Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
6147 serge 1
/*
2
 * adaptive and fixed codebook vector operations for ACELP-based codecs
3
 *
4
 * Copyright (c) 2008 Vladimir Voroshilov
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22
 
23
#ifndef AVCODEC_ACELP_VECTORS_H
24
#define AVCODEC_ACELP_VECTORS_H
25
 
26
#include 
27
 
28
typedef struct ACELPVContext {
29
    /**
30
     * float implementation of weighted sum of two vectors.
31
     * @param[out] out result of addition
32
     * @param in_a first vector
33
     * @param in_b second vector
34
     * @param weight_coeff_a first vector weight coefficient
35
     * @param weight_coeff_a second vector weight coefficient
36
     * @param length vectors length (should be a multiple of two)
37
     *
38
     * @note It is safe to pass the same buffer for out and in_a or in_b.
39
     */
40
    void (*weighted_vector_sumf)(float *out, const float *in_a, const float *in_b,
41
                                 float weight_coeff_a, float weight_coeff_b,
42
                                 int length);
43
 
44
}ACELPVContext;
45
 
46
/**
47
 * Initialize ACELPVContext.
48
 */
49
void ff_acelp_vectors_init(ACELPVContext *c);
50
void ff_acelp_vectors_init_mips(ACELPVContext *c);
51
 
52
/** Sparse representation for the algebraic codebook (fixed) vector */
53
typedef struct AMRFixed {
54
    int      n;
55
    int      x[10];
56
    float    y[10];
57
    int      no_repeat_mask;
58
    int      pitch_lag;
59
    float    pitch_fac;
60
} AMRFixed;
61
 
62
/**
63
 * Track|Pulse|        Positions
64
 * -------------------------------------------------------------------------
65
 *  1   | 0   | 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75
66
 * -------------------------------------------------------------------------
67
 *  2   | 1   | 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76
68
 * -------------------------------------------------------------------------
69
 *  3   | 2   | 2, 7, 12, 17, 22, 27, 32, 37, 42, 47, 52, 57, 62, 67, 72, 77
70
 * -------------------------------------------------------------------------
71
 *
72
 * Table contains only first the pulse indexes.
73
 *
74
 * Used in G.729 @@8k, G.729 @@4.4k, AMR @@7.95k, AMR @@7.40k
75
 */
76
extern const uint8_t ff_fc_4pulses_8bits_tracks_13[16];
77
 
78
/**
79
 * Track|Pulse|        Positions
80
 * -------------------------------------------------------------------------
81
 *  4   | 3   | 3, 8, 13, 18, 23, 28, 33, 38, 43, 48, 53, 58, 63, 68, 73, 78
82
 *      |     | 4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59, 64, 69, 74, 79
83
 * -------------------------------------------------------------------------
84
 *
85
 * @remark Track in the table should be read top-to-bottom, left-to-right.
86
 *
87
 * Used in G.729 @@8k, G.729 @@4.4k, AMR @@7.95k, AMR @@7.40k
88
 */
89
extern const uint8_t ff_fc_4pulses_8bits_track_4[32];
90
 
91
/**
92
 * Track|Pulse|        Positions
93
 * -----------------------------------------
94
 *  1   | 0   | 1, 6, 11, 16, 21, 26, 31, 36
95
 *      |     | 3, 8, 13, 18, 23, 28, 33, 38
96
 * -----------------------------------------
97
 *
98
 * @remark Track in the table should be read top-to-bottom, left-to-right.
99
 *
100
 * @note (EE) Reference G.729D code also uses gray decoding for each
101
 *            pulse index before looking up the value in the table.
102
 *
103
 * Used in G.729 @@6.4k (with gray coding), AMR @@5.9k (without gray coding)
104
 */
105
extern const uint8_t ff_fc_2pulses_9bits_track1[16];
106
extern const uint8_t ff_fc_2pulses_9bits_track1_gray[16];
107
 
108
/**
109
 * Track|Pulse|        Positions
110
 * -----------------------------------------
111
 *  2   | 1   | 0, 7, 14, 20, 27, 34,  1, 21
112
 *      |     | 2, 9, 15, 22, 29, 35,  6, 26
113
 *      |     | 4,10, 17, 24, 30, 37, 11, 31
114
 *      |     | 5,12, 19, 25, 32, 39, 16, 36
115
 * -----------------------------------------
116
 *
117
 * @remark Track in the table should be read top-to-bottom, left-to-right.
118
 *
119
 * @note (EE.1) This table (from the reference code) does not comply with
120
 *              the specification.
121
 *              The specification contains the following table:
122
 *
123
 * Track|Pulse|        Positions
124
 * -----------------------------------------
125
 *  2   | 1   | 0, 5, 10, 15, 20, 25, 30, 35
126
 *      |     | 1, 6, 11, 16, 21, 26, 31, 36
127
 *      |     | 2, 7, 12, 17, 22, 27, 32, 37
128
 *      |     | 4, 9, 14, 19, 24, 29, 34, 39
129
 *
130
 * -----------------------------------------
131
 *
132
 * @note (EE.2) Reference G.729D code also uses gray decoding for each
133
 *              pulse index before looking up the value in the table.
134
 *
135
 * Used in G.729 @@6.4k (with gray coding)
136
 */
137
extern const uint8_t ff_fc_2pulses_9bits_track2_gray[32];
138
 
139
/**
140
 * b60 hamming windowed sinc function coefficients
141
 */
142
extern const float ff_b60_sinc[61];
143
 
144
/**
145
 * Table of pow(0.7,n)
146
 */
147
extern const float ff_pow_0_7[10];
148
 
149
/**
150
 * Table of pow(0.75,n)
151
 */
152
extern const float ff_pow_0_75[10];
153
 
154
/**
155
 * Table of pow(0.55,n)
156
 */
157
extern const float ff_pow_0_55[10];
158
 
159
/**
160
 * Decode fixed-codebook vector (3.8 and D.5.8 of G.729, 5.7.1 of AMR).
161
 * @param[out] fc_v decoded fixed codebook vector (2.13)
162
 * @param tab1 table used for first pulse_count pulses
163
 * @param tab2 table used for last pulse
164
 * @param pulse_indexes fixed codebook indexes
165
 * @param pulse_signs signs of the excitation pulses (0 bit value
166
 *                     means negative sign)
167
 * @param bits number of bits per one pulse index
168
 * @param pulse_count number of pulses decoded using first table
169
 * @param bits length of one pulse index in bits
170
 *
171
 * Used in G.729 @@8k, G.729 @@4.4k, G.729 @@6.4k, AMR @@7.95k, AMR @@7.40k
172
 */
173
void ff_acelp_fc_pulse_per_track(int16_t* fc_v,
174
                                 const uint8_t *tab1,
175
                                 const uint8_t *tab2,
176
                                 int pulse_indexes,
177
                                 int pulse_signs,
178
                                 int pulse_count,
179
                                 int bits);
180
 
181
/**
182
 * Decode the algebraic codebook index to pulse positions and signs and
183
 * construct the algebraic codebook vector for MODE_12k2.
184
 *
185
 * @note: The positions and signs are explicitly coded in MODE_12k2.
186
 *
187
 * @param fixed_index          positions of the ten pulses
188
 * @param fixed_sparse         pointer to the algebraic codebook vector
189
 * @param gray_decode          gray decoding table
190
 * @param half_pulse_count     number of couples of pulses
191
 * @param bits                 length of one pulse index in bits
192
 */
193
void ff_decode_10_pulses_35bits(const int16_t *fixed_index,
194
                                AMRFixed *fixed_sparse,
195
                                const uint8_t *gray_decode,
196
                                int half_pulse_count, int bits);
197
 
198
 
199
/**
200
 * weighted sum of two vectors with rounding.
201
 * @param[out] out result of addition
202
 * @param in_a first vector
203
 * @param in_b second vector
204
 * @param weight_coeff_a first vector weight coefficient
205
 * @param weight_coeff_a second vector weight coefficient
206
 * @param rounder this value will be added to the sum of the two vectors
207
 * @param shift result will be shifted to right by this value
208
 * @param length vectors length
209
 *
210
 * @note It is safe to pass the same buffer for out and in_a or in_b.
211
 *
212
 *  out[i] = (in_a[i]*weight_a + in_b[i]*weight_b + rounder) >> shift
213
 */
214
void ff_acelp_weighted_vector_sum(int16_t* out,
215
                                  const int16_t *in_a,
216
                                  const int16_t *in_b,
217
                                  int16_t weight_coeff_a,
218
                                  int16_t weight_coeff_b,
219
                                  int16_t rounder,
220
                                  int shift,
221
                                  int length);
222
 
223
/**
224
 * float implementation of weighted sum of two vectors.
225
 * @param[out] out result of addition
226
 * @param in_a first vector
227
 * @param in_b second vector
228
 * @param weight_coeff_a first vector weight coefficient
229
 * @param weight_coeff_a second vector weight coefficient
230
 * @param length vectors length
231
 *
232
 * @note It is safe to pass the same buffer for out and in_a or in_b.
233
 */
234
void ff_weighted_vector_sumf(float *out, const float *in_a, const float *in_b,
235
                             float weight_coeff_a, float weight_coeff_b,
236
                             int length);
237
 
238
/**
239
 * Adaptive gain control (as used in AMR postfiltering)
240
 *
241
 * @param out output buffer for filtered speech data
242
 * @param in the input speech buffer (may be the same as out)
243
 * @param speech_energ input energy
244
 * @param size the input buffer size
245
 * @param alpha exponential filter factor
246
 * @param gain_mem a pointer to the filter memory (single float of size)
247
 */
248
void ff_adaptive_gain_control(float *out, const float *in, float speech_energ,
249
                              int size, float alpha, float *gain_mem);
250
 
251
/**
252
 * Set the sum of squares of a signal by scaling
253
 *
254
 * @param out output samples
255
 * @param in input samples
256
 * @param sum_of_squares new sum of squares
257
 * @param n number of samples
258
 *
259
 * @note If the input is zero (or its energy underflows), the output is zero.
260
 *       This is the behavior of AGC in the AMR reference decoder. The QCELP
261
 *       reference decoder seems to have undefined behavior.
262
 *
263
 * TIA/EIA/IS-733 2.4.8.3-2/3/4/5, 2.4.8.6
264
 * 3GPP TS 26.090 6.1 (6)
265
 */
266
void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in,
267
                                             float sum_of_squares, const int n);
268
 
269
/**
270
 * Add fixed vector to an array from a sparse representation
271
 *
272
 * @param out fixed vector with pitch sharpening
273
 * @param in sparse fixed vector
274
 * @param scale number to multiply the fixed vector by
275
 * @param size the output vector size
276
 */
277
void ff_set_fixed_vector(float *out, const AMRFixed *in, float scale, int size);
278
 
279
/**
280
 * Clear array values set by set_fixed_vector
281
 *
282
 * @param out fixed vector to be cleared
283
 * @param in sparse fixed vector
284
 * @param size the output vector size
285
 */
286
void ff_clear_fixed_vector(float *out, const AMRFixed *in, int size);
287
 
288
#endif /* AVCODEC_ACELP_VECTORS_H */