Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
6148 serge 1
/*
2
 * Copyright (C) 2001-2003 Michael Niedermayer 
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 */
20
 
21
#include "config.h"
22
 
23
#define _SVID_SOURCE // needed for MAP_ANONYMOUS
24
#define _DARWIN_C_SOURCE // needed for MAP_ANON
25
#include 
26
#include 
27
#include 
28
#include 
29
#if HAVE_SYS_MMAN_H
30
#include 
31
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
32
#define MAP_ANONYMOUS MAP_ANON
33
#endif
34
#endif
35
#if HAVE_VIRTUALALLOC
36
#define WIN32_LEAN_AND_MEAN
37
#include 
38
#endif
39
 
40
#include "libavutil/attributes.h"
41
#include "libavutil/avassert.h"
42
#include "libavutil/avutil.h"
43
#include "libavutil/bswap.h"
44
#include "libavutil/cpu.h"
45
#include "libavutil/intreadwrite.h"
46
#include "libavutil/mathematics.h"
47
#include "libavutil/opt.h"
48
#include "libavutil/pixdesc.h"
49
#include "libavutil/ppc/cpu.h"
50
#include "libavutil/x86/asm.h"
51
#include "libavutil/x86/cpu.h"
52
#include "rgb2rgb.h"
53
#include "swscale.h"
54
#include "swscale_internal.h"
55
 
56
static void handle_formats(SwsContext *c);
57
 
58
unsigned swscale_version(void)
59
{
60
    av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
61
    return LIBSWSCALE_VERSION_INT;
62
}
63
 
64
const char *swscale_configuration(void)
65
{
66
    return FFMPEG_CONFIGURATION;
67
}
68
 
69
const char *swscale_license(void)
70
{
71
#define LICENSE_PREFIX "libswscale license: "
72
    return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
73
}
74
 
75
#define RET 0xC3 // near return opcode for x86
76
 
77
typedef struct FormatEntry {
78
    uint8_t is_supported_in         :1;
79
    uint8_t is_supported_out        :1;
80
    uint8_t is_supported_endianness :1;
81
} FormatEntry;
82
 
83
static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
84
    [AV_PIX_FMT_YUV420P]     = { 1, 1 },
85
    [AV_PIX_FMT_YUYV422]     = { 1, 1 },
86
    [AV_PIX_FMT_RGB24]       = { 1, 1 },
87
    [AV_PIX_FMT_BGR24]       = { 1, 1 },
88
    [AV_PIX_FMT_YUV422P]     = { 1, 1 },
89
    [AV_PIX_FMT_YUV444P]     = { 1, 1 },
90
    [AV_PIX_FMT_YUV410P]     = { 1, 1 },
91
    [AV_PIX_FMT_YUV411P]     = { 1, 1 },
92
    [AV_PIX_FMT_GRAY8]       = { 1, 1 },
93
    [AV_PIX_FMT_MONOWHITE]   = { 1, 1 },
94
    [AV_PIX_FMT_MONOBLACK]   = { 1, 1 },
95
    [AV_PIX_FMT_PAL8]        = { 1, 0 },
96
    [AV_PIX_FMT_YUVJ420P]    = { 1, 1 },
97
    [AV_PIX_FMT_YUVJ411P]    = { 1, 1 },
98
    [AV_PIX_FMT_YUVJ422P]    = { 1, 1 },
99
    [AV_PIX_FMT_YUVJ444P]    = { 1, 1 },
100
    [AV_PIX_FMT_UYVY422]     = { 1, 1 },
101
    [AV_PIX_FMT_UYYVYY411]   = { 0, 0 },
102
    [AV_PIX_FMT_BGR8]        = { 1, 1 },
103
    [AV_PIX_FMT_BGR4]        = { 0, 1 },
104
    [AV_PIX_FMT_BGR4_BYTE]   = { 1, 1 },
105
    [AV_PIX_FMT_RGB8]        = { 1, 1 },
106
    [AV_PIX_FMT_RGB4]        = { 0, 1 },
107
    [AV_PIX_FMT_RGB4_BYTE]   = { 1, 1 },
108
    [AV_PIX_FMT_NV12]        = { 1, 1 },
109
    [AV_PIX_FMT_NV21]        = { 1, 1 },
110
    [AV_PIX_FMT_ARGB]        = { 1, 1 },
111
    [AV_PIX_FMT_RGBA]        = { 1, 1 },
112
    [AV_PIX_FMT_ABGR]        = { 1, 1 },
113
    [AV_PIX_FMT_BGRA]        = { 1, 1 },
114
    [AV_PIX_FMT_0RGB]        = { 1, 1 },
115
    [AV_PIX_FMT_RGB0]        = { 1, 1 },
116
    [AV_PIX_FMT_0BGR]        = { 1, 1 },
117
    [AV_PIX_FMT_BGR0]        = { 1, 1 },
118
    [AV_PIX_FMT_GRAY16BE]    = { 1, 1 },
119
    [AV_PIX_FMT_GRAY16LE]    = { 1, 1 },
120
    [AV_PIX_FMT_YUV440P]     = { 1, 1 },
121
    [AV_PIX_FMT_YUVJ440P]    = { 1, 1 },
122
    [AV_PIX_FMT_YUVA420P]    = { 1, 1 },
123
    [AV_PIX_FMT_YUVA422P]    = { 1, 1 },
124
    [AV_PIX_FMT_YUVA444P]    = { 1, 1 },
125
    [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
126
    [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
127
    [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
128
    [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
129
    [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
130
    [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
131
    [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
132
    [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
133
    [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
134
    [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
135
    [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
136
    [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
137
    [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
138
    [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
139
    [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
140
    [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
141
    [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
142
    [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
143
    [AV_PIX_FMT_RGB48BE]     = { 1, 1 },
144
    [AV_PIX_FMT_RGB48LE]     = { 1, 1 },
145
    [AV_PIX_FMT_RGBA64BE]    = { 1, 1 },
146
    [AV_PIX_FMT_RGBA64LE]    = { 1, 1 },
147
    [AV_PIX_FMT_RGB565BE]    = { 1, 1 },
148
    [AV_PIX_FMT_RGB565LE]    = { 1, 1 },
149
    [AV_PIX_FMT_RGB555BE]    = { 1, 1 },
150
    [AV_PIX_FMT_RGB555LE]    = { 1, 1 },
151
    [AV_PIX_FMT_BGR565BE]    = { 1, 1 },
152
    [AV_PIX_FMT_BGR565LE]    = { 1, 1 },
153
    [AV_PIX_FMT_BGR555BE]    = { 1, 1 },
154
    [AV_PIX_FMT_BGR555LE]    = { 1, 1 },
155
    [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
156
    [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
157
    [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
158
    [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
159
    [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
160
    [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
161
    [AV_PIX_FMT_RGB444LE]    = { 1, 1 },
162
    [AV_PIX_FMT_RGB444BE]    = { 1, 1 },
163
    [AV_PIX_FMT_BGR444LE]    = { 1, 1 },
164
    [AV_PIX_FMT_BGR444BE]    = { 1, 1 },
165
    [AV_PIX_FMT_Y400A]       = { 1, 0 },
166
    [AV_PIX_FMT_BGR48BE]     = { 1, 1 },
167
    [AV_PIX_FMT_BGR48LE]     = { 1, 1 },
168
    [AV_PIX_FMT_BGRA64BE]    = { 0, 0 },
169
    [AV_PIX_FMT_BGRA64LE]    = { 0, 0 },
170
    [AV_PIX_FMT_YUV420P9BE]  = { 1, 1 },
171
    [AV_PIX_FMT_YUV420P9LE]  = { 1, 1 },
172
    [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
173
    [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
174
    [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
175
    [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
176
    [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
177
    [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
178
    [AV_PIX_FMT_YUV422P9BE]  = { 1, 1 },
179
    [AV_PIX_FMT_YUV422P9LE]  = { 1, 1 },
180
    [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
181
    [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
182
    [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
183
    [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
184
    [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
185
    [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
186
    [AV_PIX_FMT_YUV444P9BE]  = { 1, 1 },
187
    [AV_PIX_FMT_YUV444P9LE]  = { 1, 1 },
188
    [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
189
    [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
190
    [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
191
    [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
192
    [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
193
    [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
194
    [AV_PIX_FMT_GBRP]        = { 1, 1 },
195
    [AV_PIX_FMT_GBRP9LE]     = { 1, 1 },
196
    [AV_PIX_FMT_GBRP9BE]     = { 1, 1 },
197
    [AV_PIX_FMT_GBRP10LE]    = { 1, 1 },
198
    [AV_PIX_FMT_GBRP10BE]    = { 1, 1 },
199
    [AV_PIX_FMT_GBRP12LE]    = { 1, 1 },
200
    [AV_PIX_FMT_GBRP12BE]    = { 1, 1 },
201
    [AV_PIX_FMT_GBRP14LE]    = { 1, 1 },
202
    [AV_PIX_FMT_GBRP14BE]    = { 1, 1 },
203
    [AV_PIX_FMT_GBRP16LE]    = { 1, 0 },
204
    [AV_PIX_FMT_GBRP16BE]    = { 1, 0 },
205
    [AV_PIX_FMT_XYZ12BE]     = { 1, 1, 1 },
206
    [AV_PIX_FMT_XYZ12LE]     = { 1, 1, 1 },
207
    [AV_PIX_FMT_GBRAP]       = { 1, 1 },
208
    [AV_PIX_FMT_GBRAP16LE]   = { 1, 0 },
209
    [AV_PIX_FMT_GBRAP16BE]   = { 1, 0 },
210
};
211
 
212
int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
213
{
214
    return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
215
           format_entries[pix_fmt].is_supported_in : 0;
216
}
217
 
218
int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
219
{
220
    return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
221
           format_entries[pix_fmt].is_supported_out : 0;
222
}
223
 
224
int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
225
{
226
    return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
227
           format_entries[pix_fmt].is_supported_endianness : 0;
228
}
229
 
230
#if FF_API_SWS_FORMAT_NAME
231
const char *sws_format_name(enum AVPixelFormat format)
232
{
233
    const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
234
    if (desc)
235
        return desc->name;
236
    else
237
        return "Unknown format";
238
}
239
#endif
240
 
241
static double getSplineCoeff(double a, double b, double c, double d,
242
                             double dist)
243
{
244
    if (dist <= 1.0)
245
        return ((d * dist + c) * dist + b) * dist + a;
246
    else
247
        return getSplineCoeff(0.0,
248
                               b + 2.0 * c + 3.0 * d,
249
                               c + 3.0 * d,
250
                              -b - 3.0 * c - 6.0 * d,
251
                              dist - 1.0);
252
}
253
 
254
static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
255
{
256
    if (pos < 0) {
257
        pos = (128 << chr_subsample) - 128;
258
    }
259
    pos += 128; // relative to ideal left edge
260
    return pos >> chr_subsample;
261
}
262
 
263
static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
264
                              int *outFilterSize, int xInc, int srcW,
265
                              int dstW, int filterAlign, int one,
266
                              int flags, int cpu_flags,
267
                              SwsVector *srcFilter, SwsVector *dstFilter,
268
                              double param[2], int srcPos, int dstPos)
269
{
270
    int i;
271
    int filterSize;
272
    int filter2Size;
273
    int minFilterSize;
274
    int64_t *filter    = NULL;
275
    int64_t *filter2   = NULL;
276
    const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
277
    int ret            = -1;
278
 
279
    emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
280
 
281
    // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
282
    FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
283
 
284
    if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
285
        int i;
286
        filterSize = 1;
287
        FF_ALLOCZ_OR_GOTO(NULL, filter,
288
                          dstW * sizeof(*filter) * filterSize, fail);
289
 
290
        for (i = 0; i < dstW; i++) {
291
            filter[i * filterSize] = fone;
292
            (*filterPos)[i]        = i;
293
        }
294
    } else if (flags & SWS_POINT) { // lame looking point sampling mode
295
        int i;
296
        int64_t xDstInSrc;
297
        filterSize = 1;
298
        FF_ALLOC_OR_GOTO(NULL, filter,
299
                         dstW * sizeof(*filter) * filterSize, fail);
300
 
301
        xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
302
        for (i = 0; i < dstW; i++) {
303
            int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
304
 
305
            (*filterPos)[i] = xx;
306
            filter[i]       = fone;
307
            xDstInSrc      += xInc;
308
        }
309
    } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
310
               (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
311
        int i;
312
        int64_t xDstInSrc;
313
        filterSize = 2;
314
        FF_ALLOC_OR_GOTO(NULL, filter,
315
                         dstW * sizeof(*filter) * filterSize, fail);
316
 
317
        xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
318
        for (i = 0; i < dstW; i++) {
319
            int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
320
            int j;
321
 
322
            (*filterPos)[i] = xx;
323
            // bilinear upscale / linear interpolate / area averaging
324
            for (j = 0; j < filterSize; j++) {
325
                int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
326
                if (coeff < 0)
327
                    coeff = 0;
328
                filter[i * filterSize + j] = coeff;
329
                xx++;
330
            }
331
            xDstInSrc += xInc;
332
        }
333
    } else {
334
        int64_t xDstInSrc;
335
        int sizeFactor;
336
 
337
        if (flags & SWS_BICUBIC)
338
            sizeFactor = 4;
339
        else if (flags & SWS_X)
340
            sizeFactor = 8;
341
        else if (flags & SWS_AREA)
342
            sizeFactor = 1;     // downscale only, for upscale it is bilinear
343
        else if (flags & SWS_GAUSS)
344
            sizeFactor = 8;     // infinite ;)
345
        else if (flags & SWS_LANCZOS)
346
            sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
347
        else if (flags & SWS_SINC)
348
            sizeFactor = 20;    // infinite ;)
349
        else if (flags & SWS_SPLINE)
350
            sizeFactor = 20;    // infinite ;)
351
        else if (flags & SWS_BILINEAR)
352
            sizeFactor = 2;
353
        else {
354
            av_assert0(0);
355
        }
356
 
357
        if (xInc <= 1 << 16)
358
            filterSize = 1 + sizeFactor;    // upscale
359
        else
360
            filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
361
 
362
        filterSize = FFMIN(filterSize, srcW - 2);
363
        filterSize = FFMAX(filterSize, 1);
364
 
365
        FF_ALLOC_OR_GOTO(NULL, filter,
366
                         dstW * sizeof(*filter) * filterSize, fail);
367
 
368
        xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
369
        for (i = 0; i < dstW; i++) {
370
            int xx = (xDstInSrc - ((filterSize - 2) << 16)) / (1 << 17);
371
            int j;
372
            (*filterPos)[i] = xx;
373
            for (j = 0; j < filterSize; j++) {
374
                int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
375
                double floatd;
376
                int64_t coeff;
377
 
378
                if (xInc > 1 << 16)
379
                    d = d * dstW / srcW;
380
                floatd = d * (1.0 / (1 << 30));
381
 
382
                if (flags & SWS_BICUBIC) {
383
                    int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] :   0) * (1 << 24);
384
                    int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
385
 
386
                    if (d >= 1LL << 31) {
387
                        coeff = 0.0;
388
                    } else {
389
                        int64_t dd  = (d  * d) >> 30;
390
                        int64_t ddd = (dd * d) >> 30;
391
 
392
                        if (d < 1LL << 30)
393
                            coeff =  (12 * (1 << 24) -  9 * B - 6 * C) * ddd +
394
                                    (-18 * (1 << 24) + 12 * B + 6 * C) *  dd +
395
                                      (6 * (1 << 24) -  2 * B)         * (1 << 30);
396
                        else
397
                            coeff =      (-B -  6 * C) * ddd +
398
                                      (6 * B + 30 * C) * dd  +
399
                                    (-12 * B - 48 * C) * d   +
400
                                      (8 * B + 24 * C) * (1 << 30);
401
                    }
402
                    coeff /= (1LL<<54)/fone;
403
                }
404
#if 0
405
                else if (flags & SWS_X) {
406
                    double p  = param ? param * 0.01 : 0.3;
407
                    coeff     = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
408
                    coeff    *= pow(2.0, -p * d * d);
409
                }
410
#endif
411
                else if (flags & SWS_X) {
412
                    double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
413
                    double c;
414
 
415
                    if (floatd < 1.0)
416
                        c = cos(floatd * M_PI);
417
                    else
418
                        c = -1.0;
419
                    if (c < 0.0)
420
                        c = -pow(-c, A);
421
                    else
422
                        c = pow(c, A);
423
                    coeff = (c * 0.5 + 0.5) * fone;
424
                } else if (flags & SWS_AREA) {
425
                    int64_t d2 = d - (1 << 29);
426
                    if (d2 * xInc < -(1LL << (29 + 16)))
427
                        coeff = 1.0 * (1LL << (30 + 16));
428
                    else if (d2 * xInc < (1LL << (29 + 16)))
429
                        coeff = -d2 * xInc + (1LL << (29 + 16));
430
                    else
431
                        coeff = 0.0;
432
                    coeff *= fone >> (30 + 16);
433
                } else if (flags & SWS_GAUSS) {
434
                    double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
435
                    coeff = (pow(2.0, -p * floatd * floatd)) * fone;
436
                } else if (flags & SWS_SINC) {
437
                    coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
438
                } else if (flags & SWS_LANCZOS) {
439
                    double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
440
                    coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
441
                             (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
442
                    if (floatd > p)
443
                        coeff = 0;
444
                } else if (flags & SWS_BILINEAR) {
445
                    coeff = (1 << 30) - d;
446
                    if (coeff < 0)
447
                        coeff = 0;
448
                    coeff *= fone >> 30;
449
                } else if (flags & SWS_SPLINE) {
450
                    double p = -2.196152422706632;
451
                    coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
452
                } else {
453
                    av_assert0(0);
454
                }
455
 
456
                filter[i * filterSize + j] = coeff;
457
                xx++;
458
            }
459
            xDstInSrc += 2 * xInc;
460
        }
461
    }
462
 
463
    /* apply src & dst Filter to filter -> filter2
464
     * av_free(filter);
465
     */
466
    av_assert0(filterSize > 0);
467
    filter2Size = filterSize;
468
    if (srcFilter)
469
        filter2Size += srcFilter->length - 1;
470
    if (dstFilter)
471
        filter2Size += dstFilter->length - 1;
472
    av_assert0(filter2Size > 0);
473
    FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
474
 
475
    for (i = 0; i < dstW; i++) {
476
        int j, k;
477
 
478
        if (srcFilter) {
479
            for (k = 0; k < srcFilter->length; k++) {
480
                for (j = 0; j < filterSize; j++)
481
                    filter2[i * filter2Size + k + j] +=
482
                        srcFilter->coeff[k] * filter[i * filterSize + j];
483
            }
484
        } else {
485
            for (j = 0; j < filterSize; j++)
486
                filter2[i * filter2Size + j] = filter[i * filterSize + j];
487
        }
488
        // FIXME dstFilter
489
 
490
        (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
491
    }
492
    av_freep(&filter);
493
 
494
    /* try to reduce the filter-size (step1 find size and shift left) */
495
    // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
496
    minFilterSize = 0;
497
    for (i = dstW - 1; i >= 0; i--) {
498
        int min = filter2Size;
499
        int j;
500
        int64_t cutOff = 0.0;
501
 
502
        /* get rid of near zero elements on the left by shifting left */
503
        for (j = 0; j < filter2Size; j++) {
504
            int k;
505
            cutOff += FFABS(filter2[i * filter2Size]);
506
 
507
            if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
508
                break;
509
 
510
            /* preserve monotonicity because the core can't handle the
511
             * filter otherwise */
512
            if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
513
                break;
514
 
515
            // move filter coefficients left
516
            for (k = 1; k < filter2Size; k++)
517
                filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
518
            filter2[i * filter2Size + k - 1] = 0;
519
            (*filterPos)[i]++;
520
        }
521
 
522
        cutOff = 0;
523
        /* count near zeros on the right */
524
        for (j = filter2Size - 1; j > 0; j--) {
525
            cutOff += FFABS(filter2[i * filter2Size + j]);
526
 
527
            if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
528
                break;
529
            min--;
530
        }
531
 
532
        if (min > minFilterSize)
533
            minFilterSize = min;
534
    }
535
 
536
    if (PPC_ALTIVEC(cpu_flags)) {
537
        // we can handle the special case 4, so we don't want to go the full 8
538
        if (minFilterSize < 5)
539
            filterAlign = 4;
540
 
541
        /* We really don't want to waste our time doing useless computation, so
542
         * fall back on the scalar C code for very small filters.
543
         * Vectorizing is worth it only if you have a decent-sized vector. */
544
        if (minFilterSize < 3)
545
            filterAlign = 1;
546
    }
547
 
548
    if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
549
        // special case for unscaled vertical filtering
550
        if (minFilterSize == 1 && filterAlign == 2)
551
            filterAlign = 1;
552
    }
553
 
554
    av_assert0(minFilterSize > 0);
555
    filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
556
    av_assert0(filterSize > 0);
557
    filter = av_malloc(filterSize * dstW * sizeof(*filter));
558
    if (filterSize >= MAX_FILTER_SIZE * 16 /
559
                      ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter) {
560
        av_log(NULL, AV_LOG_ERROR, "sws: filterSize %d is too large, try less extreem scaling or increase MAX_FILTER_SIZE and recompile\n", filterSize);
561
        goto fail;
562
    }
563
    *outFilterSize = filterSize;
564
 
565
    if (flags & SWS_PRINT_INFO)
566
        av_log(NULL, AV_LOG_VERBOSE,
567
               "SwScaler: reducing / aligning filtersize %d -> %d\n",
568
               filter2Size, filterSize);
569
    /* try to reduce the filter-size (step2 reduce it) */
570
    for (i = 0; i < dstW; i++) {
571
        int j;
572
 
573
        for (j = 0; j < filterSize; j++) {
574
            if (j >= filter2Size)
575
                filter[i * filterSize + j] = 0;
576
            else
577
                filter[i * filterSize + j] = filter2[i * filter2Size + j];
578
            if ((flags & SWS_BITEXACT) && j >= minFilterSize)
579
                filter[i * filterSize + j] = 0;
580
        }
581
    }
582
 
583
    // FIXME try to align filterPos if possible
584
 
585
    // fix borders
586
    for (i = 0; i < dstW; i++) {
587
        int j;
588
        if ((*filterPos)[i] < 0) {
589
            // move filter coefficients left to compensate for filterPos
590
            for (j = 1; j < filterSize; j++) {
591
                int left = FFMAX(j + (*filterPos)[i], 0);
592
                filter[i * filterSize + left] += filter[i * filterSize + j];
593
                filter[i * filterSize + j]     = 0;
594
            }
595
            (*filterPos)[i]= 0;
596
        }
597
 
598
        if ((*filterPos)[i] + filterSize > srcW) {
599
            int shift = (*filterPos)[i] + filterSize - srcW;
600
            // move filter coefficients right to compensate for filterPos
601
            for (j = filterSize - 2; j >= 0; j--) {
602
                int right = FFMIN(j + shift, filterSize - 1);
603
                filter[i * filterSize + right] += filter[i * filterSize + j];
604
                filter[i * filterSize + j]      = 0;
605
            }
606
            (*filterPos)[i]= srcW - filterSize;
607
        }
608
    }
609
 
610
    // Note the +1 is for the MMX scaler which reads over the end
611
    /* align at 16 for AltiVec (needed by hScale_altivec_real) */
612
    FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
613
                      *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
614
 
615
    /* normalize & store in outFilter */
616
    for (i = 0; i < dstW; i++) {
617
        int j;
618
        int64_t error = 0;
619
        int64_t sum   = 0;
620
 
621
        for (j = 0; j < filterSize; j++) {
622
            sum += filter[i * filterSize + j];
623
        }
624
        sum = (sum + one / 2) / one;
625
        if (!sum) {
626
            av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
627
            sum = 1;
628
        }
629
        for (j = 0; j < *outFilterSize; j++) {
630
            int64_t v = filter[i * filterSize + j] + error;
631
            int intV  = ROUNDED_DIV(v, sum);
632
            (*outFilter)[i * (*outFilterSize) + j] = intV;
633
            error                                  = v - intV * sum;
634
        }
635
    }
636
 
637
    (*filterPos)[dstW + 0] =
638
    (*filterPos)[dstW + 1] =
639
    (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
640
                                                      * read over the end */
641
    for (i = 0; i < *outFilterSize; i++) {
642
        int k = (dstW - 1) * (*outFilterSize) + i;
643
        (*outFilter)[k + 1 * (*outFilterSize)] =
644
        (*outFilter)[k + 2 * (*outFilterSize)] =
645
        (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
646
    }
647
 
648
    ret = 0;
649
 
650
fail:
651
    if(ret < 0)
652
        av_log(NULL, AV_LOG_ERROR, "sws: initFilter failed\n");
653
    av_free(filter);
654
    av_free(filter2);
655
    return ret;
656
}
657
 
658
#if HAVE_MMXEXT_INLINE
659
static av_cold int init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
660
                                       int16_t *filter, int32_t *filterPos,
661
                                       int numSplits)
662
{
663
    uint8_t *fragmentA;
664
    x86_reg imm8OfPShufW1A;
665
    x86_reg imm8OfPShufW2A;
666
    x86_reg fragmentLengthA;
667
    uint8_t *fragmentB;
668
    x86_reg imm8OfPShufW1B;
669
    x86_reg imm8OfPShufW2B;
670
    x86_reg fragmentLengthB;
671
    int fragmentPos;
672
 
673
    int xpos, i;
674
 
675
    // create an optimized horizontal scaling routine
676
    /* This scaler is made of runtime-generated MMXEXT code using specially tuned
677
     * pshufw instructions. For every four output pixels, if four input pixels
678
     * are enough for the fast bilinear scaling, then a chunk of fragmentB is
679
     * used. If five input pixels are needed, then a chunk of fragmentA is used.
680
     */
681
 
682
    // code fragment
683
 
684
    __asm__ volatile (
685
        "jmp                         9f                 \n\t"
686
        // Begin
687
        "0:                                             \n\t"
688
        "movq    (%%"REG_d", %%"REG_a"), %%mm3          \n\t"
689
        "movd    (%%"REG_c", %%"REG_S"), %%mm0          \n\t"
690
        "movd   1(%%"REG_c", %%"REG_S"), %%mm1          \n\t"
691
        "punpcklbw                %%mm7, %%mm1          \n\t"
692
        "punpcklbw                %%mm7, %%mm0          \n\t"
693
        "pshufw                   $0xFF, %%mm1, %%mm1   \n\t"
694
        "1:                                             \n\t"
695
        "pshufw                   $0xFF, %%mm0, %%mm0   \n\t"
696
        "2:                                             \n\t"
697
        "psubw                    %%mm1, %%mm0          \n\t"
698
        "movl   8(%%"REG_b", %%"REG_a"), %%esi          \n\t"
699
        "pmullw                   %%mm3, %%mm0          \n\t"
700
        "psllw                       $7, %%mm1          \n\t"
701
        "paddw                    %%mm1, %%mm0          \n\t"
702
 
703
        "movq                     %%mm0, (%%"REG_D", %%"REG_a") \n\t"
704
 
705
        "add                         $8, %%"REG_a"      \n\t"
706
        // End
707
        "9:                                             \n\t"
708
        // "int $3                                         \n\t"
709
        "lea       " LOCAL_MANGLE(0b) ", %0             \n\t"
710
        "lea       " LOCAL_MANGLE(1b) ", %1             \n\t"
711
        "lea       " LOCAL_MANGLE(2b) ", %2             \n\t"
712
        "dec                         %1                 \n\t"
713
        "dec                         %2                 \n\t"
714
        "sub                         %0, %1             \n\t"
715
        "sub                         %0, %2             \n\t"
716
        "lea       " LOCAL_MANGLE(9b) ", %3             \n\t"
717
        "sub                         %0, %3             \n\t"
718
 
719
 
720
        : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
721
          "=r" (fragmentLengthA)
722
        );
723
 
724
    __asm__ volatile (
725
        "jmp                         9f                 \n\t"
726
        // Begin
727
        "0:                                             \n\t"
728
        "movq    (%%"REG_d", %%"REG_a"), %%mm3          \n\t"
729
        "movd    (%%"REG_c", %%"REG_S"), %%mm0          \n\t"
730
        "punpcklbw                %%mm7, %%mm0          \n\t"
731
        "pshufw                   $0xFF, %%mm0, %%mm1   \n\t"
732
        "1:                                             \n\t"
733
        "pshufw                   $0xFF, %%mm0, %%mm0   \n\t"
734
        "2:                                             \n\t"
735
        "psubw                    %%mm1, %%mm0          \n\t"
736
        "movl   8(%%"REG_b", %%"REG_a"), %%esi          \n\t"
737
        "pmullw                   %%mm3, %%mm0          \n\t"
738
        "psllw                       $7, %%mm1          \n\t"
739
        "paddw                    %%mm1, %%mm0          \n\t"
740
 
741
        "movq                     %%mm0, (%%"REG_D", %%"REG_a") \n\t"
742
 
743
        "add                         $8, %%"REG_a"      \n\t"
744
        // End
745
        "9:                                             \n\t"
746
        // "int                       $3                   \n\t"
747
        "lea       " LOCAL_MANGLE(0b) ", %0             \n\t"
748
        "lea       " LOCAL_MANGLE(1b) ", %1             \n\t"
749
        "lea       " LOCAL_MANGLE(2b) ", %2             \n\t"
750
        "dec                         %1                 \n\t"
751
        "dec                         %2                 \n\t"
752
        "sub                         %0, %1             \n\t"
753
        "sub                         %0, %2             \n\t"
754
        "lea       " LOCAL_MANGLE(9b) ", %3             \n\t"
755
        "sub                         %0, %3             \n\t"
756
 
757
 
758
        : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
759
          "=r" (fragmentLengthB)
760
        );
761
 
762
    xpos        = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
763
    fragmentPos = 0;
764
 
765
    for (i = 0; i < dstW / numSplits; i++) {
766
        int xx = xpos >> 16;
767
 
768
        if ((i & 3) == 0) {
769
            int a                  = 0;
770
            int b                  = ((xpos + xInc) >> 16) - xx;
771
            int c                  = ((xpos + xInc * 2) >> 16) - xx;
772
            int d                  = ((xpos + xInc * 3) >> 16) - xx;
773
            int inc                = (d + 1 < 4);
774
            uint8_t *fragment      = (d + 1 < 4) ? fragmentB : fragmentA;
775
            x86_reg imm8OfPShufW1  = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
776
            x86_reg imm8OfPShufW2  = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
777
            x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
778
            int maxShift           = 3 - (d + inc);
779
            int shift              = 0;
780
 
781
            if (filterCode) {
782
                filter[i]        = ((xpos              & 0xFFFF) ^ 0xFFFF) >> 9;
783
                filter[i + 1]    = (((xpos + xInc)     & 0xFFFF) ^ 0xFFFF) >> 9;
784
                filter[i + 2]    = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
785
                filter[i + 3]    = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
786
                filterPos[i / 2] = xx;
787
 
788
                memcpy(filterCode + fragmentPos, fragment, fragmentLength);
789
 
790
                filterCode[fragmentPos + imm8OfPShufW1] =  (a + inc)       |
791
                                                          ((b + inc) << 2) |
792
                                                          ((c + inc) << 4) |
793
                                                          ((d + inc) << 6);
794
                filterCode[fragmentPos + imm8OfPShufW2] =  a | (b << 2) |
795
                                                               (c << 4) |
796
                                                               (d << 6);
797
 
798
                if (i + 4 - inc >= dstW)
799
                    shift = maxShift;               // avoid overread
800
                else if ((filterPos[i / 2] & 3) <= maxShift)
801
                    shift = filterPos[i / 2] & 3;   // align
802
 
803
                if (shift && i >= shift) {
804
                    filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
805
                    filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
806
                    filterPos[i / 2]                        -= shift;
807
                }
808
            }
809
 
810
            fragmentPos += fragmentLength;
811
 
812
            if (filterCode)
813
                filterCode[fragmentPos] = RET;
814
        }
815
        xpos += xInc;
816
    }
817
    if (filterCode)
818
        filterPos[((i / 2) + 1) & (~1)] = xpos >> 16;  // needed to jump to the next part
819
 
820
    return fragmentPos + 1;
821
}
822
#endif /* HAVE_MMXEXT_INLINE */
823
 
824
static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
825
{
826
    int64_t W, V, Z, Cy, Cu, Cv;
827
    int64_t vr =  table[0];
828
    int64_t ub =  table[1];
829
    int64_t ug = -table[2];
830
    int64_t vg = -table[3];
831
    int64_t ONE = 65536;
832
    int64_t cy = ONE;
833
    uint8_t *p = (uint8_t*)c->input_rgb2yuv_table;
834
    int i;
835
    static const int8_t map[] = {
836
    BY_IDX, GY_IDX, -1    , BY_IDX, BY_IDX, GY_IDX, -1    , BY_IDX,
837
    RY_IDX, -1    , GY_IDX, RY_IDX, RY_IDX, -1    , GY_IDX, RY_IDX,
838
    RY_IDX, GY_IDX, -1    , RY_IDX, RY_IDX, GY_IDX, -1    , RY_IDX,
839
    BY_IDX, -1    , GY_IDX, BY_IDX, BY_IDX, -1    , GY_IDX, BY_IDX,
840
    BU_IDX, GU_IDX, -1    , BU_IDX, BU_IDX, GU_IDX, -1    , BU_IDX,
841
    RU_IDX, -1    , GU_IDX, RU_IDX, RU_IDX, -1    , GU_IDX, RU_IDX,
842
    RU_IDX, GU_IDX, -1    , RU_IDX, RU_IDX, GU_IDX, -1    , RU_IDX,
843
    BU_IDX, -1    , GU_IDX, BU_IDX, BU_IDX, -1    , GU_IDX, BU_IDX,
844
    BV_IDX, GV_IDX, -1    , BV_IDX, BV_IDX, GV_IDX, -1    , BV_IDX,
845
    RV_IDX, -1    , GV_IDX, RV_IDX, RV_IDX, -1    , GV_IDX, RV_IDX,
846
    RV_IDX, GV_IDX, -1    , RV_IDX, RV_IDX, GV_IDX, -1    , RV_IDX,
847
    BV_IDX, -1    , GV_IDX, BV_IDX, BV_IDX, -1    , GV_IDX, BV_IDX,
848
    RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX,
849
    BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX,
850
    GY_IDX, -1    , GY_IDX, -1    , GY_IDX, -1    , GY_IDX, -1    ,
851
    -1    , GY_IDX, -1    , GY_IDX, -1    , GY_IDX, -1    , GY_IDX,
852
    RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX,
853
    BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX,
854
    GU_IDX, -1    , GU_IDX, -1    , GU_IDX, -1    , GU_IDX, -1    ,
855
    -1    , GU_IDX, -1    , GU_IDX, -1    , GU_IDX, -1    , GU_IDX,
856
    RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX,
857
    BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX,
858
    GV_IDX, -1    , GV_IDX, -1    , GV_IDX, -1    , GV_IDX, -1    ,
859
    -1    , GV_IDX, -1    , GV_IDX, -1    , GV_IDX, -1    , GV_IDX, //23
860
    -1    , -1    , -1    , -1    , -1    , -1    , -1    , -1    , //24
861
    -1    , -1    , -1    , -1    , -1    , -1    , -1    , -1    , //25
862
    -1    , -1    , -1    , -1    , -1    , -1    , -1    , -1    , //26
863
    -1    , -1    , -1    , -1    , -1    , -1    , -1    , -1    , //27
864
    -1    , -1    , -1    , -1    , -1    , -1    , -1    , -1    , //28
865
    -1    , -1    , -1    , -1    , -1    , -1    , -1    , -1    , //29
866
    -1    , -1    , -1    , -1    , -1    , -1    , -1    , -1    , //30
867
    -1    , -1    , -1    , -1    , -1    , -1    , -1    , -1    , //31
868
    BY_IDX, GY_IDX, RY_IDX, -1    , -1    , -1    , -1    , -1    , //32
869
    BU_IDX, GU_IDX, RU_IDX, -1    , -1    , -1    , -1    , -1    , //33
870
    BV_IDX, GV_IDX, RV_IDX, -1    , -1    , -1    , -1    , -1    , //34
871
    };
872
 
873
    dstRange = 0; //FIXME range = 1 is handled elsewhere
874
 
875
    if (!dstRange) {
876
        cy = cy * 255 / 219;
877
    } else {
878
        vr = vr * 224 / 255;
879
        ub = ub * 224 / 255;
880
        ug = ug * 224 / 255;
881
        vg = vg * 224 / 255;
882
    }
883
    W = ROUNDED_DIV(ONE*ONE*ug, ub);
884
    V = ROUNDED_DIV(ONE*ONE*vg, vr);
885
    Z = ONE*ONE-W-V;
886
 
887
    Cy = ROUNDED_DIV(cy*Z, ONE);
888
    Cu = ROUNDED_DIV(ub*Z, ONE);
889
    Cv = ROUNDED_DIV(vr*Z, ONE);
890
 
891
    c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V        , Cy);
892
    c->input_rgb2yuv_table[GY_IDX] =  ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE  , Cy);
893
    c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W        , Cy);
894
 
895
    c->input_rgb2yuv_table[RU_IDX] =  ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V        , Cu);
896
    c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE  , Cu);
897
    c->input_rgb2yuv_table[BU_IDX] =  ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W)    , Cu);
898
 
899
    c->input_rgb2yuv_table[RV_IDX] =  ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z)    , Cv);
900
    c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE  , Cv);
901
    c->input_rgb2yuv_table[BV_IDX] =  ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W        , Cv);
902
 
903
    if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
904
        c->input_rgb2yuv_table[BY_IDX] =  ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
905
        c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
906
        c->input_rgb2yuv_table[BU_IDX] =  ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
907
        c->input_rgb2yuv_table[GY_IDX] =  ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
908
        c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
909
        c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
910
        c->input_rgb2yuv_table[RY_IDX] =  ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
911
        c->input_rgb2yuv_table[RV_IDX] =  ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
912
        c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
913
    }
914
    for(i=0; i
915
        AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
916
}
917
 
918
static void fill_xyztables(struct SwsContext *c)
919
{
920
    int i;
921
    double xyzgamma = XYZ_GAMMA;
922
    double rgbgamma = 1.0 / RGB_GAMMA;
923
    double xyzgammainv = 1.0 / XYZ_GAMMA;
924
    double rgbgammainv = RGB_GAMMA;
925
    static const int16_t xyz2rgb_matrix[3][4] = {
926
        {13270, -6295, -2041},
927
        {-3969,  7682,   170},
928
        {  228,  -835,  4329} };
929
    static const int16_t rgb2xyz_matrix[3][4] = {
930
        {1689, 1464,  739},
931
        { 871, 2929,  296},
932
        {  79,  488, 3891} };
933
    static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
934
 
935
    memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
936
    memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
937
    c->xyzgamma = xyzgamma_tab;
938
    c->rgbgamma = rgbgamma_tab;
939
    c->xyzgammainv = xyzgammainv_tab;
940
    c->rgbgammainv = rgbgammainv_tab;
941
 
942
    if (rgbgamma_tab[4095])
943
        return;
944
 
945
    /* set gamma vectors */
946
    for (i = 0; i < 4096; i++) {
947
        xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
948
        rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
949
        xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
950
        rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
951
    }
952
}
953
 
954
int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
955
                             int srcRange, const int table[4], int dstRange,
956
                             int brightness, int contrast, int saturation)
957
{
958
    const AVPixFmtDescriptor *desc_dst;
959
    const AVPixFmtDescriptor *desc_src;
960
    memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
961
    memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
962
 
963
    handle_formats(c);
964
    desc_dst = av_pix_fmt_desc_get(c->dstFormat);
965
    desc_src = av_pix_fmt_desc_get(c->srcFormat);
966
 
967
    if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
968
        dstRange = 0;
969
    if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
970
        srcRange = 0;
971
 
972
    c->brightness = brightness;
973
    c->contrast   = contrast;
974
    c->saturation = saturation;
975
    c->srcRange   = srcRange;
976
    c->dstRange   = dstRange;
977
 
978
    fill_xyztables(c);
979
 
980
    if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat)))
981
        return -1;
982
 
983
    c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
984
    c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
985
 
986
    if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
987
        ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
988
                                 contrast, saturation);
989
        // FIXME factorize
990
 
991
        if (ARCH_PPC)
992
            ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
993
                                       contrast, saturation);
994
    }
995
 
996
    fill_rgb2yuv_table(c, table, dstRange);
997
 
998
    return 0;
999
}
1000
 
1001
int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
1002
                             int *srcRange, int **table, int *dstRange,
1003
                             int *brightness, int *contrast, int *saturation)
1004
{
1005
    if (!c )
1006
        return -1;
1007
 
1008
    *inv_table  = c->srcColorspaceTable;
1009
    *table      = c->dstColorspaceTable;
1010
    *srcRange   = c->srcRange;
1011
    *dstRange   = c->dstRange;
1012
    *brightness = c->brightness;
1013
    *contrast   = c->contrast;
1014
    *saturation = c->saturation;
1015
 
1016
    return 0;
1017
}
1018
 
1019
static int handle_jpeg(enum AVPixelFormat *format)
1020
{
1021
    switch (*format) {
1022
    case AV_PIX_FMT_YUVJ420P:
1023
        *format = AV_PIX_FMT_YUV420P;
1024
        return 1;
1025
    case AV_PIX_FMT_YUVJ411P:
1026
        *format = AV_PIX_FMT_YUV411P;
1027
        return 1;
1028
    case AV_PIX_FMT_YUVJ422P:
1029
        *format = AV_PIX_FMT_YUV422P;
1030
        return 1;
1031
    case AV_PIX_FMT_YUVJ444P:
1032
        *format = AV_PIX_FMT_YUV444P;
1033
        return 1;
1034
    case AV_PIX_FMT_YUVJ440P:
1035
        *format = AV_PIX_FMT_YUV440P;
1036
        return 1;
1037
    case AV_PIX_FMT_GRAY8:
1038
        return 1;
1039
    default:
1040
        return 0;
1041
    }
1042
}
1043
 
1044
static int handle_0alpha(enum AVPixelFormat *format)
1045
{
1046
    switch (*format) {
1047
    case AV_PIX_FMT_0BGR    : *format = AV_PIX_FMT_ABGR   ; return 1;
1048
    case AV_PIX_FMT_BGR0    : *format = AV_PIX_FMT_BGRA   ; return 4;
1049
    case AV_PIX_FMT_0RGB    : *format = AV_PIX_FMT_ARGB   ; return 1;
1050
    case AV_PIX_FMT_RGB0    : *format = AV_PIX_FMT_RGBA   ; return 4;
1051
    default:                                          return 0;
1052
    }
1053
}
1054
 
1055
static int handle_xyz(enum AVPixelFormat *format)
1056
{
1057
    switch (*format) {
1058
    case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
1059
    case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
1060
    default:                                                return 0;
1061
    }
1062
}
1063
 
1064
static void handle_formats(SwsContext *c)
1065
{
1066
    c->src0Alpha |= handle_0alpha(&c->srcFormat);
1067
    c->dst0Alpha |= handle_0alpha(&c->dstFormat);
1068
    c->srcXYZ    |= handle_xyz(&c->srcFormat);
1069
    c->dstXYZ    |= handle_xyz(&c->dstFormat);
1070
}
1071
 
1072
SwsContext *sws_alloc_context(void)
1073
{
1074
    SwsContext *c = av_mallocz(sizeof(SwsContext));
1075
 
1076
    if (c) {
1077
        c->av_class = &sws_context_class;
1078
        av_opt_set_defaults(c);
1079
    }
1080
 
1081
    return c;
1082
}
1083
 
1084
av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
1085
                             SwsFilter *dstFilter)
1086
{
1087
    int i, j;
1088
    int usesVFilter, usesHFilter;
1089
    int unscaled;
1090
    SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
1091
    int srcW              = c->srcW;
1092
    int srcH              = c->srcH;
1093
    int dstW              = c->dstW;
1094
    int dstH              = c->dstH;
1095
    int dst_stride        = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
1096
    int flags, cpu_flags;
1097
    enum AVPixelFormat srcFormat = c->srcFormat;
1098
    enum AVPixelFormat dstFormat = c->dstFormat;
1099
    const AVPixFmtDescriptor *desc_src;
1100
    const AVPixFmtDescriptor *desc_dst;
1101
 
1102
    cpu_flags = av_get_cpu_flags();
1103
    flags     = c->flags;
1104
    emms_c();
1105
    if (!rgb15to16)
1106
        sws_rgb2rgb_init();
1107
 
1108
    unscaled = (srcW == dstW && srcH == dstH);
1109
 
1110
    c->srcRange |= handle_jpeg(&c->srcFormat);
1111
    c->dstRange |= handle_jpeg(&c->dstFormat);
1112
 
1113
    if (!c->contrast && !c->saturation && !c->dstFormatBpp)
1114
        sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
1115
                                 ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
1116
                                 c->dstRange, 0, 1 << 16, 1 << 16);
1117
 
1118
    if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
1119
        av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
1120
    handle_formats(c);
1121
    srcFormat = c->srcFormat;
1122
    dstFormat = c->dstFormat;
1123
    desc_src = av_pix_fmt_desc_get(srcFormat);
1124
    desc_dst = av_pix_fmt_desc_get(dstFormat);
1125
 
1126
    if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
1127
          av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
1128
    if (!sws_isSupportedInput(srcFormat)) {
1129
        av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
1130
               av_get_pix_fmt_name(srcFormat));
1131
        return AVERROR(EINVAL);
1132
    }
1133
    if (!sws_isSupportedOutput(dstFormat)) {
1134
        av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
1135
               av_get_pix_fmt_name(dstFormat));
1136
        return AVERROR(EINVAL);
1137
    }
1138
    }
1139
 
1140
    i = flags & (SWS_POINT         |
1141
                 SWS_AREA          |
1142
                 SWS_BILINEAR      |
1143
                 SWS_FAST_BILINEAR |
1144
                 SWS_BICUBIC       |
1145
                 SWS_X             |
1146
                 SWS_GAUSS         |
1147
                 SWS_LANCZOS       |
1148
                 SWS_SINC          |
1149
                 SWS_SPLINE        |
1150
                 SWS_BICUBLIN);
1151
 
1152
    /* provide a default scaler if not set by caller */
1153
    if (!i) {
1154
        if (dstW < srcW && dstH < srcH)
1155
            flags |= SWS_BICUBIC;
1156
        else if (dstW > srcW && dstH > srcH)
1157
            flags |= SWS_BICUBIC;
1158
        else
1159
            flags |= SWS_BICUBIC;
1160
        c->flags = flags;
1161
    } else if (i & (i - 1)) {
1162
        av_log(c, AV_LOG_ERROR,
1163
               "Exactly one scaler algorithm must be chosen, got %X\n", i);
1164
        return AVERROR(EINVAL);
1165
    }
1166
    /* sanity check */
1167
    if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
1168
        /* FIXME check if these are enough and try to lower them after
1169
         * fixing the relevant parts of the code */
1170
        av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
1171
               srcW, srcH, dstW, dstH);
1172
        return AVERROR(EINVAL);
1173
    }
1174
 
1175
    if (!dstFilter)
1176
        dstFilter = &dummyFilter;
1177
    if (!srcFilter)
1178
        srcFilter = &dummyFilter;
1179
 
1180
    c->lumXInc      = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
1181
    c->lumYInc      = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
1182
    c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
1183
    c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
1184
    c->vRounder     = 4 * 0x0001000100010001ULL;
1185
 
1186
    usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
1187
                  (srcFilter->chrV && srcFilter->chrV->length > 1) ||
1188
                  (dstFilter->lumV && dstFilter->lumV->length > 1) ||
1189
                  (dstFilter->chrV && dstFilter->chrV->length > 1);
1190
    usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
1191
                  (srcFilter->chrH && srcFilter->chrH->length > 1) ||
1192
                  (dstFilter->lumH && dstFilter->lumH->length > 1) ||
1193
                  (dstFilter->chrH && dstFilter->chrH->length > 1);
1194
 
1195
    av_pix_fmt_get_chroma_sub_sample(srcFormat, &c->chrSrcHSubSample, &c->chrSrcVSubSample);
1196
    av_pix_fmt_get_chroma_sub_sample(dstFormat, &c->chrDstHSubSample, &c->chrDstVSubSample);
1197
 
1198
    if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
1199
        if (dstW&1) {
1200
            av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
1201
            flags |= SWS_FULL_CHR_H_INT;
1202
            c->flags = flags;
1203
        }
1204
 
1205
        if (   c->chrSrcHSubSample == 0
1206
            && c->chrSrcVSubSample == 0
1207
            && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
1208
            && !(c->flags & SWS_FAST_BILINEAR)
1209
        ) {
1210
            av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
1211
            flags |= SWS_FULL_CHR_H_INT;
1212
            c->flags = flags;
1213
        }
1214
    }
1215
 
1216
    if (c->dither == SWS_DITHER_AUTO) {
1217
        if (flags & SWS_ERROR_DIFFUSION)
1218
            c->dither = SWS_DITHER_ED;
1219
    }
1220
 
1221
    if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
1222
       dstFormat == AV_PIX_FMT_RGB4_BYTE ||
1223
       dstFormat == AV_PIX_FMT_BGR8 ||
1224
       dstFormat == AV_PIX_FMT_RGB8) {
1225
        if (c->dither == SWS_DITHER_AUTO)
1226
            c->dither = (flags & SWS_FULL_CHR_H_INT) ? SWS_DITHER_ED : SWS_DITHER_BAYER;
1227
        if (!(flags & SWS_FULL_CHR_H_INT)) {
1228
            if (c->dither == SWS_DITHER_ED) {
1229
                av_log(c, AV_LOG_DEBUG,
1230
                    "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
1231
                    av_get_pix_fmt_name(dstFormat));
1232
                flags   |= SWS_FULL_CHR_H_INT;
1233
                c->flags = flags;
1234
            }
1235
        }
1236
        if (flags & SWS_FULL_CHR_H_INT) {
1237
            if (c->dither == SWS_DITHER_BAYER) {
1238
                av_log(c, AV_LOG_DEBUG,
1239
                    "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
1240
                    av_get_pix_fmt_name(dstFormat));
1241
                c->dither = SWS_DITHER_ED;
1242
            }
1243
        }
1244
    }
1245
    if (isPlanarRGB(dstFormat)) {
1246
        if (!(flags & SWS_FULL_CHR_H_INT)) {
1247
            av_log(c, AV_LOG_DEBUG,
1248
                   "%s output is not supported with half chroma resolution, switching to full\n",
1249
                   av_get_pix_fmt_name(dstFormat));
1250
            flags   |= SWS_FULL_CHR_H_INT;
1251
            c->flags = flags;
1252
        }
1253
    }
1254
 
1255
    /* reuse chroma for 2 pixels RGB/BGR unless user wants full
1256
     * chroma interpolation */
1257
    if (flags & SWS_FULL_CHR_H_INT &&
1258
        isAnyRGB(dstFormat)        &&
1259
        !isPlanarRGB(dstFormat)    &&
1260
        dstFormat != AV_PIX_FMT_RGBA  &&
1261
        dstFormat != AV_PIX_FMT_ARGB  &&
1262
        dstFormat != AV_PIX_FMT_BGRA  &&
1263
        dstFormat != AV_PIX_FMT_ABGR  &&
1264
        dstFormat != AV_PIX_FMT_RGB24 &&
1265
        dstFormat != AV_PIX_FMT_BGR24 &&
1266
        dstFormat != AV_PIX_FMT_BGR4_BYTE &&
1267
        dstFormat != AV_PIX_FMT_RGB4_BYTE &&
1268
        dstFormat != AV_PIX_FMT_BGR8 &&
1269
        dstFormat != AV_PIX_FMT_RGB8
1270
    ) {
1271
        av_log(c, AV_LOG_WARNING,
1272
               "full chroma interpolation for destination format '%s' not yet implemented\n",
1273
               av_get_pix_fmt_name(dstFormat));
1274
        flags   &= ~SWS_FULL_CHR_H_INT;
1275
        c->flags = flags;
1276
    }
1277
    if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
1278
        c->chrDstHSubSample = 1;
1279
 
1280
    // drop some chroma lines if the user wants it
1281
    c->vChrDrop          = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
1282
                           SWS_SRC_V_CHR_DROP_SHIFT;
1283
    c->chrSrcVSubSample += c->vChrDrop;
1284
 
1285
    /* drop every other pixel for chroma calculation unless user
1286
     * wants full chroma */
1287
    if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP)   &&
1288
        srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
1289
        srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
1290
        srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
1291
        srcFormat != AV_PIX_FMT_GBRP9BE   && srcFormat != AV_PIX_FMT_GBRP9LE  &&
1292
        srcFormat != AV_PIX_FMT_GBRP10BE  && srcFormat != AV_PIX_FMT_GBRP10LE &&
1293
        srcFormat != AV_PIX_FMT_GBRP12BE  && srcFormat != AV_PIX_FMT_GBRP12LE &&
1294
        srcFormat != AV_PIX_FMT_GBRP14BE  && srcFormat != AV_PIX_FMT_GBRP14LE &&
1295
        srcFormat != AV_PIX_FMT_GBRP16BE  && srcFormat != AV_PIX_FMT_GBRP16LE &&
1296
        ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
1297
         (flags & SWS_FAST_BILINEAR)))
1298
        c->chrSrcHSubSample = 1;
1299
 
1300
    // Note the FF_CEIL_RSHIFT is so that we always round toward +inf.
1301
    c->chrSrcW = FF_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
1302
    c->chrSrcH = FF_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
1303
    c->chrDstW = FF_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
1304
    c->chrDstH = FF_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
1305
 
1306
    FF_ALLOC_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
1307
 
1308
    /* unscaled special cases */
1309
    if (unscaled && !usesHFilter && !usesVFilter &&
1310
        (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
1311
        ff_get_unscaled_swscale(c);
1312
 
1313
        if (c->swscale) {
1314
            if (flags & SWS_PRINT_INFO)
1315
                av_log(c, AV_LOG_INFO,
1316
                       "using unscaled %s -> %s special converter\n",
1317
                       av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1318
            return 0;
1319
        }
1320
    }
1321
 
1322
    c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
1323
    if (c->srcBpc < 8)
1324
        c->srcBpc = 8;
1325
    c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
1326
    if (c->dstBpc < 8)
1327
        c->dstBpc = 8;
1328
    if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
1329
        c->srcBpc = 16;
1330
    if (c->dstBpc == 16)
1331
        dst_stride <<= 1;
1332
 
1333
    if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
1334
        c->canMMXEXTBeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
1335
                              (srcW & 15) == 0) ? 1 : 0;
1336
        if (!c->canMMXEXTBeUsed && dstW >= srcW && (srcW & 15) == 0
1337
 
1338
            && (flags & SWS_FAST_BILINEAR)) {
1339
            if (flags & SWS_PRINT_INFO)
1340
                av_log(c, AV_LOG_INFO,
1341
                       "output width is not a multiple of 32 -> no MMXEXT scaler\n");
1342
        }
1343
        if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
1344
            c->canMMXEXTBeUsed = 0;
1345
    } else
1346
        c->canMMXEXTBeUsed = 0;
1347
 
1348
    c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
1349
    c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
1350
 
1351
    /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
1352
     * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
1353
     * correct scaling.
1354
     * n-2 is the last chrominance sample available.
1355
     * This is not perfect, but no one should notice the difference, the more
1356
     * correct variant would be like the vertical one, but that would require
1357
     * some special code for the first and last pixel */
1358
    if (flags & SWS_FAST_BILINEAR) {
1359
        if (c->canMMXEXTBeUsed) {
1360
            c->lumXInc += 20;
1361
            c->chrXInc += 20;
1362
        }
1363
        // we don't use the x86 asm scaler if MMX is available
1364
        else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
1365
            c->lumXInc = ((int64_t)(srcW       - 2) << 16) / (dstW       - 2) - 20;
1366
            c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
1367
        }
1368
    }
1369
 
1370
#define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
1371
 
1372
    /* precalculate horizontal scaler filter coefficients */
1373
    {
1374
#if HAVE_MMXEXT_INLINE
1375
// can't downscale !!!
1376
        if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
1377
            c->lumMmxextFilterCodeSize = init_hscaler_mmxext(dstW, c->lumXInc, NULL,
1378
                                                             NULL, NULL, 8);
1379
            c->chrMmxextFilterCodeSize = init_hscaler_mmxext(c->chrDstW, c->chrXInc,
1380
                                                             NULL, NULL, NULL, 4);
1381
 
1382
#if USE_MMAP
1383
            c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
1384
                                          PROT_READ | PROT_WRITE,
1385
                                          MAP_PRIVATE | MAP_ANONYMOUS,
1386
                                          -1, 0);
1387
            c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
1388
                                          PROT_READ | PROT_WRITE,
1389
                                          MAP_PRIVATE | MAP_ANONYMOUS,
1390
                                          -1, 0);
1391
#elif HAVE_VIRTUALALLOC
1392
            c->lumMmxextFilterCode = VirtualAlloc(NULL,
1393
                                                  c->lumMmxextFilterCodeSize,
1394
                                                  MEM_COMMIT,
1395
                                                  PAGE_EXECUTE_READWRITE);
1396
            c->chrMmxextFilterCode = VirtualAlloc(NULL,
1397
                                                  c->chrMmxextFilterCodeSize,
1398
                                                  MEM_COMMIT,
1399
                                                  PAGE_EXECUTE_READWRITE);
1400
#else
1401
            c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
1402
            c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
1403
#endif
1404
 
1405
#ifdef MAP_ANONYMOUS
1406
            if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
1407
#else
1408
            if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
1409
#endif
1410
            {
1411
                av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
1412
                return AVERROR(ENOMEM);
1413
            }
1414
 
1415
            FF_ALLOCZ_OR_GOTO(c, c->hLumFilter,    (dstW           / 8 + 8) * sizeof(int16_t), fail);
1416
            FF_ALLOCZ_OR_GOTO(c, c->hChrFilter,    (c->chrDstW     / 4 + 8) * sizeof(int16_t), fail);
1417
            FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW       / 2 / 8 + 8) * sizeof(int32_t), fail);
1418
            FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
1419
 
1420
            init_hscaler_mmxext(      dstW, c->lumXInc, c->lumMmxextFilterCode,
1421
                                c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
1422
            init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
1423
                                c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
1424
 
1425
#if USE_MMAP
1426
            if (   mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
1427
                || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
1428
                av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
1429
                goto fail;
1430
            }
1431
#endif
1432
        } else
1433
#endif /* HAVE_MMXEXT_INLINE */
1434
        {
1435
            const int filterAlign = X86_MMX(cpu_flags)     ? 4 :
1436
                                    PPC_ALTIVEC(cpu_flags) ? 8 : 1;
1437
 
1438
            if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
1439
                           &c->hLumFilterSize, c->lumXInc,
1440
                           srcW, dstW, filterAlign, 1 << 14,
1441
                           (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1442
                           cpu_flags, srcFilter->lumH, dstFilter->lumH,
1443
                           c->param,
1444
                           get_local_pos(c, 0, 0, 0),
1445
                           get_local_pos(c, 0, 0, 0)) < 0)
1446
                goto fail;
1447
            if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
1448
                           &c->hChrFilterSize, c->chrXInc,
1449
                           c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
1450
                           (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1451
                           cpu_flags, srcFilter->chrH, dstFilter->chrH,
1452
                           c->param,
1453
                           get_local_pos(c, c->chrSrcHSubSample, c->src_h_chr_pos, 0),
1454
                           get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0)) < 0)
1455
                goto fail;
1456
        }
1457
    } // initialize horizontal stuff
1458
 
1459
    /* precalculate vertical scaler filter coefficients */
1460
    {
1461
        const int filterAlign = X86_MMX(cpu_flags)     ? 2 :
1462
                                PPC_ALTIVEC(cpu_flags) ? 8 : 1;
1463
 
1464
        if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
1465
                       c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
1466
                       (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1467
                       cpu_flags, srcFilter->lumV, dstFilter->lumV,
1468
                       c->param,
1469
                       get_local_pos(c, 0, 0, 1),
1470
                       get_local_pos(c, 0, 0, 1)) < 0)
1471
            goto fail;
1472
        if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
1473
                       c->chrYInc, c->chrSrcH, c->chrDstH,
1474
                       filterAlign, (1 << 12),
1475
                       (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1476
                       cpu_flags, srcFilter->chrV, dstFilter->chrV,
1477
                       c->param,
1478
                       get_local_pos(c, c->chrSrcVSubSample, c->src_v_chr_pos, 1),
1479
                       get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1)) < 0)
1480
 
1481
            goto fail;
1482
 
1483
#if HAVE_ALTIVEC
1484
        FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH,    fail);
1485
        FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
1486
 
1487
        for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
1488
            int j;
1489
            short *p = (short *)&c->vYCoeffsBank[i];
1490
            for (j = 0; j < 8; j++)
1491
                p[j] = c->vLumFilter[i];
1492
        }
1493
 
1494
        for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
1495
            int j;
1496
            short *p = (short *)&c->vCCoeffsBank[i];
1497
            for (j = 0; j < 8; j++)
1498
                p[j] = c->vChrFilter[i];
1499
        }
1500
#endif
1501
    }
1502
 
1503
    // calculate buffer sizes so that they won't run out while handling these damn slices
1504
    c->vLumBufSize = c->vLumFilterSize;
1505
    c->vChrBufSize = c->vChrFilterSize;
1506
    for (i = 0; i < dstH; i++) {
1507
        int chrI      = (int64_t)i * c->chrDstH / dstH;
1508
        int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
1509
                              ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
1510
                               << c->chrSrcVSubSample));
1511
 
1512
        nextSlice >>= c->chrSrcVSubSample;
1513
        nextSlice <<= c->chrSrcVSubSample;
1514
        if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
1515
            c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
1516
        if (c->vChrFilterPos[chrI] + c->vChrBufSize <
1517
            (nextSlice >> c->chrSrcVSubSample))
1518
            c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
1519
                             c->vChrFilterPos[chrI];
1520
    }
1521
 
1522
    for (i = 0; i < 4; i++)
1523
        FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
1524
 
1525
    /* Allocate pixbufs (we use dynamic allocation because otherwise we would
1526
     * need to allocate several megabytes to handle all possible cases) */
1527
    FF_ALLOC_OR_GOTO(c, c->lumPixBuf,  c->vLumBufSize * 3 * sizeof(int16_t *), fail);
1528
    FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
1529
    FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
1530
    if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
1531
        FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
1532
    /* Note we need at least one pixel more at the end because of the MMX code
1533
     * (just in case someone wants to replace the 4000/8000). */
1534
    /* align at 16 bytes for AltiVec */
1535
    for (i = 0; i < c->vLumBufSize; i++) {
1536
        FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
1537
                          dst_stride + 16, fail);
1538
        c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
1539
    }
1540
    // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
1541
    c->uv_off   = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
1542
    c->uv_offx2 = dst_stride + 16;
1543
    for (i = 0; i < c->vChrBufSize; i++) {
1544
        FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
1545
                         dst_stride * 2 + 32, fail);
1546
        c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
1547
        c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
1548
                         = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
1549
    }
1550
    if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
1551
        for (i = 0; i < c->vLumBufSize; i++) {
1552
            FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
1553
                              dst_stride + 16, fail);
1554
            c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
1555
        }
1556
 
1557
    // try to avoid drawing green stuff between the right end and the stride end
1558
    for (i = 0; i < c->vChrBufSize; i++)
1559
        if(desc_dst->comp[0].depth_minus1 == 15){
1560
            av_assert0(c->dstBpc > 14);
1561
            for(j=0; j
1562
                ((int32_t*)(c->chrUPixBuf[i]))[j] = 1<<18;
1563
        } else
1564
            for(j=0; j
1565
                ((int16_t*)(c->chrUPixBuf[i]))[j] = 1<<14;
1566
 
1567
    av_assert0(c->chrDstH <= dstH);
1568
 
1569
    if (flags & SWS_PRINT_INFO) {
1570
        const char *scaler, *cpucaps;
1571
        if (flags & SWS_FAST_BILINEAR)
1572
            scaler = "FAST_BILINEAR scaler";
1573
        else if (flags & SWS_BILINEAR)
1574
            scaler = "BILINEAR scaler";
1575
        else if (flags & SWS_BICUBIC)
1576
            scaler = "BICUBIC scaler";
1577
        else if (flags & SWS_X)
1578
            scaler = "Experimental scaler";
1579
        else if (flags & SWS_POINT)
1580
            scaler = "Nearest Neighbor / POINT scaler";
1581
        else if (flags & SWS_AREA)
1582
            scaler = "Area Averaging scaler";
1583
        else if (flags & SWS_BICUBLIN)
1584
            scaler = "luma BICUBIC / chroma BILINEAR scaler";
1585
        else if (flags & SWS_GAUSS)
1586
            scaler = "Gaussian scaler";
1587
        else if (flags & SWS_SINC)
1588
            scaler = "Sinc scaler";
1589
        else if (flags & SWS_LANCZOS)
1590
            scaler = "Lanczos scaler";
1591
        else if (flags & SWS_SPLINE)
1592
            scaler = "Bicubic spline scaler";
1593
        else
1594
            scaler = "ehh flags invalid?!";
1595
 
1596
        av_log(c, AV_LOG_INFO, "%s, from %s to %s%s ",
1597
               scaler,
1598
               av_get_pix_fmt_name(srcFormat),
1599
#ifdef DITHER1XBPP
1600
               dstFormat == AV_PIX_FMT_BGR555   || dstFormat == AV_PIX_FMT_BGR565   ||
1601
               dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
1602
               dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
1603
                                                             "dithered " : "",
1604
#else
1605
               "",
1606
#endif
1607
               av_get_pix_fmt_name(dstFormat));
1608
 
1609
        if (INLINE_MMXEXT(cpu_flags))
1610
            cpucaps = "MMXEXT";
1611
        else if (INLINE_AMD3DNOW(cpu_flags))
1612
            cpucaps = "3DNOW";
1613
        else if (INLINE_MMX(cpu_flags))
1614
            cpucaps = "MMX";
1615
        else if (PPC_ALTIVEC(cpu_flags))
1616
            cpucaps = "AltiVec";
1617
        else
1618
            cpucaps = "C";
1619
 
1620
        av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
1621
 
1622
        av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
1623
        av_log(c, AV_LOG_DEBUG,
1624
               "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1625
               c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
1626
        av_log(c, AV_LOG_DEBUG,
1627
               "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1628
               c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
1629
               c->chrXInc, c->chrYInc);
1630
    }
1631
 
1632
    c->swscale = ff_getSwsFunc(c);
1633
    return 0;
1634
fail: // FIXME replace things by appropriate error codes
1635
    return -1;
1636
}
1637
 
1638
#if FF_API_SWS_GETCONTEXT
1639
SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
1640
                           int dstW, int dstH, enum AVPixelFormat dstFormat,
1641
                           int flags, SwsFilter *srcFilter,
1642
                           SwsFilter *dstFilter, const double *param)
1643
{
1644
    SwsContext *c;
1645
 
1646
    if (!(c = sws_alloc_context()))
1647
        return NULL;
1648
 
1649
    c->flags     = flags;
1650
    c->srcW      = srcW;
1651
    c->srcH      = srcH;
1652
    c->dstW      = dstW;
1653
    c->dstH      = dstH;
1654
    c->srcFormat = srcFormat;
1655
    c->dstFormat = dstFormat;
1656
 
1657
    if (param) {
1658
        c->param[0] = param[0];
1659
        c->param[1] = param[1];
1660
    }
1661
 
1662
    if (sws_init_context(c, srcFilter, dstFilter) < 0) {
1663
        sws_freeContext(c);
1664
        return NULL;
1665
    }
1666
 
1667
    return c;
1668
}
1669
#endif
1670
 
1671
SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
1672
                                float lumaSharpen, float chromaSharpen,
1673
                                float chromaHShift, float chromaVShift,
1674
                                int verbose)
1675
{
1676
    SwsFilter *filter = av_malloc(sizeof(SwsFilter));
1677
    if (!filter)
1678
        return NULL;
1679
 
1680
    if (lumaGBlur != 0.0) {
1681
        filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
1682
        filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
1683
    } else {
1684
        filter->lumH = sws_getIdentityVec();
1685
        filter->lumV = sws_getIdentityVec();
1686
    }
1687
 
1688
    if (chromaGBlur != 0.0) {
1689
        filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
1690
        filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
1691
    } else {
1692
        filter->chrH = sws_getIdentityVec();
1693
        filter->chrV = sws_getIdentityVec();
1694
    }
1695
 
1696
    if (chromaSharpen != 0.0) {
1697
        SwsVector *id = sws_getIdentityVec();
1698
        sws_scaleVec(filter->chrH, -chromaSharpen);
1699
        sws_scaleVec(filter->chrV, -chromaSharpen);
1700
        sws_addVec(filter->chrH, id);
1701
        sws_addVec(filter->chrV, id);
1702
        sws_freeVec(id);
1703
    }
1704
 
1705
    if (lumaSharpen != 0.0) {
1706
        SwsVector *id = sws_getIdentityVec();
1707
        sws_scaleVec(filter->lumH, -lumaSharpen);
1708
        sws_scaleVec(filter->lumV, -lumaSharpen);
1709
        sws_addVec(filter->lumH, id);
1710
        sws_addVec(filter->lumV, id);
1711
        sws_freeVec(id);
1712
    }
1713
 
1714
    if (chromaHShift != 0.0)
1715
        sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
1716
 
1717
    if (chromaVShift != 0.0)
1718
        sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
1719
 
1720
    sws_normalizeVec(filter->chrH, 1.0);
1721
    sws_normalizeVec(filter->chrV, 1.0);
1722
    sws_normalizeVec(filter->lumH, 1.0);
1723
    sws_normalizeVec(filter->lumV, 1.0);
1724
 
1725
    if (verbose)
1726
        sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
1727
    if (verbose)
1728
        sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
1729
 
1730
    return filter;
1731
}
1732
 
1733
SwsVector *sws_allocVec(int length)
1734
{
1735
    SwsVector *vec;
1736
 
1737
    if(length <= 0 || length > INT_MAX/ sizeof(double))
1738
        return NULL;
1739
 
1740
    vec = av_malloc(sizeof(SwsVector));
1741
    if (!vec)
1742
        return NULL;
1743
    vec->length = length;
1744
    vec->coeff  = av_malloc(sizeof(double) * length);
1745
    if (!vec->coeff)
1746
        av_freep(&vec);
1747
    return vec;
1748
}
1749
 
1750
SwsVector *sws_getGaussianVec(double variance, double quality)
1751
{
1752
    const int length = (int)(variance * quality + 0.5) | 1;
1753
    int i;
1754
    double middle  = (length - 1) * 0.5;
1755
    SwsVector *vec;
1756
 
1757
    if(variance < 0 || quality < 0)
1758
        return NULL;
1759
 
1760
    vec = sws_allocVec(length);
1761
 
1762
    if (!vec)
1763
        return NULL;
1764
 
1765
    for (i = 0; i < length; i++) {
1766
        double dist = i - middle;
1767
        vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
1768
                        sqrt(2 * variance * M_PI);
1769
    }
1770
 
1771
    sws_normalizeVec(vec, 1.0);
1772
 
1773
    return vec;
1774
}
1775
 
1776
SwsVector *sws_getConstVec(double c, int length)
1777
{
1778
    int i;
1779
    SwsVector *vec = sws_allocVec(length);
1780
 
1781
    if (!vec)
1782
        return NULL;
1783
 
1784
    for (i = 0; i < length; i++)
1785
        vec->coeff[i] = c;
1786
 
1787
    return vec;
1788
}
1789
 
1790
SwsVector *sws_getIdentityVec(void)
1791
{
1792
    return sws_getConstVec(1.0, 1);
1793
}
1794
 
1795
static double sws_dcVec(SwsVector *a)
1796
{
1797
    int i;
1798
    double sum = 0;
1799
 
1800
    for (i = 0; i < a->length; i++)
1801
        sum += a->coeff[i];
1802
 
1803
    return sum;
1804
}
1805
 
1806
void sws_scaleVec(SwsVector *a, double scalar)
1807
{
1808
    int i;
1809
 
1810
    for (i = 0; i < a->length; i++)
1811
        a->coeff[i] *= scalar;
1812
}
1813
 
1814
void sws_normalizeVec(SwsVector *a, double height)
1815
{
1816
    sws_scaleVec(a, height / sws_dcVec(a));
1817
}
1818
 
1819
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
1820
{
1821
    int length = a->length + b->length - 1;
1822
    int i, j;
1823
    SwsVector *vec = sws_getConstVec(0.0, length);
1824
 
1825
    if (!vec)
1826
        return NULL;
1827
 
1828
    for (i = 0; i < a->length; i++) {
1829
        for (j = 0; j < b->length; j++) {
1830
            vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
1831
        }
1832
    }
1833
 
1834
    return vec;
1835
}
1836
 
1837
static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
1838
{
1839
    int length = FFMAX(a->length, b->length);
1840
    int i;
1841
    SwsVector *vec = sws_getConstVec(0.0, length);
1842
 
1843
    if (!vec)
1844
        return NULL;
1845
 
1846
    for (i = 0; i < a->length; i++)
1847
        vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
1848
    for (i = 0; i < b->length; i++)
1849
        vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
1850
 
1851
    return vec;
1852
}
1853
 
1854
static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
1855
{
1856
    int length = FFMAX(a->length, b->length);
1857
    int i;
1858
    SwsVector *vec = sws_getConstVec(0.0, length);
1859
 
1860
    if (!vec)
1861
        return NULL;
1862
 
1863
    for (i = 0; i < a->length; i++)
1864
        vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
1865
    for (i = 0; i < b->length; i++)
1866
        vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
1867
 
1868
    return vec;
1869
}
1870
 
1871
/* shift left / or right if "shift" is negative */
1872
static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
1873
{
1874
    int length = a->length + FFABS(shift) * 2;
1875
    int i;
1876
    SwsVector *vec = sws_getConstVec(0.0, length);
1877
 
1878
    if (!vec)
1879
        return NULL;
1880
 
1881
    for (i = 0; i < a->length; i++) {
1882
        vec->coeff[i + (length    - 1) / 2 -
1883
                       (a->length - 1) / 2 - shift] = a->coeff[i];
1884
    }
1885
 
1886
    return vec;
1887
}
1888
 
1889
void sws_shiftVec(SwsVector *a, int shift)
1890
{
1891
    SwsVector *shifted = sws_getShiftedVec(a, shift);
1892
    av_free(a->coeff);
1893
    a->coeff  = shifted->coeff;
1894
    a->length = shifted->length;
1895
    av_free(shifted);
1896
}
1897
 
1898
void sws_addVec(SwsVector *a, SwsVector *b)
1899
{
1900
    SwsVector *sum = sws_sumVec(a, b);
1901
    av_free(a->coeff);
1902
    a->coeff  = sum->coeff;
1903
    a->length = sum->length;
1904
    av_free(sum);
1905
}
1906
 
1907
void sws_subVec(SwsVector *a, SwsVector *b)
1908
{
1909
    SwsVector *diff = sws_diffVec(a, b);
1910
    av_free(a->coeff);
1911
    a->coeff  = diff->coeff;
1912
    a->length = diff->length;
1913
    av_free(diff);
1914
}
1915
 
1916
void sws_convVec(SwsVector *a, SwsVector *b)
1917
{
1918
    SwsVector *conv = sws_getConvVec(a, b);
1919
    av_free(a->coeff);
1920
    a->coeff  = conv->coeff;
1921
    a->length = conv->length;
1922
    av_free(conv);
1923
}
1924
 
1925
SwsVector *sws_cloneVec(SwsVector *a)
1926
{
1927
    SwsVector *vec = sws_allocVec(a->length);
1928
 
1929
    if (!vec)
1930
        return NULL;
1931
 
1932
    memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
1933
 
1934
    return vec;
1935
}
1936
 
1937
void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
1938
{
1939
    int i;
1940
    double max = 0;
1941
    double min = 0;
1942
    double range;
1943
 
1944
    for (i = 0; i < a->length; i++)
1945
        if (a->coeff[i] > max)
1946
            max = a->coeff[i];
1947
 
1948
    for (i = 0; i < a->length; i++)
1949
        if (a->coeff[i] < min)
1950
            min = a->coeff[i];
1951
 
1952
    range = max - min;
1953
 
1954
    for (i = 0; i < a->length; i++) {
1955
        int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
1956
        av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
1957
        for (; x > 0; x--)
1958
            av_log(log_ctx, log_level, " ");
1959
        av_log(log_ctx, log_level, "|\n");
1960
    }
1961
}
1962
 
1963
void sws_freeVec(SwsVector *a)
1964
{
1965
    if (!a)
1966
        return;
1967
    av_freep(&a->coeff);
1968
    a->length = 0;
1969
    av_free(a);
1970
}
1971
 
1972
void sws_freeFilter(SwsFilter *filter)
1973
{
1974
    if (!filter)
1975
        return;
1976
 
1977
    sws_freeVec(filter->lumH);
1978
    sws_freeVec(filter->lumV);
1979
    sws_freeVec(filter->chrH);
1980
    sws_freeVec(filter->chrV);
1981
    av_free(filter);
1982
}
1983
 
1984
void sws_freeContext(SwsContext *c)
1985
{
1986
    int i;
1987
    if (!c)
1988
        return;
1989
 
1990
    if (c->lumPixBuf) {
1991
        for (i = 0; i < c->vLumBufSize; i++)
1992
            av_freep(&c->lumPixBuf[i]);
1993
        av_freep(&c->lumPixBuf);
1994
    }
1995
 
1996
    if (c->chrUPixBuf) {
1997
        for (i = 0; i < c->vChrBufSize; i++)
1998
            av_freep(&c->chrUPixBuf[i]);
1999
        av_freep(&c->chrUPixBuf);
2000
        av_freep(&c->chrVPixBuf);
2001
    }
2002
 
2003
    if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
2004
        for (i = 0; i < c->vLumBufSize; i++)
2005
            av_freep(&c->alpPixBuf[i]);
2006
        av_freep(&c->alpPixBuf);
2007
    }
2008
 
2009
    for (i = 0; i < 4; i++)
2010
        av_freep(&c->dither_error[i]);
2011
 
2012
    av_freep(&c->vLumFilter);
2013
    av_freep(&c->vChrFilter);
2014
    av_freep(&c->hLumFilter);
2015
    av_freep(&c->hChrFilter);
2016
#if HAVE_ALTIVEC
2017
    av_freep(&c->vYCoeffsBank);
2018
    av_freep(&c->vCCoeffsBank);
2019
#endif
2020
 
2021
    av_freep(&c->vLumFilterPos);
2022
    av_freep(&c->vChrFilterPos);
2023
    av_freep(&c->hLumFilterPos);
2024
    av_freep(&c->hChrFilterPos);
2025
 
2026
#if HAVE_MMX_INLINE
2027
#if USE_MMAP
2028
    if (c->lumMmxextFilterCode)
2029
        munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
2030
    if (c->chrMmxextFilterCode)
2031
        munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
2032
#elif HAVE_VIRTUALALLOC
2033
    if (c->lumMmxextFilterCode)
2034
        VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
2035
    if (c->chrMmxextFilterCode)
2036
        VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
2037
#else
2038
    av_free(c->lumMmxextFilterCode);
2039
    av_free(c->chrMmxextFilterCode);
2040
#endif
2041
    c->lumMmxextFilterCode = NULL;
2042
    c->chrMmxextFilterCode = NULL;
2043
#endif /* HAVE_MMX_INLINE */
2044
 
2045
    av_freep(&c->yuvTable);
2046
    av_freep(&c->formatConvBuffer);
2047
 
2048
    av_free(c);
2049
}
2050
 
2051
struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
2052
                                        int srcH, enum AVPixelFormat srcFormat,
2053
                                        int dstW, int dstH,
2054
                                        enum AVPixelFormat dstFormat, int flags,
2055
                                        SwsFilter *srcFilter,
2056
                                        SwsFilter *dstFilter,
2057
                                        const double *param)
2058
{
2059
    static const double default_param[2] = { SWS_PARAM_DEFAULT,
2060
                                             SWS_PARAM_DEFAULT };
2061
 
2062
    if (!param)
2063
        param = default_param;
2064
 
2065
    if (context &&
2066
        (context->srcW      != srcW      ||
2067
         context->srcH      != srcH      ||
2068
         context->srcFormat != srcFormat ||
2069
         context->dstW      != dstW      ||
2070
         context->dstH      != dstH      ||
2071
         context->dstFormat != dstFormat ||
2072
         context->flags     != flags     ||
2073
         context->param[0]  != param[0]  ||
2074
         context->param[1]  != param[1])) {
2075
        sws_freeContext(context);
2076
        context = NULL;
2077
    }
2078
 
2079
    if (!context) {
2080
        if (!(context = sws_alloc_context()))
2081
            return NULL;
2082
        context->srcW      = srcW;
2083
        context->srcH      = srcH;
2084
        context->srcFormat = srcFormat;
2085
        context->dstW      = dstW;
2086
        context->dstH      = dstH;
2087
        context->dstFormat = dstFormat;
2088
        context->flags     = flags;
2089
        context->param[0]  = param[0];
2090
        context->param[1]  = param[1];
2091
        if (sws_init_context(context, srcFilter, dstFilter) < 0) {
2092
            sws_freeContext(context);
2093
            return NULL;
2094
        }
2095
    }
2096
    return context;
2097
}