rectangle and clip it if need be. */
405
    mask_size  = mask_data[y * mask_linesize + x];
406
    start_posx = FFMAX(0, x - mask_size);
407
    start_posy = FFMAX(0, y - mask_size);
408
    end_posx   = FFMIN(w - 1, x + mask_size);
409
    end_posy   = FFMIN(h - 1, y + mask_size);
410
 
411
    image_read_position = image_data + image_linesize * start_posy + start_posx;
412
    mask_read_position  = mask_data  + mask_linesize  * start_posy + start_posx;
413
 
414
    for (j = start_posy; j <= end_posy; j++) {
415
        for (i = start_posx; i <= end_posx; i++) {
416
            /* Check if this pixel is in the mask or not. Only use the
417
             * pixel if it is not. */
418
            if (!(*mask_read_position) && mask[mask_size][i - start_posx][j - start_posy]) {
419
                accumulator += *image_read_position;
420
                divisor++;
421
            }
422
 
423
            image_read_position++;
424
            mask_read_position++;
425
        }
426
 
427
        image_read_position += (image_linesize - ((end_posx + 1) - start_posx));
428
        mask_read_position  += (mask_linesize - ((end_posx + 1) - start_posx));
429
    }
430
 
431
    /* If divisor is 0, it means that not a single pixel is outside of
432
       the logo, so we have no data.  Else we need to normalise the
433
       data using the divisor. */
434
    return divisor == 0 ? 255:
435
        (accumulator + (divisor / 2)) / divisor;  /* divide, taking into account average rounding error */
436
}
437
 
438
/**
439
 * Blur image plane using a mask.
440
 *
441
 * @param source The image to have it's logo removed.
442
 * @param destination Where the output image will be stored.
443
 * @param source_stride How far apart (in memory) two consecutive lines are.
444
 * @param destination Same as source_stride, but for the destination image.
445
 * @param width Width of the image. This is the same for source and destination.
446
 * @param height Height of the image. This is the same for source and destination.
447
 * @param is_image_direct If the image is direct, then source and destination are
448
 *        the same and we can save a lot of time by not copying pixels that
449
 *        haven't changed.
450
 * @param filter The image that stores the distance to the edge of the logo for
451
 *        each pixel.
452
 * @param logo_start_x smallest x-coordinate that contains at least 1 logo pixel.
453
 * @param logo_start_y smallest y-coordinate that contains at least 1 logo pixel.
454
 * @param logo_end_x   largest x-coordinate that contains at least 1 logo pixel.
455
 * @param logo_end_y   largest y-coordinate that contains at least 1 logo pixel.
456
 *
457
 * This function processes an entire plane. Pixels outside of the logo are copied
458
 * to the output without change, and pixels inside the logo have the de-blurring
459
 * function applied.
460
 */
461
static void blur_image(int ***mask,
462
                       const uint8_t *src_data,  int src_linesize,
463
                             uint8_t *dst_data,  int dst_linesize,
464
                       const uint8_t *mask_data, int mask_linesize,
465
                       int w, int h, int direct,
466
                       FFBoundingBox *bbox)
467
{
468
    int x, y;
469
    uint8_t *dst_line;
470
    const uint8_t *src_line;
471
 
472
    if (!direct)
473
        av_image_copy_plane(dst_data, dst_linesize, src_data, src_linesize, w, h);
474
 
475
    for (y = bbox->y1; y <= bbox->y2; y++) {
476
        src_line = src_data + src_linesize * y;
477
        dst_line = dst_data + dst_linesize * y;
478
 
479
        for (x = bbox->x1; x <= bbox->x2; x++) {
480
             if (mask_data[y * mask_linesize + x]) {
481
                /* Only process if we are in the mask. */
482
                 dst_line[x] = blur_pixel(mask,
483
                                          mask_data, mask_linesize,
484
                                          dst_data, dst_linesize,
485
                                          w, h, x, y);
486
            } else {
487
                /* Else just copy the data. */
488
                if (!direct)
489
                    dst_line[x] = src_line[x];
490
            }
491
        }
492
    }
493
}
494
 
495
static int filter_frame(AVFilterLink *inlink, AVFrame *inpicref)
496
{
497
    RemovelogoContext *s = inlink->dst->priv;
498
    AVFilterLink *outlink = inlink->dst->outputs[0];
499
    AVFrame *outpicref;
500
    int direct = 0;
501
 
502
    if (av_frame_is_writable(inpicref)) {
503
        direct = 1;
504
        outpicref = inpicref;
505
    } else {
506
        outpicref = ff_get_video_buffer(outlink, outlink->w, outlink->h);
507
        if (!outpicref) {
508
            av_frame_free(&inpicref);
509
            return AVERROR(ENOMEM);
510
        }
511
        av_frame_copy_props(outpicref, inpicref);
512
    }
513
 
514
    blur_image(s->mask,
515
               inpicref ->data[0], inpicref ->linesize[0],
516
               outpicref->data[0], outpicref->linesize[0],
517
               s->full_mask_data, inlink->w,
518
               inlink->w, inlink->h, direct, &s->full_mask_bbox);
519
    blur_image(s->mask,
520
               inpicref ->data[1], inpicref ->linesize[1],
521
               outpicref->data[1], outpicref->linesize[1],
522
               s->half_mask_data, inlink->w/2,
523
               inlink->w/2, inlink->h/2, direct, &s->half_mask_bbox);
524
    blur_image(s->mask,
525
               inpicref ->data[2], inpicref ->linesize[2],
526
               outpicref->data[2], outpicref->linesize[2],
527
               s->half_mask_data, inlink->w/2,
528
               inlink->w/2, inlink->h/2, direct, &s->half_mask_bbox);
529
 
530
    if (!direct)
531
        av_frame_free(&inpicref);
532
 
533
    return ff_filter_frame(outlink, outpicref);
534
}
535
 
536
static av_cold void uninit(AVFilterContext *ctx)
537
{
538
    RemovelogoContext *s = ctx->priv;
539
    int a, b;
540
 
541
    av_freep(&s->full_mask_data);
542
    av_freep(&s->half_mask_data);
543
 
544
    if (s->mask) {
545
        /* Loop through each mask. */
546
        for (a = 0; a <= s->max_mask_size; a++) {
547
            /* Loop through each scanline in a mask. */
548
            for (b = -a; b <= a; b++) {
549
                av_freep(&s->mask[a][b + a]); /* Free a scanline. */
550
            }
551
            av_freep(&s->mask[a]);
552
        }
553
        /* Free the array of pointers pointing to the masks. */
554
        av_freep(&s->mask);
555
    }
556
}
557
 
558
static const AVFilterPad removelogo_inputs[] = {
559
    {
560
        .name         = "default",
561
        .type         = AVMEDIA_TYPE_VIDEO,
562
        .config_props = config_props_input,
563
        .filter_frame = filter_frame,
564
    },
565
    { NULL }
566
};
567
 
568
static const AVFilterPad removelogo_outputs[] = {
569
    {
570
        .name = "default",
571
        .type = AVMEDIA_TYPE_VIDEO,
572
    },
573
    { NULL }
574
};
575
 
576
AVFilter ff_vf_removelogo = {
577
    .name          = "removelogo",
578
    .description   = NULL_IF_CONFIG_SMALL("Remove a TV logo based on a mask image."),
579
    .priv_size     = sizeof(RemovelogoContext),
580
    .init          = init,
581
    .uninit        = uninit,
582
    .query_formats = query_formats,
583
    .inputs        = removelogo_inputs,
584
    .outputs       = removelogo_outputs,
585
    .priv_class    = &removelogo_class,
586
    .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC,
587
};