Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
6147 serge 1
/*
2
 * IIR filter
3
 * Copyright (c) 2008 Konstantin Shishkov
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
 
22
/**
23
 * @file
24
 * different IIR filters implementation
25
 */
26
 
27
#include "iirfilter.h"
28
#include 
29
#include "libavutil/attributes.h"
30
#include "libavutil/common.h"
31
 
32
/**
33
 * IIR filter global parameters
34
 */
35
typedef struct FFIIRFilterCoeffs{
36
    int   order;
37
    float gain;
38
    int   *cx;
39
    float *cy;
40
}FFIIRFilterCoeffs;
41
 
42
/**
43
 * IIR filter state
44
 */
45
typedef struct FFIIRFilterState{
46
    float x[1];
47
}FFIIRFilterState;
48
 
49
/// maximum supported filter order
50
#define MAXORDER 30
51
 
52
static av_cold int butterworth_init_coeffs(void *avc,
53
                                           struct FFIIRFilterCoeffs *c,
54
                                           enum IIRFilterMode filt_mode,
55
                                           int order, float cutoff_ratio,
56
                                           float stopband)
57
{
58
    int i, j;
59
    double wa;
60
    double p[MAXORDER + 1][2];
61
 
62
    if (filt_mode != FF_FILTER_MODE_LOWPASS) {
63
        av_log(avc, AV_LOG_ERROR, "Butterworth filter currently only supports "
64
               "low-pass filter mode\n");
65
        return -1;
66
    }
67
    if (order & 1) {
68
        av_log(avc, AV_LOG_ERROR, "Butterworth filter currently only supports "
69
               "even filter orders\n");
70
        return -1;
71
    }
72
 
73
    wa = 2 * tan(M_PI * 0.5 * cutoff_ratio);
74
 
75
    c->cx[0] = 1;
76
    for(i = 1; i < (order >> 1) + 1; i++)
77
        c->cx[i] = c->cx[i - 1] * (order - i + 1LL) / i;
78
 
79
    p[0][0] = 1.0;
80
    p[0][1] = 0.0;
81
    for(i = 1; i <= order; i++)
82
        p[i][0] = p[i][1] = 0.0;
83
    for(i = 0; i < order; i++){
84
        double zp[2];
85
        double th = (i + (order >> 1) + 0.5) * M_PI / order;
86
        double a_re, a_im, c_re, c_im;
87
        zp[0] = cos(th) * wa;
88
        zp[1] = sin(th) * wa;
89
        a_re = zp[0] + 2.0;
90
        c_re = zp[0] - 2.0;
91
        a_im =
92
        c_im = zp[1];
93
        zp[0] = (a_re * c_re + a_im * c_im) / (c_re * c_re + c_im * c_im);
94
        zp[1] = (a_im * c_re - a_re * c_im) / (c_re * c_re + c_im * c_im);
95
 
96
        for(j = order; j >= 1; j--)
97
        {
98
            a_re = p[j][0];
99
            a_im = p[j][1];
100
            p[j][0] = a_re*zp[0] - a_im*zp[1] + p[j-1][0];
101
            p[j][1] = a_re*zp[1] + a_im*zp[0] + p[j-1][1];
102
        }
103
        a_re    = p[0][0]*zp[0] - p[0][1]*zp[1];
104
        p[0][1] = p[0][0]*zp[1] + p[0][1]*zp[0];
105
        p[0][0] = a_re;
106
    }
107
    c->gain = p[order][0];
108
    for(i = 0; i < order; i++){
109
        c->gain += p[i][0];
110
        c->cy[i] = (-p[i][0] * p[order][0] + -p[i][1] * p[order][1]) /
111
                   (p[order][0] * p[order][0] + p[order][1] * p[order][1]);
112
    }
113
    c->gain /= 1 << order;
114
 
115
    return 0;
116
}
117
 
118
static av_cold int biquad_init_coeffs(void *avc, struct FFIIRFilterCoeffs *c,
119
                                      enum IIRFilterMode filt_mode, int order,
120
                                      float cutoff_ratio, float stopband)
121
{
122
    double cos_w0, sin_w0;
123
    double a0, x0, x1;
124
 
125
    if (filt_mode != FF_FILTER_MODE_HIGHPASS &&
126
        filt_mode != FF_FILTER_MODE_LOWPASS) {
127
        av_log(avc, AV_LOG_ERROR, "Biquad filter currently only supports "
128
               "high-pass and low-pass filter modes\n");
129
        return -1;
130
    }
131
    if (order != 2) {
132
        av_log(avc, AV_LOG_ERROR, "Biquad filter must have order of 2\n");
133
        return -1;
134
    }
135
 
136
    cos_w0 = cos(M_PI * cutoff_ratio);
137
    sin_w0 = sin(M_PI * cutoff_ratio);
138
 
139
    a0 = 1.0 + (sin_w0 / 2.0);
140
 
141
    if (filt_mode == FF_FILTER_MODE_HIGHPASS) {
142
        c->gain  =  ((1.0 + cos_w0) / 2.0)  / a0;
143
        x0       =  ((1.0 + cos_w0) / 2.0)  / a0;
144
        x1       = (-(1.0 + cos_w0))        / a0;
145
    } else { // FF_FILTER_MODE_LOWPASS
146
        c->gain  =  ((1.0 - cos_w0) / 2.0)  / a0;
147
        x0       =  ((1.0 - cos_w0) / 2.0)  / a0;
148
        x1       =   (1.0 - cos_w0)         / a0;
149
    }
150
    c->cy[0] = (-1.0 + (sin_w0 / 2.0)) / a0;
151
    c->cy[1] =  (2.0 *  cos_w0)        / a0;
152
 
153
    // divide by gain to make the x coeffs integers.
154
    // during filtering, the delay state will include the gain multiplication
155
    c->cx[0] = lrintf(x0 / c->gain);
156
    c->cx[1] = lrintf(x1 / c->gain);
157
 
158
    return 0;
159
}
160
 
161
av_cold struct FFIIRFilterCoeffs* ff_iir_filter_init_coeffs(void *avc,
162
                                                enum IIRFilterType filt_type,
163
                                                enum IIRFilterMode filt_mode,
164
                                                int order, float cutoff_ratio,
165
                                                float stopband, float ripple)
166
{
167
    FFIIRFilterCoeffs *c;
168
    int ret = 0;
169
 
170
    if (order <= 0 || order > MAXORDER || cutoff_ratio >= 1.0)
171
        return NULL;
172
 
173
    FF_ALLOCZ_OR_GOTO(avc, c,     sizeof(FFIIRFilterCoeffs),
174
                      init_fail);
175
    FF_ALLOC_OR_GOTO (avc, c->cx, sizeof(c->cx[0]) * ((order >> 1) + 1),
176
                      init_fail);
177
    FF_ALLOC_OR_GOTO (avc, c->cy, sizeof(c->cy[0]) * order,
178
                      init_fail);
179
    c->order = order;
180
 
181
    switch (filt_type) {
182
    case FF_FILTER_TYPE_BUTTERWORTH:
183
        ret = butterworth_init_coeffs(avc, c, filt_mode, order, cutoff_ratio,
184
                                      stopband);
185
        break;
186
    case FF_FILTER_TYPE_BIQUAD:
187
        ret = biquad_init_coeffs(avc, c, filt_mode, order, cutoff_ratio,
188
                                 stopband);
189
        break;
190
    default:
191
        av_log(avc, AV_LOG_ERROR, "filter type is not currently implemented\n");
192
        goto init_fail;
193
    }
194
 
195
    if (!ret)
196
        return c;
197
 
198
init_fail:
199
    ff_iir_filter_free_coeffsp(&c);
200
    return NULL;
201
}
202
 
203
av_cold struct FFIIRFilterState* ff_iir_filter_init_state(int order)
204
{
205
    FFIIRFilterState* s = av_mallocz(sizeof(FFIIRFilterState) + sizeof(s->x[0]) * (order - 1));
206
    return s;
207
}
208
 
209
#define CONV_S16(dest, source) dest = av_clip_int16(lrintf(source));
210
 
211
#define CONV_FLT(dest, source) dest = source;
212
 
213
#define FILTER_BW_O4_1(i0, i1, i2, i3, fmt)         \
214
    in = *src0 * c->gain                            \
215
         + c->cy[0]*s->x[i0] + c->cy[1]*s->x[i1]    \
216
         + c->cy[2]*s->x[i2] + c->cy[3]*s->x[i3];   \
217
    res =  (s->x[i0] + in      )*1                  \
218
         + (s->x[i1] + s->x[i3])*4                  \
219
         +  s->x[i2]            *6;                 \
220
    CONV_##fmt(*dst0, res)                          \
221
    s->x[i0] = in;                                  \
222
    src0 += sstep;                                  \
223
    dst0 += dstep;
224
 
225
#define FILTER_BW_O4(type, fmt) {           \
226
    int i;                                  \
227
    const type *src0 = src;                 \
228
    type       *dst0 = dst;                 \
229
    for (i = 0; i < size; i += 4) {         \
230
        float in, res;                      \
231
        FILTER_BW_O4_1(0, 1, 2, 3, fmt);    \
232
        FILTER_BW_O4_1(1, 2, 3, 0, fmt);    \
233
        FILTER_BW_O4_1(2, 3, 0, 1, fmt);    \
234
        FILTER_BW_O4_1(3, 0, 1, 2, fmt);    \
235
    }                                       \
236
}
237
 
238
#define FILTER_DIRECT_FORM_II(type, fmt) {                                  \
239
    int i;                                                                  \
240
    const type *src0 = src;                                                 \
241
    type       *dst0 = dst;                                                 \
242
    for (i = 0; i < size; i++) {                                            \
243
        int j;                                                              \
244
        float in, res;                                                      \
245
        in = *src0 * c->gain;                                               \
246
        for(j = 0; j < c->order; j++)                                       \
247
            in += c->cy[j] * s->x[j];                                       \
248
        res = s->x[0] + in + s->x[c->order >> 1] * c->cx[c->order >> 1];    \
249
        for(j = 1; j < c->order >> 1; j++)                                  \
250
            res += (s->x[j] + s->x[c->order - j]) * c->cx[j];               \
251
        for(j = 0; j < c->order - 1; j++)                                   \
252
            s->x[j] = s->x[j + 1];                                          \
253
        CONV_##fmt(*dst0, res)                                              \
254
        s->x[c->order - 1] = in;                                            \
255
        src0 += sstep;                                                      \
256
        dst0 += dstep;                                                      \
257
    }                                                                       \
258
}
259
 
260
#define FILTER_O2(type, fmt) {                                              \
261
    int i;                                                                  \
262
    const type *src0 = src;                                                 \
263
    type       *dst0 = dst;                                                 \
264
    for (i = 0; i < size; i++) {                                            \
265
        float in = *src0   * c->gain  +                                     \
266
                   s->x[0] * c->cy[0] +                                     \
267
                   s->x[1] * c->cy[1];                                      \
268
        CONV_##fmt(*dst0, s->x[0] + in + s->x[1] * c->cx[1])                \
269
        s->x[0] = s->x[1];                                                  \
270
        s->x[1] = in;                                                       \
271
        src0 += sstep;                                                      \
272
        dst0 += dstep;                                                      \
273
    }                                                                       \
274
}
275
 
276
void ff_iir_filter(const struct FFIIRFilterCoeffs *c,
277
                   struct FFIIRFilterState *s, int size,
278
                   const int16_t *src, int sstep, int16_t *dst, int dstep)
279
{
280
    if (c->order == 2) {
281
        FILTER_O2(int16_t, S16)
282
    } else if (c->order == 4) {
283
        FILTER_BW_O4(int16_t, S16)
284
    } else {
285
        FILTER_DIRECT_FORM_II(int16_t, S16)
286
    }
287
}
288
 
289
void ff_iir_filter_flt(const struct FFIIRFilterCoeffs *c,
290
                       struct FFIIRFilterState *s, int size,
291
                       const float *src, int sstep, float *dst, int dstep)
292
{
293
    if (c->order == 2) {
294
        FILTER_O2(float, FLT)
295
    } else if (c->order == 4) {
296
        FILTER_BW_O4(float, FLT)
297
    } else {
298
        FILTER_DIRECT_FORM_II(float, FLT)
299
    }
300
}
301
 
302
av_cold void ff_iir_filter_free_statep(struct FFIIRFilterState **state)
303
{
304
    av_freep(state);
305
}
306
 
307
av_cold void ff_iir_filter_free_coeffsp(struct FFIIRFilterCoeffs **coeffsp)
308
{
309
    struct FFIIRFilterCoeffs *coeffs = *coeffsp;
310
    if(coeffs){
311
        av_freep(&coeffs->cx);
312
        av_freep(&coeffs->cy);
313
    }
314
    av_freep(coeffsp);
315
}
316
 
317
void ff_iir_filter_init(FFIIRFilterContext *f) {
318
    f->filter_flt = ff_iir_filter_flt;
319
 
320
    if (HAVE_MIPSFPU)
321
        ff_iir_filter_init_mips(f);
322
}
323
 
324
#ifdef TEST
325
#include 
326
 
327
#define FILT_ORDER 4
328
#define SIZE 1024
329
int main(void)
330
{
331
    struct FFIIRFilterCoeffs *fcoeffs = NULL;
332
    struct FFIIRFilterState  *fstate  = NULL;
333
    float cutoff_coeff = 0.4;
334
    int16_t x[SIZE], y[SIZE];
335
    int i;
336
 
337
    fcoeffs = ff_iir_filter_init_coeffs(NULL, FF_FILTER_TYPE_BUTTERWORTH,
338
                                        FF_FILTER_MODE_LOWPASS, FILT_ORDER,
339
                                        cutoff_coeff, 0.0, 0.0);
340
    fstate  = ff_iir_filter_init_state(FILT_ORDER);
341
 
342
    for (i = 0; i < SIZE; i++) {
343
        x[i] = lrint(0.75 * INT16_MAX * sin(0.5*M_PI*i*i/SIZE));
344
    }
345
 
346
    ff_iir_filter(fcoeffs, fstate, SIZE, x, 1, y, 1);
347
 
348
    for (i = 0; i < SIZE; i++)
349
        printf("%6d %6d\n", x[i], y[i]);
350
 
351
    ff_iir_filter_free_coeffsp(&fcoeffs);
352
    ff_iir_filter_free_statep(&fstate);
353
    return 0;
354
}
355
#endif /* TEST */