Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
6147 serge 1
/*
2
 * Lagarith lossless decoder
3
 * Copyright (c) 2009 Nathan Caldwell 
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
 
22
/**
23
 * @file
24
 * Lagarith lossless decoder
25
 * @author Nathan Caldwell
26
 */
27
 
28
#include 
29
 
30
#include "avcodec.h"
31
#include "get_bits.h"
32
#include "mathops.h"
33
#include "huffyuvdsp.h"
34
#include "lagarithrac.h"
35
#include "thread.h"
36
 
37
enum LagarithFrameType {
38
    FRAME_RAW           = 1,    /**< uncompressed */
39
    FRAME_U_RGB24       = 2,    /**< unaligned RGB24 */
40
    FRAME_ARITH_YUY2    = 3,    /**< arithmetic coded YUY2 */
41
    FRAME_ARITH_RGB24   = 4,    /**< arithmetic coded RGB24 */
42
    FRAME_SOLID_GRAY    = 5,    /**< solid grayscale color frame */
43
    FRAME_SOLID_COLOR   = 6,    /**< solid non-grayscale color frame */
44
    FRAME_OLD_ARITH_RGB = 7,    /**< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */
45
    FRAME_ARITH_RGBA    = 8,    /**< arithmetic coded RGBA */
46
    FRAME_SOLID_RGBA    = 9,    /**< solid RGBA color frame */
47
    FRAME_ARITH_YV12    = 10,   /**< arithmetic coded YV12 */
48
    FRAME_REDUCED_RES   = 11,   /**< reduced resolution YV12 frame */
49
};
50
 
51
typedef struct LagarithContext {
52
    AVCodecContext *avctx;
53
    HuffYUVDSPContext hdsp;
54
    int zeros;                  /**< number of consecutive zero bytes encountered */
55
    int zeros_rem;              /**< number of zero bytes remaining to output */
56
    uint8_t *rgb_planes;
57
    int      rgb_planes_allocated;
58
    int rgb_stride;
59
} LagarithContext;
60
 
61
/**
62
 * Compute the 52bit mantissa of 1/(double)denom.
63
 * This crazy format uses floats in an entropy coder and we have to match x86
64
 * rounding exactly, thus ordinary floats aren't portable enough.
65
 * @param denom denominator
66
 * @return 52bit mantissa
67
 * @see softfloat_mul
68
 */
69
static uint64_t softfloat_reciprocal(uint32_t denom)
70
{
71
    int shift = av_log2(denom - 1) + 1;
72
    uint64_t ret = (1ULL << 52) / denom;
73
    uint64_t err = (1ULL << 52) - ret * denom;
74
    ret <<= shift;
75
    err <<= shift;
76
    err +=  denom / 2;
77
    return ret + err / denom;
78
}
79
 
80
/**
81
 * (uint32_t)(x*f), where f has the given mantissa, and exponent 0
82
 * Used in combination with softfloat_reciprocal computes x/(double)denom.
83
 * @param x 32bit integer factor
84
 * @param mantissa mantissa of f with exponent 0
85
 * @return 32bit integer value (x*f)
86
 * @see softfloat_reciprocal
87
 */
88
static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
89
{
90
    uint64_t l = x * (mantissa & 0xffffffff);
91
    uint64_t h = x * (mantissa >> 32);
92
    h += l >> 32;
93
    l &= 0xffffffff;
94
    l += 1 << av_log2(h >> 21);
95
    h += l >> 32;
96
    return h >> 20;
97
}
98
 
99
static uint8_t lag_calc_zero_run(int8_t x)
100
{
101
    return (x << 1) ^ (x >> 7);
102
}
103
 
104
static int lag_decode_prob(GetBitContext *gb, uint32_t *value)
105
{
106
    static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 };
107
    int i;
108
    int bit     = 0;
109
    int bits    = 0;
110
    int prevbit = 0;
111
    unsigned val;
112
 
113
    for (i = 0; i < 7; i++) {
114
        if (prevbit && bit)
115
            break;
116
        prevbit = bit;
117
        bit = get_bits1(gb);
118
        if (bit && !prevbit)
119
            bits += series[i];
120
    }
121
    bits--;
122
    if (bits < 0 || bits > 31) {
123
        *value = 0;
124
        return -1;
125
    } else if (bits == 0) {
126
        *value = 0;
127
        return 0;
128
    }
129
 
130
    val  = get_bits_long(gb, bits);
131
    val |= 1U << bits;
132
 
133
    *value = val - 1;
134
 
135
    return 0;
136
}
137
 
138
static int lag_read_prob_header(lag_rac *rac, GetBitContext *gb)
139
{
140
    int i, j, scale_factor;
141
    unsigned prob, cumulative_target;
142
    unsigned cumul_prob = 0;
143
    unsigned scaled_cumul_prob = 0;
144
 
145
    rac->prob[0] = 0;
146
    rac->prob[257] = UINT_MAX;
147
    /* Read probabilities from bitstream */
148
    for (i = 1; i < 257; i++) {
149
        if (lag_decode_prob(gb, &rac->prob[i]) < 0) {
150
            av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n");
151
            return -1;
152
        }
153
        if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) {
154
            av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n");
155
            return -1;
156
        }
157
        cumul_prob += rac->prob[i];
158
        if (!rac->prob[i]) {
159
            if (lag_decode_prob(gb, &prob)) {
160
                av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n");
161
                return -1;
162
            }
163
            if (prob > 256 - i)
164
                prob = 256 - i;
165
            for (j = 0; j < prob; j++)
166
                rac->prob[++i] = 0;
167
        }
168
    }
169
 
170
    if (!cumul_prob) {
171
        av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n");
172
        return -1;
173
    }
174
 
175
    /* Scale probabilities so cumulative probability is an even power of 2. */
176
    scale_factor = av_log2(cumul_prob);
177
 
178
    if (cumul_prob & (cumul_prob - 1)) {
179
        uint64_t mul = softfloat_reciprocal(cumul_prob);
180
        for (i = 1; i <= 128; i++) {
181
            rac->prob[i] = softfloat_mul(rac->prob[i], mul);
182
            scaled_cumul_prob += rac->prob[i];
183
        }
184
        if (scaled_cumul_prob <= 0) {
185
            av_log(rac->avctx, AV_LOG_ERROR, "Scaled probabilities invalid\n");
186
            return AVERROR_INVALIDDATA;
187
        }
188
        for (; i < 257; i++) {
189
            rac->prob[i] = softfloat_mul(rac->prob[i], mul);
190
            scaled_cumul_prob += rac->prob[i];
191
        }
192
 
193
        scale_factor++;
194
        cumulative_target = 1 << scale_factor;
195
 
196
        if (scaled_cumul_prob > cumulative_target) {
197
            av_log(rac->avctx, AV_LOG_ERROR,
198
                   "Scaled probabilities are larger than target!\n");
199
            return -1;
200
        }
201
 
202
        scaled_cumul_prob = cumulative_target - scaled_cumul_prob;
203
 
204
        for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) {
205
            if (rac->prob[i]) {
206
                rac->prob[i]++;
207
                scaled_cumul_prob--;
208
            }
209
            /* Comment from reference source:
210
             * if (b & 0x80 == 0) {     // order of operations is 'wrong'; it has been left this way
211
             *                          // since the compression change is negligible and fixing it
212
             *                          // breaks backwards compatibility
213
             *      b =- (signed int)b;
214
             *      b &= 0xFF;
215
             * } else {
216
             *      b++;
217
             *      b &= 0x7f;
218
             * }
219
             */
220
        }
221
    }
222
 
223
    rac->scale = scale_factor;
224
 
225
    /* Fill probability array with cumulative probability for each symbol. */
226
    for (i = 1; i < 257; i++)
227
        rac->prob[i] += rac->prob[i - 1];
228
 
229
    return 0;
230
}
231
 
232
static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1,
233
                                      uint8_t *diff, int w, int *left,
234
                                      int *left_top)
235
{
236
    /* This is almost identical to add_hfyu_median_pred in huffyuvdsp.h.
237
     * However the &0xFF on the gradient predictor yealds incorrect output
238
     * for lagarith.
239
     */
240
    int i;
241
    uint8_t l, lt;
242
 
243
    l  = *left;
244
    lt = *left_top;
245
 
246
    for (i = 0; i < w; i++) {
247
        l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i];
248
        lt = src1[i];
249
        dst[i] = l;
250
    }
251
 
252
    *left     = l;
253
    *left_top = lt;
254
}
255
 
256
static void lag_pred_line(LagarithContext *l, uint8_t *buf,
257
                          int width, int stride, int line)
258
{
259
    int L, TL;
260
 
261
    if (!line) {
262
        /* Left prediction only for first line */
263
        L = l->hdsp.add_hfyu_left_pred(buf, buf, width, 0);
264
    } else {
265
        /* Left pixel is actually prev_row[width] */
266
        L = buf[width - stride - 1];
267
 
268
        if (line == 1) {
269
            /* Second line, left predict first pixel, the rest of the line is median predicted
270
             * NOTE: In the case of RGB this pixel is top predicted */
271
            TL = l->avctx->pix_fmt == AV_PIX_FMT_YUV420P ? buf[-stride] : L;
272
        } else {
273
            /* Top left is 2 rows back, last pixel */
274
            TL = buf[width - (2 * stride) - 1];
275
        }
276
 
277
        add_lag_median_prediction(buf, buf - stride, buf,
278
                                  width, &L, &TL);
279
    }
280
}
281
 
282
static void lag_pred_line_yuy2(LagarithContext *l, uint8_t *buf,
283
                               int width, int stride, int line,
284
                               int is_luma)
285
{
286
    int L, TL;
287
 
288
    if (!line) {
289
        L= buf[0];
290
        if (is_luma)
291
            buf[0] = 0;
292
        l->hdsp.add_hfyu_left_pred(buf, buf, width, 0);
293
        if (is_luma)
294
            buf[0] = L;
295
        return;
296
    }
297
    if (line == 1) {
298
        const int HEAD = is_luma ? 4 : 2;
299
        int i;
300
 
301
        L  = buf[width - stride - 1];
302
        TL = buf[HEAD  - stride - 1];
303
        for (i = 0; i < HEAD; i++) {
304
            L += buf[i];
305
            buf[i] = L;
306
        }
307
        for (; i < width; i++) {
308
            L      = mid_pred(L & 0xFF, buf[i - stride], (L + buf[i - stride] - TL) & 0xFF) + buf[i];
309
            TL     = buf[i - stride];
310
            buf[i] = L;
311
        }
312
    } else {
313
        TL = buf[width - (2 * stride) - 1];
314
        L  = buf[width - stride - 1];
315
        l->hdsp.add_hfyu_median_pred(buf, buf - stride, buf, width, &L, &TL);
316
    }
317
}
318
 
319
static int lag_decode_line(LagarithContext *l, lag_rac *rac,
320
                           uint8_t *dst, int width, int stride,
321
                           int esc_count)
322
{
323
    int i = 0;
324
    int ret = 0;
325
 
326
    if (!esc_count)
327
        esc_count = -1;
328
 
329
    /* Output any zeros remaining from the previous run */
330
handle_zeros:
331
    if (l->zeros_rem) {
332
        int count = FFMIN(l->zeros_rem, width - i);
333
        memset(dst + i, 0, count);
334
        i += count;
335
        l->zeros_rem -= count;
336
    }
337
 
338
    while (i < width) {
339
        dst[i] = lag_get_rac(rac);
340
        ret++;
341
 
342
        if (dst[i])
343
            l->zeros = 0;
344
        else
345
            l->zeros++;
346
 
347
        i++;
348
        if (l->zeros == esc_count) {
349
            int index = lag_get_rac(rac);
350
            ret++;
351
 
352
            l->zeros = 0;
353
 
354
            l->zeros_rem = lag_calc_zero_run(index);
355
            goto handle_zeros;
356
        }
357
    }
358
    return ret;
359
}
360
 
361
static int lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst,
362
                                    const uint8_t *src, const uint8_t *src_end,
363
                                    int width, int esc_count)
364
{
365
    int i = 0;
366
    int count;
367
    uint8_t zero_run = 0;
368
    const uint8_t *src_start = src;
369
    uint8_t mask1 = -(esc_count < 2);
370
    uint8_t mask2 = -(esc_count < 3);
371
    uint8_t *end = dst + (width - 2);
372
 
373
    avpriv_request_sample(l->avctx, "zero_run_line");
374
 
375
    memset(dst, 0, width);
376
 
377
output_zeros:
378
    if (l->zeros_rem) {
379
        count = FFMIN(l->zeros_rem, width - i);
380
        if (end - dst < count) {
381
            av_log(l->avctx, AV_LOG_ERROR, "Too many zeros remaining.\n");
382
            return AVERROR_INVALIDDATA;
383
        }
384
 
385
        memset(dst, 0, count);
386
        l->zeros_rem -= count;
387
        dst += count;
388
    }
389
 
390
    while (dst < end) {
391
        i = 0;
392
        while (!zero_run && dst + i < end) {
393
            i++;
394
            if (i+2 >= src_end - src)
395
                return AVERROR_INVALIDDATA;
396
            zero_run =
397
                !(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2));
398
        }
399
        if (zero_run) {
400
            zero_run = 0;
401
            i += esc_count;
402
            memcpy(dst, src, i);
403
            dst += i;
404
            l->zeros_rem = lag_calc_zero_run(src[i]);
405
 
406
            src += i + 1;
407
            goto output_zeros;
408
        } else {
409
            memcpy(dst, src, i);
410
            src += i;
411
            dst += i;
412
        }
413
    }
414
    return  src - src_start;
415
}
416
 
417
 
418
 
419
static int lag_decode_arith_plane(LagarithContext *l, uint8_t *dst,
420
                                  int width, int height, int stride,
421
                                  const uint8_t *src, int src_size)
422
{
423
    int i = 0;
424
    int read = 0;
425
    uint32_t length;
426
    uint32_t offset = 1;
427
    int esc_count;
428
    GetBitContext gb;
429
    lag_rac rac;
430
    const uint8_t *src_end = src + src_size;
431
    int ret;
432
 
433
    rac.avctx = l->avctx;
434
    l->zeros = 0;
435
 
436
    if(src_size < 2)
437
        return AVERROR_INVALIDDATA;
438
 
439
    esc_count = src[0];
440
    if (esc_count < 4) {
441
        length = width * height;
442
        if(src_size < 5)
443
            return AVERROR_INVALIDDATA;
444
        if (esc_count && AV_RL32(src + 1) < length) {
445
            length = AV_RL32(src + 1);
446
            offset += 4;
447
        }
448
 
449
        if ((ret = init_get_bits8(&gb, src + offset, src_size - offset)) < 0)
450
            return ret;
451
 
452
        if (lag_read_prob_header(&rac, &gb) < 0)
453
            return -1;
454
 
455
        ff_lag_rac_init(&rac, &gb, length - stride);
456
 
457
        for (i = 0; i < height; i++)
458
            read += lag_decode_line(l, &rac, dst + (i * stride), width,
459
                                    stride, esc_count);
460
 
461
        if (read > length)
462
            av_log(l->avctx, AV_LOG_WARNING,
463
                   "Output more bytes than length (%d of %"PRIu32")\n", read,
464
                   length);
465
    } else if (esc_count < 8) {
466
        esc_count -= 4;
467
        src ++;
468
        src_size --;
469
        if (esc_count > 0) {
470
            /* Zero run coding only, no range coding. */
471
            for (i = 0; i < height; i++) {
472
                int res = lag_decode_zero_run_line(l, dst + (i * stride), src,
473
                                                   src_end, width, esc_count);
474
                if (res < 0)
475
                    return res;
476
                src += res;
477
            }
478
        } else {
479
            if (src_size < width * height)
480
                return AVERROR_INVALIDDATA; // buffer not big enough
481
            /* Plane is stored uncompressed */
482
            for (i = 0; i < height; i++) {
483
                memcpy(dst + (i * stride), src, width);
484
                src += width;
485
            }
486
        }
487
    } else if (esc_count == 0xff) {
488
        /* Plane is a solid run of given value */
489
        for (i = 0; i < height; i++)
490
            memset(dst + i * stride, src[1], width);
491
        /* Do not apply prediction.
492
           Note: memset to 0 above, setting first value to src[1]
493
           and applying prediction gives the same result. */
494
        return 0;
495
    } else {
496
        av_log(l->avctx, AV_LOG_ERROR,
497
               "Invalid zero run escape code! (%#x)\n", esc_count);
498
        return -1;
499
    }
500
 
501
    if (l->avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
502
        for (i = 0; i < height; i++) {
503
            lag_pred_line(l, dst, width, stride, i);
504
            dst += stride;
505
        }
506
    } else {
507
        for (i = 0; i < height; i++) {
508
            lag_pred_line_yuy2(l, dst, width, stride, i,
509
                               width == l->avctx->width);
510
            dst += stride;
511
        }
512
    }
513
 
514
    return 0;
515
}
516
 
517
/**
518
 * Decode a frame.
519
 * @param avctx codec context
520
 * @param data output AVFrame
521
 * @param data_size size of output data or 0 if no picture is returned
522
 * @param avpkt input packet
523
 * @return number of consumed bytes on success or negative if decode fails
524
 */
525
static int lag_decode_frame(AVCodecContext *avctx,
526
                            void *data, int *got_frame, AVPacket *avpkt)
527
{
528
    const uint8_t *buf = avpkt->data;
529
    unsigned int buf_size = avpkt->size;
530
    LagarithContext *l = avctx->priv_data;
531
    ThreadFrame frame = { .f = data };
532
    AVFrame *const p  = data;
533
    uint8_t frametype = 0;
534
    uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9;
535
    uint32_t offs[4];
536
    uint8_t *srcs[4], *dst;
537
    int i, j, planes = 3;
538
    int ret;
539
 
540
    p->key_frame = 1;
541
 
542
    frametype = buf[0];
543
 
544
    offset_gu = AV_RL32(buf + 1);
545
    offset_bv = AV_RL32(buf + 5);
546
 
547
    switch (frametype) {
548
    case FRAME_SOLID_RGBA:
549
        avctx->pix_fmt = AV_PIX_FMT_RGB32;
550
    case FRAME_SOLID_GRAY:
551
        if (frametype == FRAME_SOLID_GRAY)
552
            if (avctx->bits_per_coded_sample == 24) {
553
                avctx->pix_fmt = AV_PIX_FMT_RGB24;
554
            } else {
555
                avctx->pix_fmt = AV_PIX_FMT_0RGB32;
556
                planes = 4;
557
            }
558
 
559
        if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
560
            return ret;
561
 
562
        dst = p->data[0];
563
        if (frametype == FRAME_SOLID_RGBA) {
564
        for (j = 0; j < avctx->height; j++) {
565
            for (i = 0; i < avctx->width; i++)
566
                AV_WN32(dst + i * 4, offset_gu);
567
            dst += p->linesize[0];
568
        }
569
        } else {
570
            for (j = 0; j < avctx->height; j++) {
571
                memset(dst, buf[1], avctx->width * planes);
572
                dst += p->linesize[0];
573
            }
574
        }
575
        break;
576
    case FRAME_SOLID_COLOR:
577
        if (avctx->bits_per_coded_sample == 24) {
578
            avctx->pix_fmt = AV_PIX_FMT_RGB24;
579
        } else {
580
            avctx->pix_fmt = AV_PIX_FMT_RGB32;
581
            offset_gu |= 0xFFU << 24;
582
        }
583
 
584
        if ((ret = ff_thread_get_buffer(avctx, &frame,0)) < 0)
585
            return ret;
586
 
587
        dst = p->data[0];
588
        for (j = 0; j < avctx->height; j++) {
589
            for (i = 0; i < avctx->width; i++)
590
                if (avctx->bits_per_coded_sample == 24) {
591
                    AV_WB24(dst + i * 3, offset_gu);
592
                } else {
593
                    AV_WN32(dst + i * 4, offset_gu);
594
                }
595
            dst += p->linesize[0];
596
        }
597
        break;
598
    case FRAME_ARITH_RGBA:
599
        avctx->pix_fmt = AV_PIX_FMT_RGB32;
600
        planes = 4;
601
        offset_ry += 4;
602
        offs[3] = AV_RL32(buf + 9);
603
    case FRAME_ARITH_RGB24:
604
    case FRAME_U_RGB24:
605
        if (frametype == FRAME_ARITH_RGB24 || frametype == FRAME_U_RGB24)
606
            avctx->pix_fmt = AV_PIX_FMT_RGB24;
607
 
608
        if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
609
            return ret;
610
 
611
        offs[0] = offset_bv;
612
        offs[1] = offset_gu;
613
        offs[2] = offset_ry;
614
 
615
        l->rgb_stride = FFALIGN(avctx->width, 16);
616
        av_fast_malloc(&l->rgb_planes, &l->rgb_planes_allocated,
617
                       l->rgb_stride * avctx->height * planes + 1);
618
        if (!l->rgb_planes) {
619
            av_log(avctx, AV_LOG_ERROR, "cannot allocate temporary buffer\n");
620
            return AVERROR(ENOMEM);
621
        }
622
        for (i = 0; i < planes; i++)
623
            srcs[i] = l->rgb_planes + (i + 1) * l->rgb_stride * avctx->height - l->rgb_stride;
624
        for (i = 0; i < planes; i++)
625
            if (buf_size <= offs[i]) {
626
                av_log(avctx, AV_LOG_ERROR,
627
                        "Invalid frame offsets\n");
628
                return AVERROR_INVALIDDATA;
629
            }
630
 
631
        for (i = 0; i < planes; i++)
632
            lag_decode_arith_plane(l, srcs[i],
633
                                   avctx->width, avctx->height,
634
                                   -l->rgb_stride, buf + offs[i],
635
                                   buf_size - offs[i]);
636
        dst = p->data[0];
637
        for (i = 0; i < planes; i++)
638
            srcs[i] = l->rgb_planes + i * l->rgb_stride * avctx->height;
639
        for (j = 0; j < avctx->height; j++) {
640
            for (i = 0; i < avctx->width; i++) {
641
                uint8_t r, g, b, a;
642
                r = srcs[0][i];
643
                g = srcs[1][i];
644
                b = srcs[2][i];
645
                r += g;
646
                b += g;
647
                if (frametype == FRAME_ARITH_RGBA) {
648
                    a = srcs[3][i];
649
                    AV_WN32(dst + i * 4, MKBETAG(a, r, g, b));
650
                } else {
651
                    dst[i * 3 + 0] = r;
652
                    dst[i * 3 + 1] = g;
653
                    dst[i * 3 + 2] = b;
654
                }
655
            }
656
            dst += p->linesize[0];
657
            for (i = 0; i < planes; i++)
658
                srcs[i] += l->rgb_stride;
659
        }
660
        break;
661
    case FRAME_ARITH_YUY2:
662
        avctx->pix_fmt = AV_PIX_FMT_YUV422P;
663
 
664
        if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
665
            return ret;
666
 
667
        if (offset_ry >= buf_size ||
668
            offset_gu >= buf_size ||
669
            offset_bv >= buf_size) {
670
            av_log(avctx, AV_LOG_ERROR,
671
                   "Invalid frame offsets\n");
672
            return AVERROR_INVALIDDATA;
673
        }
674
 
675
        lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
676
                               p->linesize[0], buf + offset_ry,
677
                               buf_size - offset_ry);
678
        lag_decode_arith_plane(l, p->data[1], (avctx->width + 1) / 2,
679
                               avctx->height, p->linesize[1],
680
                               buf + offset_gu, buf_size - offset_gu);
681
        lag_decode_arith_plane(l, p->data[2], (avctx->width + 1) / 2,
682
                               avctx->height, p->linesize[2],
683
                               buf + offset_bv, buf_size - offset_bv);
684
        break;
685
    case FRAME_ARITH_YV12:
686
        avctx->pix_fmt = AV_PIX_FMT_YUV420P;
687
 
688
        if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
689
            return ret;
690
        if (buf_size <= offset_ry || buf_size <= offset_gu || buf_size <= offset_bv) {
691
            return AVERROR_INVALIDDATA;
692
        }
693
 
694
        if (offset_ry >= buf_size ||
695
            offset_gu >= buf_size ||
696
            offset_bv >= buf_size) {
697
            av_log(avctx, AV_LOG_ERROR,
698
                   "Invalid frame offsets\n");
699
            return AVERROR_INVALIDDATA;
700
        }
701
 
702
        lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
703
                               p->linesize[0], buf + offset_ry,
704
                               buf_size - offset_ry);
705
        lag_decode_arith_plane(l, p->data[2], (avctx->width + 1) / 2,
706
                               (avctx->height + 1) / 2, p->linesize[2],
707
                               buf + offset_gu, buf_size - offset_gu);
708
        lag_decode_arith_plane(l, p->data[1], (avctx->width + 1) / 2,
709
                               (avctx->height + 1) / 2, p->linesize[1],
710
                               buf + offset_bv, buf_size - offset_bv);
711
        break;
712
    default:
713
        av_log(avctx, AV_LOG_ERROR,
714
               "Unsupported Lagarith frame type: %#"PRIx8"\n", frametype);
715
        return AVERROR_PATCHWELCOME;
716
    }
717
 
718
    *got_frame = 1;
719
 
720
    return buf_size;
721
}
722
 
723
static av_cold int lag_decode_init(AVCodecContext *avctx)
724
{
725
    LagarithContext *l = avctx->priv_data;
726
    l->avctx = avctx;
727
 
728
    ff_huffyuvdsp_init(&l->hdsp);
729
 
730
    return 0;
731
}
732
 
733
static av_cold int lag_decode_end(AVCodecContext *avctx)
734
{
735
    LagarithContext *l = avctx->priv_data;
736
 
737
    av_freep(&l->rgb_planes);
738
 
739
    return 0;
740
}
741
 
742
AVCodec ff_lagarith_decoder = {
743
    .name           = "lagarith",
744
    .long_name      = NULL_IF_CONFIG_SMALL("Lagarith lossless"),
745
    .type           = AVMEDIA_TYPE_VIDEO,
746
    .id             = AV_CODEC_ID_LAGARITH,
747
    .priv_data_size = sizeof(LagarithContext),
748
    .init           = lag_decode_init,
749
    .close          = lag_decode_end,
750
    .decode         = lag_decode_frame,
751
    .capabilities   = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
752
};