Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
6147 serge 1
/*
2
 * Duck TrueMotion 1.0 Decoder
3
 * Copyright (C) 2003 Alex Beregszaszi & Mike Melanson
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
 
22
/**
23
 * @file
24
 * Duck TrueMotion v1 Video Decoder by
25
 * Alex Beregszaszi and
26
 * Mike Melanson (melanson@pcisys.net)
27
 *
28
 * The TrueMotion v1 decoder presently only decodes 16-bit TM1 data and
29
 * outputs RGB555 (or RGB565) data. 24-bit TM1 data is not supported yet.
30
 */
31
 
32
#include 
33
#include 
34
#include 
35
 
36
#include "avcodec.h"
37
#include "internal.h"
38
#include "libavutil/imgutils.h"
39
#include "libavutil/internal.h"
40
#include "libavutil/intreadwrite.h"
41
#include "libavutil/mem.h"
42
 
43
#include "truemotion1data.h"
44
 
45
typedef struct TrueMotion1Context {
46
    AVCodecContext *avctx;
47
    AVFrame *frame;
48
 
49
    const uint8_t *buf;
50
    int size;
51
 
52
    const uint8_t *mb_change_bits;
53
    int mb_change_bits_row_size;
54
    const uint8_t *index_stream;
55
    int index_stream_size;
56
 
57
    int flags;
58
    int x, y, w, h;
59
 
60
    uint32_t y_predictor_table[1024];
61
    uint32_t c_predictor_table[1024];
62
    uint32_t fat_y_predictor_table[1024];
63
    uint32_t fat_c_predictor_table[1024];
64
 
65
    int compression;
66
    int block_type;
67
    int block_width;
68
    int block_height;
69
 
70
    int16_t ydt[8];
71
    int16_t cdt[8];
72
    int16_t fat_ydt[8];
73
    int16_t fat_cdt[8];
74
 
75
    int last_deltaset, last_vectable;
76
 
77
    unsigned int *vert_pred;
78
    int vert_pred_size;
79
 
80
} TrueMotion1Context;
81
 
82
#define FLAG_SPRITE         32
83
#define FLAG_KEYFRAME       16
84
#define FLAG_INTERFRAME      8
85
#define FLAG_INTERPOLATED    4
86
 
87
struct frame_header {
88
    uint8_t header_size;
89
    uint8_t compression;
90
    uint8_t deltaset;
91
    uint8_t vectable;
92
    uint16_t ysize;
93
    uint16_t xsize;
94
    uint16_t checksum;
95
    uint8_t version;
96
    uint8_t header_type;
97
    uint8_t flags;
98
    uint8_t control;
99
    uint16_t xoffset;
100
    uint16_t yoffset;
101
    uint16_t width;
102
    uint16_t height;
103
};
104
 
105
#define ALGO_NOP        0
106
#define ALGO_RGB16V     1
107
#define ALGO_RGB16H     2
108
#define ALGO_RGB24H     3
109
 
110
/* these are the various block sizes that can occupy a 4x4 block */
111
#define BLOCK_2x2  0
112
#define BLOCK_2x4  1
113
#define BLOCK_4x2  2
114
#define BLOCK_4x4  3
115
 
116
typedef struct comp_types {
117
    int algorithm;
118
    int block_width; // vres
119
    int block_height; // hres
120
    int block_type;
121
} comp_types;
122
 
123
/* { valid for metatype }, algorithm, num of deltas, vert res, horiz res */
124
static const comp_types compression_types[17] = {
125
    { ALGO_NOP,    0, 0, 0 },
126
 
127
    { ALGO_RGB16V, 4, 4, BLOCK_4x4 },
128
    { ALGO_RGB16H, 4, 4, BLOCK_4x4 },
129
    { ALGO_RGB16V, 4, 2, BLOCK_4x2 },
130
    { ALGO_RGB16H, 4, 2, BLOCK_4x2 },
131
 
132
    { ALGO_RGB16V, 2, 4, BLOCK_2x4 },
133
    { ALGO_RGB16H, 2, 4, BLOCK_2x4 },
134
    { ALGO_RGB16V, 2, 2, BLOCK_2x2 },
135
    { ALGO_RGB16H, 2, 2, BLOCK_2x2 },
136
 
137
    { ALGO_NOP,    4, 4, BLOCK_4x4 },
138
    { ALGO_RGB24H, 4, 4, BLOCK_4x4 },
139
    { ALGO_NOP,    4, 2, BLOCK_4x2 },
140
    { ALGO_RGB24H, 4, 2, BLOCK_4x2 },
141
 
142
    { ALGO_NOP,    2, 4, BLOCK_2x4 },
143
    { ALGO_RGB24H, 2, 4, BLOCK_2x4 },
144
    { ALGO_NOP,    2, 2, BLOCK_2x2 },
145
    { ALGO_RGB24H, 2, 2, BLOCK_2x2 }
146
};
147
 
148
static void select_delta_tables(TrueMotion1Context *s, int delta_table_index)
149
{
150
    int i;
151
 
152
    if (delta_table_index > 3)
153
        return;
154
 
155
    memcpy(s->ydt, ydts[delta_table_index], 8 * sizeof(int16_t));
156
    memcpy(s->cdt, cdts[delta_table_index], 8 * sizeof(int16_t));
157
    memcpy(s->fat_ydt, fat_ydts[delta_table_index], 8 * sizeof(int16_t));
158
    memcpy(s->fat_cdt, fat_cdts[delta_table_index], 8 * sizeof(int16_t));
159
 
160
    /* Y skinny deltas need to be halved for some reason; maybe the
161
     * skinny Y deltas should be modified */
162
    for (i = 0; i < 8; i++)
163
    {
164
        /* drop the lsb before dividing by 2-- net effect: round down
165
         * when dividing a negative number (e.g., -3/2 = -2, not -1) */
166
        s->ydt[i] &= 0xFFFE;
167
        s->ydt[i] /= 2;
168
    }
169
}
170
 
171
#if HAVE_BIGENDIAN
172
static int make_ydt15_entry(int p2, int p1, int16_t *ydt)
173
#else
174
static int make_ydt15_entry(int p1, int p2, int16_t *ydt)
175
#endif
176
{
177
    int lo, hi;
178
 
179
    lo = ydt[p1];
180
    lo += (lo << 5) + (lo << 10);
181
    hi = ydt[p2];
182
    hi += (hi << 5) + (hi << 10);
183
    return (lo + (hi << 16)) << 1;
184
}
185
 
186
static int make_cdt15_entry(int p1, int p2, int16_t *cdt)
187
{
188
    int r, b, lo;
189
 
190
    b = cdt[p2];
191
    r = cdt[p1] << 10;
192
    lo = b + r;
193
    return (lo + (lo << 16)) << 1;
194
}
195
 
196
#if HAVE_BIGENDIAN
197
static int make_ydt16_entry(int p2, int p1, int16_t *ydt)
198
#else
199
static int make_ydt16_entry(int p1, int p2, int16_t *ydt)
200
#endif
201
{
202
    int lo, hi;
203
 
204
    lo = ydt[p1];
205
    lo += (lo << 6) + (lo << 11);
206
    hi = ydt[p2];
207
    hi += (hi << 6) + (hi << 11);
208
    return (lo + (hi << 16)) << 1;
209
}
210
 
211
static int make_cdt16_entry(int p1, int p2, int16_t *cdt)
212
{
213
    int r, b, lo;
214
 
215
    b = cdt[p2];
216
    r = cdt[p1] << 11;
217
    lo = b + r;
218
    return (lo + (lo * (1 << 16))) * 2;
219
}
220
 
221
static int make_ydt24_entry(int p1, int p2, int16_t *ydt)
222
{
223
    int lo, hi;
224
 
225
    lo = ydt[p1];
226
    hi = ydt[p2];
227
    return (lo + (hi * (1 << 8)) + (hi * (1 << 16))) * 2;
228
}
229
 
230
static int make_cdt24_entry(int p1, int p2, int16_t *cdt)
231
{
232
    int r, b;
233
 
234
    b = cdt[p2];
235
    r = cdt[p1] * (1 << 16);
236
    return (b+r) * 2;
237
}
238
 
239
static void gen_vector_table15(TrueMotion1Context *s, const uint8_t *sel_vector_table)
240
{
241
    int len, i, j;
242
    unsigned char delta_pair;
243
 
244
    for (i = 0; i < 1024; i += 4)
245
    {
246
        len = *sel_vector_table++ / 2;
247
        for (j = 0; j < len; j++)
248
        {
249
            delta_pair = *sel_vector_table++;
250
            s->y_predictor_table[i+j] = 0xfffffffe &
251
                make_ydt15_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt);
252
            s->c_predictor_table[i+j] = 0xfffffffe &
253
                make_cdt15_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt);
254
        }
255
        s->y_predictor_table[i+(j-1)] |= 1;
256
        s->c_predictor_table[i+(j-1)] |= 1;
257
    }
258
}
259
 
260
static void gen_vector_table16(TrueMotion1Context *s, const uint8_t *sel_vector_table)
261
{
262
    int len, i, j;
263
    unsigned char delta_pair;
264
 
265
    for (i = 0; i < 1024; i += 4)
266
    {
267
        len = *sel_vector_table++ / 2;
268
        for (j = 0; j < len; j++)
269
        {
270
            delta_pair = *sel_vector_table++;
271
            s->y_predictor_table[i+j] = 0xfffffffe &
272
                make_ydt16_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt);
273
            s->c_predictor_table[i+j] = 0xfffffffe &
274
                make_cdt16_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt);
275
        }
276
        s->y_predictor_table[i+(j-1)] |= 1;
277
        s->c_predictor_table[i+(j-1)] |= 1;
278
    }
279
}
280
 
281
static void gen_vector_table24(TrueMotion1Context *s, const uint8_t *sel_vector_table)
282
{
283
    int len, i, j;
284
    unsigned char delta_pair;
285
 
286
    for (i = 0; i < 1024; i += 4)
287
    {
288
        len = *sel_vector_table++ / 2;
289
        for (j = 0; j < len; j++)
290
        {
291
            delta_pair = *sel_vector_table++;
292
            s->y_predictor_table[i+j] = 0xfffffffe &
293
                make_ydt24_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt);
294
            s->c_predictor_table[i+j] = 0xfffffffe &
295
                make_cdt24_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt);
296
            s->fat_y_predictor_table[i+j] = 0xfffffffe &
297
                make_ydt24_entry(delta_pair >> 4, delta_pair & 0xf, s->fat_ydt);
298
            s->fat_c_predictor_table[i+j] = 0xfffffffe &
299
                make_cdt24_entry(delta_pair >> 4, delta_pair & 0xf, s->fat_cdt);
300
        }
301
        s->y_predictor_table[i+(j-1)] |= 1;
302
        s->c_predictor_table[i+(j-1)] |= 1;
303
        s->fat_y_predictor_table[i+(j-1)] |= 1;
304
        s->fat_c_predictor_table[i+(j-1)] |= 1;
305
    }
306
}
307
 
308
/* Returns the number of bytes consumed from the bytestream. Returns -1 if
309
 * there was an error while decoding the header */
310
static int truemotion1_decode_header(TrueMotion1Context *s)
311
{
312
    int i, ret;
313
    int width_shift = 0;
314
    int new_pix_fmt;
315
    struct frame_header header;
316
    uint8_t header_buffer[128] = { 0 };  /* logical maximum size of the header */
317
    const uint8_t *sel_vector_table;
318
 
319
    header.header_size = ((s->buf[0] >> 5) | (s->buf[0] << 3)) & 0x7f;
320
    if (s->buf[0] < 0x10)
321
    {
322
        av_log(s->avctx, AV_LOG_ERROR, "invalid header size (%d)\n", s->buf[0]);
323
        return AVERROR_INVALIDDATA;
324
    }
325
 
326
    if (header.header_size + 1 > s->size) {
327
        av_log(s->avctx, AV_LOG_ERROR, "Input packet too small.\n");
328
        return AVERROR_INVALIDDATA;
329
    }
330
 
331
    /* unscramble the header bytes with a XOR operation */
332
    for (i = 1; i < header.header_size; i++)
333
        header_buffer[i - 1] = s->buf[i] ^ s->buf[i + 1];
334
 
335
    header.compression = header_buffer[0];
336
    header.deltaset = header_buffer[1];
337
    header.vectable = header_buffer[2];
338
    header.ysize = AV_RL16(&header_buffer[3]);
339
    header.xsize = AV_RL16(&header_buffer[5]);
340
    header.checksum = AV_RL16(&header_buffer[7]);
341
    header.version = header_buffer[9];
342
    header.header_type = header_buffer[10];
343
    header.flags = header_buffer[11];
344
    header.control = header_buffer[12];
345
 
346
    /* Version 2 */
347
    if (header.version >= 2)
348
    {
349
        if (header.header_type > 3)
350
        {
351
            av_log(s->avctx, AV_LOG_ERROR, "invalid header type (%d)\n", header.header_type);
352
            return AVERROR_INVALIDDATA;
353
        } else if ((header.header_type == 2) || (header.header_type == 3)) {
354
            s->flags = header.flags;
355
            if (!(s->flags & FLAG_INTERFRAME))
356
                s->flags |= FLAG_KEYFRAME;
357
        } else
358
            s->flags = FLAG_KEYFRAME;
359
    } else /* Version 1 */
360
        s->flags = FLAG_KEYFRAME;
361
 
362
    if (s->flags & FLAG_SPRITE) {
363
        avpriv_request_sample(s->avctx, "Frame with sprite");
364
        /* FIXME header.width, height, xoffset and yoffset aren't initialized */
365
        return AVERROR_PATCHWELCOME;
366
    } else {
367
        s->w = header.xsize;
368
        s->h = header.ysize;
369
        if (header.header_type < 2) {
370
            if ((s->w < 213) && (s->h >= 176))
371
            {
372
                s->flags |= FLAG_INTERPOLATED;
373
                avpriv_request_sample(s->avctx, "Interpolated frame");
374
            }
375
        }
376
    }
377
 
378
    if (header.compression >= 17) {
379
        av_log(s->avctx, AV_LOG_ERROR, "invalid compression type (%d)\n", header.compression);
380
        return AVERROR_INVALIDDATA;
381
    }
382
 
383
    if ((header.deltaset != s->last_deltaset) ||
384
        (header.vectable != s->last_vectable))
385
        select_delta_tables(s, header.deltaset);
386
 
387
    if ((header.compression & 1) && header.header_type)
388
        sel_vector_table = pc_tbl2;
389
    else {
390
        if (header.vectable > 0 && header.vectable < 4)
391
            sel_vector_table = tables[header.vectable - 1];
392
        else {
393
            av_log(s->avctx, AV_LOG_ERROR, "invalid vector table id (%d)\n", header.vectable);
394
            return AVERROR_INVALIDDATA;
395
        }
396
    }
397
 
398
    if (compression_types[header.compression].algorithm == ALGO_RGB24H) {
399
        new_pix_fmt = AV_PIX_FMT_RGB32;
400
        width_shift = 1;
401
    } else
402
        new_pix_fmt = AV_PIX_FMT_RGB555; // RGB565 is supported as well
403
 
404
    s->w >>= width_shift;
405
    if (s->w & 1) {
406
        avpriv_request_sample(s->avctx, "Frame with odd width");
407
        return AVERROR_PATCHWELCOME;
408
    }
409
 
410
    if (s->w != s->avctx->width || s->h != s->avctx->height ||
411
        new_pix_fmt != s->avctx->pix_fmt) {
412
        av_frame_unref(s->frame);
413
        s->avctx->sample_aspect_ratio = (AVRational){ 1 << width_shift, 1 };
414
        s->avctx->pix_fmt = new_pix_fmt;
415
 
416
        if ((ret = ff_set_dimensions(s->avctx, s->w, s->h)) < 0)
417
            return ret;
418
 
419
        ff_set_sar(s->avctx, s->avctx->sample_aspect_ratio);
420
 
421
        av_fast_malloc(&s->vert_pred, &s->vert_pred_size, s->avctx->width * sizeof(unsigned int));
422
        if (!s->vert_pred)
423
            return AVERROR(ENOMEM);
424
    }
425
 
426
    /* There is 1 change bit per 4 pixels, so each change byte represents
427
     * 32 pixels; divide width by 4 to obtain the number of change bits and
428
     * then round up to the nearest byte. */
429
    s->mb_change_bits_row_size = ((s->avctx->width >> (2 - width_shift)) + 7) >> 3;
430
 
431
    if ((header.deltaset != s->last_deltaset) || (header.vectable != s->last_vectable))
432
    {
433
        if (compression_types[header.compression].algorithm == ALGO_RGB24H)
434
            gen_vector_table24(s, sel_vector_table);
435
        else
436
        if (s->avctx->pix_fmt == AV_PIX_FMT_RGB555)
437
            gen_vector_table15(s, sel_vector_table);
438
        else
439
            gen_vector_table16(s, sel_vector_table);
440
    }
441
 
442
    /* set up pointers to the other key data chunks */
443
    s->mb_change_bits = s->buf + header.header_size;
444
    if (s->flags & FLAG_KEYFRAME) {
445
        /* no change bits specified for a keyframe; only index bytes */
446
        s->index_stream = s->mb_change_bits;
447
    } else {
448
        /* one change bit per 4x4 block */
449
        s->index_stream = s->mb_change_bits +
450
            (s->mb_change_bits_row_size * (s->avctx->height >> 2));
451
    }
452
    s->index_stream_size = s->size - (s->index_stream - s->buf);
453
 
454
    s->last_deltaset = header.deltaset;
455
    s->last_vectable = header.vectable;
456
    s->compression = header.compression;
457
    s->block_width = compression_types[header.compression].block_width;
458
    s->block_height = compression_types[header.compression].block_height;
459
    s->block_type = compression_types[header.compression].block_type;
460
 
461
    if (s->avctx->debug & FF_DEBUG_PICT_INFO)
462
        av_log(s->avctx, AV_LOG_INFO, "tables: %d / %d c:%d %dx%d t:%d %s%s%s%s\n",
463
            s->last_deltaset, s->last_vectable, s->compression, s->block_width,
464
            s->block_height, s->block_type,
465
            s->flags & FLAG_KEYFRAME ? " KEY" : "",
466
            s->flags & FLAG_INTERFRAME ? " INTER" : "",
467
            s->flags & FLAG_SPRITE ? " SPRITE" : "",
468
            s->flags & FLAG_INTERPOLATED ? " INTERPOL" : "");
469
 
470
    return header.header_size;
471
}
472
 
473
static av_cold int truemotion1_decode_init(AVCodecContext *avctx)
474
{
475
    TrueMotion1Context *s = avctx->priv_data;
476
 
477
    s->avctx = avctx;
478
 
479
    // FIXME: it may change ?
480
//    if (avctx->bits_per_sample == 24)
481
//        avctx->pix_fmt = AV_PIX_FMT_RGB24;
482
//    else
483
//        avctx->pix_fmt = AV_PIX_FMT_RGB555;
484
 
485
    s->frame = av_frame_alloc();
486
    if (!s->frame)
487
        return AVERROR(ENOMEM);
488
 
489
    /* there is a vertical predictor for each pixel in a line; each vertical
490
     * predictor is 0 to start with */
491
    av_fast_malloc(&s->vert_pred, &s->vert_pred_size, s->avctx->width * sizeof(unsigned int));
492
    if (!s->vert_pred)
493
        return AVERROR(ENOMEM);
494
 
495
    return 0;
496
}
497
 
498
/*
499
Block decoding order:
500
 
501
dxi: Y-Y
502
dxic: Y-C-Y
503
dxic2: Y-C-Y-C
504
 
505
hres,vres,i,i%vres (0 < i < 4)
506
2x2 0: 0 dxic2
507
2x2 1: 1 dxi
508
2x2 2: 0 dxic2
509
2x2 3: 1 dxi
510
2x4 0: 0 dxic2
511
2x4 1: 1 dxi
512
2x4 2: 2 dxi
513
2x4 3: 3 dxi
514
4x2 0: 0 dxic
515
4x2 1: 1 dxi
516
4x2 2: 0 dxic
517
4x2 3: 1 dxi
518
4x4 0: 0 dxic
519
4x4 1: 1 dxi
520
4x4 2: 2 dxi
521
4x4 3: 3 dxi
522
*/
523
 
524
#define GET_NEXT_INDEX() \
525
{\
526
    if (index_stream_index >= s->index_stream_size) { \
527
        av_log(s->avctx, AV_LOG_INFO, " help! truemotion1 decoder went out of bounds\n"); \
528
        return; \
529
    } \
530
    index = s->index_stream[index_stream_index++] * 4; \
531
}
532
 
533
#define INC_INDEX                                                   \
534
do {                                                                \
535
    if (index >= 1023) {                                            \
536
        av_log(s->avctx, AV_LOG_ERROR, "Invalid index value.\n");   \
537
        return;                                                     \
538
    }                                                               \
539
    index++;                                                        \
540
} while (0)
541
 
542
#define APPLY_C_PREDICTOR() \
543
    predictor_pair = s->c_predictor_table[index]; \
544
    horiz_pred += (predictor_pair >> 1); \
545
    if (predictor_pair & 1) { \
546
        GET_NEXT_INDEX() \
547
        if (!index) { \
548
            GET_NEXT_INDEX() \
549
            predictor_pair = s->c_predictor_table[index]; \
550
            horiz_pred += ((predictor_pair >> 1) * 5); \
551
            if (predictor_pair & 1) \
552
                GET_NEXT_INDEX() \
553
            else \
554
                INC_INDEX; \
555
        } \
556
    } else \
557
        INC_INDEX;
558
 
559
#define APPLY_C_PREDICTOR_24() \
560
    predictor_pair = s->c_predictor_table[index]; \
561
    horiz_pred += (predictor_pair >> 1); \
562
    if (predictor_pair & 1) { \
563
        GET_NEXT_INDEX() \
564
        if (!index) { \
565
            GET_NEXT_INDEX() \
566
            predictor_pair = s->fat_c_predictor_table[index]; \
567
            horiz_pred += (predictor_pair >> 1); \
568
            if (predictor_pair & 1) \
569
                GET_NEXT_INDEX() \
570
            else \
571
                INC_INDEX; \
572
        } \
573
    } else \
574
        INC_INDEX;
575
 
576
 
577
#define APPLY_Y_PREDICTOR() \
578
    predictor_pair = s->y_predictor_table[index]; \
579
    horiz_pred += (predictor_pair >> 1); \
580
    if (predictor_pair & 1) { \
581
        GET_NEXT_INDEX() \
582
        if (!index) { \
583
            GET_NEXT_INDEX() \
584
            predictor_pair = s->y_predictor_table[index]; \
585
            horiz_pred += ((predictor_pair >> 1) * 5); \
586
            if (predictor_pair & 1) \
587
                GET_NEXT_INDEX() \
588
            else \
589
                INC_INDEX; \
590
        } \
591
    } else \
592
        INC_INDEX;
593
 
594
#define APPLY_Y_PREDICTOR_24() \
595
    predictor_pair = s->y_predictor_table[index]; \
596
    horiz_pred += (predictor_pair >> 1); \
597
    if (predictor_pair & 1) { \
598
        GET_NEXT_INDEX() \
599
        if (!index) { \
600
            GET_NEXT_INDEX() \
601
            predictor_pair = s->fat_y_predictor_table[index]; \
602
            horiz_pred += (predictor_pair >> 1); \
603
            if (predictor_pair & 1) \
604
                GET_NEXT_INDEX() \
605
            else \
606
                INC_INDEX; \
607
        } \
608
    } else \
609
        INC_INDEX;
610
 
611
#define OUTPUT_PIXEL_PAIR() \
612
    *current_pixel_pair = *vert_pred + horiz_pred; \
613
    *vert_pred++ = *current_pixel_pair++;
614
 
615
static void truemotion1_decode_16bit(TrueMotion1Context *s)
616
{
617
    int y;
618
    int pixels_left;  /* remaining pixels on this line */
619
    unsigned int predictor_pair;
620
    unsigned int horiz_pred;
621
    unsigned int *vert_pred;
622
    unsigned int *current_pixel_pair;
623
    unsigned char *current_line = s->frame->data[0];
624
    int keyframe = s->flags & FLAG_KEYFRAME;
625
 
626
    /* these variables are for managing the stream of macroblock change bits */
627
    const unsigned char *mb_change_bits = s->mb_change_bits;
628
    unsigned char mb_change_byte;
629
    unsigned char mb_change_byte_mask;
630
    int mb_change_index;
631
 
632
    /* these variables are for managing the main index stream */
633
    int index_stream_index = 0;  /* yes, the index into the index stream */
634
    int index;
635
 
636
    /* clean out the line buffer */
637
    memset(s->vert_pred, 0, s->avctx->width * sizeof(unsigned int));
638
 
639
    GET_NEXT_INDEX();
640
 
641
    for (y = 0; y < s->avctx->height; y++) {
642
 
643
        /* re-init variables for the next line iteration */
644
        horiz_pred = 0;
645
        current_pixel_pair = (unsigned int *)current_line;
646
        vert_pred = s->vert_pred;
647
        mb_change_index = 0;
648
        mb_change_byte = mb_change_bits[mb_change_index++];
649
        mb_change_byte_mask = 0x01;
650
        pixels_left = s->avctx->width;
651
 
652
        while (pixels_left > 0) {
653
 
654
            if (keyframe || ((mb_change_byte & mb_change_byte_mask) == 0)) {
655
 
656
                switch (y & 3) {
657
                case 0:
658
                    /* if macroblock width is 2, apply C-Y-C-Y; else
659
                     * apply C-Y-Y */
660
                    if (s->block_width == 2) {
661
                        APPLY_C_PREDICTOR();
662
                        APPLY_Y_PREDICTOR();
663
                        OUTPUT_PIXEL_PAIR();
664
                        APPLY_C_PREDICTOR();
665
                        APPLY_Y_PREDICTOR();
666
                        OUTPUT_PIXEL_PAIR();
667
                    } else {
668
                        APPLY_C_PREDICTOR();
669
                        APPLY_Y_PREDICTOR();
670
                        OUTPUT_PIXEL_PAIR();
671
                        APPLY_Y_PREDICTOR();
672
                        OUTPUT_PIXEL_PAIR();
673
                    }
674
                    break;
675
 
676
                case 1:
677
                case 3:
678
                    /* always apply 2 Y predictors on these iterations */
679
                    APPLY_Y_PREDICTOR();
680
                    OUTPUT_PIXEL_PAIR();
681
                    APPLY_Y_PREDICTOR();
682
                    OUTPUT_PIXEL_PAIR();
683
                    break;
684
 
685
                case 2:
686
                    /* this iteration might be C-Y-C-Y, Y-Y, or C-Y-Y
687
                     * depending on the macroblock type */
688
                    if (s->block_type == BLOCK_2x2) {
689
                        APPLY_C_PREDICTOR();
690
                        APPLY_Y_PREDICTOR();
691
                        OUTPUT_PIXEL_PAIR();
692
                        APPLY_C_PREDICTOR();
693
                        APPLY_Y_PREDICTOR();
694
                        OUTPUT_PIXEL_PAIR();
695
                    } else if (s->block_type == BLOCK_4x2) {
696
                        APPLY_C_PREDICTOR();
697
                        APPLY_Y_PREDICTOR();
698
                        OUTPUT_PIXEL_PAIR();
699
                        APPLY_Y_PREDICTOR();
700
                        OUTPUT_PIXEL_PAIR();
701
                    } else {
702
                        APPLY_Y_PREDICTOR();
703
                        OUTPUT_PIXEL_PAIR();
704
                        APPLY_Y_PREDICTOR();
705
                        OUTPUT_PIXEL_PAIR();
706
                    }
707
                    break;
708
                }
709
 
710
            } else {
711
 
712
                /* skip (copy) four pixels, but reassign the horizontal
713
                 * predictor */
714
                *vert_pred++ = *current_pixel_pair++;
715
                horiz_pred = *current_pixel_pair - *vert_pred;
716
                *vert_pred++ = *current_pixel_pair++;
717
 
718
            }
719
 
720
            if (!keyframe) {
721
                mb_change_byte_mask <<= 1;
722
 
723
                /* next byte */
724
                if (!mb_change_byte_mask) {
725
                    mb_change_byte = mb_change_bits[mb_change_index++];
726
                    mb_change_byte_mask = 0x01;
727
                }
728
            }
729
 
730
            pixels_left -= 4;
731
        }
732
 
733
        /* next change row */
734
        if (((y + 1) & 3) == 0)
735
            mb_change_bits += s->mb_change_bits_row_size;
736
 
737
        current_line += s->frame->linesize[0];
738
    }
739
}
740
 
741
static void truemotion1_decode_24bit(TrueMotion1Context *s)
742
{
743
    int y;
744
    int pixels_left;  /* remaining pixels on this line */
745
    unsigned int predictor_pair;
746
    unsigned int horiz_pred;
747
    unsigned int *vert_pred;
748
    unsigned int *current_pixel_pair;
749
    unsigned char *current_line = s->frame->data[0];
750
    int keyframe = s->flags & FLAG_KEYFRAME;
751
 
752
    /* these variables are for managing the stream of macroblock change bits */
753
    const unsigned char *mb_change_bits = s->mb_change_bits;
754
    unsigned char mb_change_byte;
755
    unsigned char mb_change_byte_mask;
756
    int mb_change_index;
757
 
758
    /* these variables are for managing the main index stream */
759
    int index_stream_index = 0;  /* yes, the index into the index stream */
760
    int index;
761
 
762
    /* clean out the line buffer */
763
    memset(s->vert_pred, 0, s->avctx->width * sizeof(unsigned int));
764
 
765
    GET_NEXT_INDEX();
766
 
767
    for (y = 0; y < s->avctx->height; y++) {
768
 
769
        /* re-init variables for the next line iteration */
770
        horiz_pred = 0;
771
        current_pixel_pair = (unsigned int *)current_line;
772
        vert_pred = s->vert_pred;
773
        mb_change_index = 0;
774
        mb_change_byte = mb_change_bits[mb_change_index++];
775
        mb_change_byte_mask = 0x01;
776
        pixels_left = s->avctx->width;
777
 
778
        while (pixels_left > 0) {
779
 
780
            if (keyframe || ((mb_change_byte & mb_change_byte_mask) == 0)) {
781
 
782
                switch (y & 3) {
783
                case 0:
784
                    /* if macroblock width is 2, apply C-Y-C-Y; else
785
                     * apply C-Y-Y */
786
                    if (s->block_width == 2) {
787
                        APPLY_C_PREDICTOR_24();
788
                        APPLY_Y_PREDICTOR_24();
789
                        OUTPUT_PIXEL_PAIR();
790
                        APPLY_C_PREDICTOR_24();
791
                        APPLY_Y_PREDICTOR_24();
792
                        OUTPUT_PIXEL_PAIR();
793
                    } else {
794
                        APPLY_C_PREDICTOR_24();
795
                        APPLY_Y_PREDICTOR_24();
796
                        OUTPUT_PIXEL_PAIR();
797
                        APPLY_Y_PREDICTOR_24();
798
                        OUTPUT_PIXEL_PAIR();
799
                    }
800
                    break;
801
 
802
                case 1:
803
                case 3:
804
                    /* always apply 2 Y predictors on these iterations */
805
                    APPLY_Y_PREDICTOR_24();
806
                    OUTPUT_PIXEL_PAIR();
807
                    APPLY_Y_PREDICTOR_24();
808
                    OUTPUT_PIXEL_PAIR();
809
                    break;
810
 
811
                case 2:
812
                    /* this iteration might be C-Y-C-Y, Y-Y, or C-Y-Y
813
                     * depending on the macroblock type */
814
                    if (s->block_type == BLOCK_2x2) {
815
                        APPLY_C_PREDICTOR_24();
816
                        APPLY_Y_PREDICTOR_24();
817
                        OUTPUT_PIXEL_PAIR();
818
                        APPLY_C_PREDICTOR_24();
819
                        APPLY_Y_PREDICTOR_24();
820
                        OUTPUT_PIXEL_PAIR();
821
                    } else if (s->block_type == BLOCK_4x2) {
822
                        APPLY_C_PREDICTOR_24();
823
                        APPLY_Y_PREDICTOR_24();
824
                        OUTPUT_PIXEL_PAIR();
825
                        APPLY_Y_PREDICTOR_24();
826
                        OUTPUT_PIXEL_PAIR();
827
                    } else {
828
                        APPLY_Y_PREDICTOR_24();
829
                        OUTPUT_PIXEL_PAIR();
830
                        APPLY_Y_PREDICTOR_24();
831
                        OUTPUT_PIXEL_PAIR();
832
                    }
833
                    break;
834
                }
835
 
836
            } else {
837
 
838
                /* skip (copy) four pixels, but reassign the horizontal
839
                 * predictor */
840
                *vert_pred++ = *current_pixel_pair++;
841
                horiz_pred = *current_pixel_pair - *vert_pred;
842
                *vert_pred++ = *current_pixel_pair++;
843
 
844
            }
845
 
846
            if (!keyframe) {
847
                mb_change_byte_mask <<= 1;
848
 
849
                /* next byte */
850
                if (!mb_change_byte_mask) {
851
                    mb_change_byte = mb_change_bits[mb_change_index++];
852
                    mb_change_byte_mask = 0x01;
853
                }
854
            }
855
 
856
            pixels_left -= 2;
857
        }
858
 
859
        /* next change row */
860
        if (((y + 1) & 3) == 0)
861
            mb_change_bits += s->mb_change_bits_row_size;
862
 
863
        current_line += s->frame->linesize[0];
864
    }
865
}
866
 
867
 
868
static int truemotion1_decode_frame(AVCodecContext *avctx,
869
                                    void *data, int *got_frame,
870
                                    AVPacket *avpkt)
871
{
872
    const uint8_t *buf = avpkt->data;
873
    int ret, buf_size = avpkt->size;
874
    TrueMotion1Context *s = avctx->priv_data;
875
 
876
    s->buf = buf;
877
    s->size = buf_size;
878
 
879
    if ((ret = truemotion1_decode_header(s)) < 0)
880
        return ret;
881
 
882
    if ((ret = ff_reget_buffer(avctx, s->frame)) < 0)
883
        return ret;
884
 
885
    if (compression_types[s->compression].algorithm == ALGO_RGB24H) {
886
        truemotion1_decode_24bit(s);
887
    } else if (compression_types[s->compression].algorithm != ALGO_NOP) {
888
        truemotion1_decode_16bit(s);
889
    }
890
 
891
    if ((ret = av_frame_ref(data, s->frame)) < 0)
892
        return ret;
893
 
894
    *got_frame      = 1;
895
 
896
    /* report that the buffer was completely consumed */
897
    return buf_size;
898
}
899
 
900
static av_cold int truemotion1_decode_end(AVCodecContext *avctx)
901
{
902
    TrueMotion1Context *s = avctx->priv_data;
903
 
904
    av_frame_free(&s->frame);
905
    av_freep(&s->vert_pred);
906
 
907
    return 0;
908
}
909
 
910
AVCodec ff_truemotion1_decoder = {
911
    .name           = "truemotion1",
912
    .long_name      = NULL_IF_CONFIG_SMALL("Duck TrueMotion 1.0"),
913
    .type           = AVMEDIA_TYPE_VIDEO,
914
    .id             = AV_CODEC_ID_TRUEMOTION1,
915
    .priv_data_size = sizeof(TrueMotion1Context),
916
    .init           = truemotion1_decode_init,
917
    .close          = truemotion1_decode_end,
918
    .decode         = truemotion1_decode_frame,
919
    .capabilities   = AV_CODEC_CAP_DR1,
920
};