Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
6148 serge 1
/*
2
 * Copyright (C) 2011-2013 Michael Niedermayer (michaelni@gmx.at)
3
 *
4
 * This file is part of libswresample
5
 *
6
 * libswresample is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * libswresample is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with libswresample; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 */
20
 
21
#include "libavutil/opt.h"
22
#include "swresample_internal.h"
23
#include "audioconvert.h"
24
#include "libavutil/avassert.h"
25
#include "libavutil/channel_layout.h"
26
 
27
#include 
28
 
29
#define  C30DB  M_SQRT2
30
#define  C15DB  1.189207115
31
#define C__0DB  1.0
32
#define C_15DB  0.840896415
33
#define C_30DB  M_SQRT1_2
34
#define C_45DB  0.594603558
35
#define C_60DB  0.5
36
 
37
#define ALIGN 32
38
 
39
//TODO split options array out?
40
#define OFFSET(x) offsetof(SwrContext,x)
41
#define PARAM AV_OPT_FLAG_AUDIO_PARAM
42
 
43
static const AVOption options[]={
44
{"ich"                  , "set input channel count"     , OFFSET( in.ch_count   ), AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , SWR_CH_MAX, PARAM},
45
{"in_channel_count"     , "set input channel count"     , OFFSET( in.ch_count   ), AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , SWR_CH_MAX, PARAM},
46
{"och"                  , "set output channel count"    , OFFSET(out.ch_count   ), AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , SWR_CH_MAX, PARAM},
47
{"out_channel_count"    , "set output channel count"    , OFFSET(out.ch_count   ), AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , SWR_CH_MAX, PARAM},
48
{"uch"                  , "set used channel count"      , OFFSET(used_ch_count  ), AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , SWR_CH_MAX, PARAM},
49
{"used_channel_count"   , "set used channel count"      , OFFSET(used_ch_count  ), AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , SWR_CH_MAX, PARAM},
50
{"isr"                  , "set input sample rate"       , OFFSET( in_sample_rate), AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , INT_MAX   , PARAM},
51
{"in_sample_rate"       , "set input sample rate"       , OFFSET( in_sample_rate), AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , INT_MAX   , PARAM},
52
{"osr"                  , "set output sample rate"      , OFFSET(out_sample_rate), AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , INT_MAX   , PARAM},
53
{"out_sample_rate"      , "set output sample rate"      , OFFSET(out_sample_rate), AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , INT_MAX   , PARAM},
54
{"isf"                  , "set input sample format"     , OFFSET( in_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1   , AV_SAMPLE_FMT_NB-1, PARAM},
55
{"in_sample_fmt"        , "set input sample format"     , OFFSET( in_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1   , AV_SAMPLE_FMT_NB-1, PARAM},
56
{"osf"                  , "set output sample format"    , OFFSET(out_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1   , AV_SAMPLE_FMT_NB-1, PARAM},
57
{"out_sample_fmt"       , "set output sample format"    , OFFSET(out_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1   , AV_SAMPLE_FMT_NB-1, PARAM},
58
{"tsf"                  , "set internal sample format"  , OFFSET(int_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1   , AV_SAMPLE_FMT_NB-1, PARAM},
59
{"internal_sample_fmt"  , "set internal sample format"  , OFFSET(int_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1   , AV_SAMPLE_FMT_NB-1, PARAM},
60
{"icl"                  , "set input channel layout"    , OFFSET( in_ch_layout  ), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=0                     }, 0      , INT64_MAX , PARAM, "channel_layout"},
61
{"in_channel_layout"    , "set input channel layout"    , OFFSET( in_ch_layout  ), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=0                     }, 0      , INT64_MAX , PARAM, "channel_layout"},
62
{"ocl"                  , "set output channel layout"   , OFFSET(out_ch_layout  ), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=0                     }, 0      , INT64_MAX , PARAM, "channel_layout"},
63
{"out_channel_layout"   , "set output channel layout"   , OFFSET(out_ch_layout  ), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=0                     }, 0      , INT64_MAX , PARAM, "channel_layout"},
64
{"clev"                 , "set center mix level"        , OFFSET(clev           ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB                }, -32    , 32        , PARAM},
65
{"center_mix_level"     , "set center mix level"        , OFFSET(clev           ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB                }, -32    , 32        , PARAM},
66
{"slev"                 , "set surround mix level"      , OFFSET(slev           ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB                }, -32    , 32        , PARAM},
67
{"surround_mix_level"   , "set surround mix Level"      , OFFSET(slev           ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB                }, -32    , 32        , PARAM},
68
{"lfe_mix_level"        , "set LFE mix level"           , OFFSET(lfe_mix_level  ), AV_OPT_TYPE_FLOAT, {.dbl=0                     }, -32    , 32        , PARAM},
69
{"rmvol"                , "set rematrix volume"         , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0                   }, -1000  , 1000      , PARAM},
70
{"rematrix_volume"      , "set rematrix volume"         , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0                   }, -1000  , 1000      , PARAM},
71
{"rematrix_maxval"      , "set rematrix maxval"         , OFFSET(rematrix_maxval), AV_OPT_TYPE_FLOAT, {.dbl=0.0                   }, 0      , 1000      , PARAM},
72
 
73
{"flags"                , "set flags"                   , OFFSET(flags          ), AV_OPT_TYPE_FLAGS, {.i64=0                     }, 0      , UINT_MAX  , PARAM, "flags"},
74
{"swr_flags"            , "set flags"                   , OFFSET(flags          ), AV_OPT_TYPE_FLAGS, {.i64=0                     }, 0      , UINT_MAX  , PARAM, "flags"},
75
{"res"                  , "force resampling"            , 0                      , AV_OPT_TYPE_CONST, {.i64=SWR_FLAG_RESAMPLE     }, INT_MIN, INT_MAX   , PARAM, "flags"},
76
 
77
{"dither_scale"         , "set dither scale"            , OFFSET(dither.scale   ), AV_OPT_TYPE_FLOAT, {.dbl=1                     }, 0      , INT_MAX   , PARAM},
78
 
79
{"dither_method"        , "set dither method"           , OFFSET(dither.method  ), AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , SWR_DITHER_NB-1, PARAM, "dither_method"},
80
{"rectangular"          , "select rectangular dither"   , 0                      , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_RECTANGULAR}, INT_MIN, INT_MAX   , PARAM, "dither_method"},
81
{"triangular"           , "select triangular dither"    , 0                      , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR }, INT_MIN, INT_MAX   , PARAM, "dither_method"},
82
{"triangular_hp"        , "select triangular dither with high pass" , 0          , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR_HIGHPASS }, INT_MIN, INT_MAX, PARAM, "dither_method"},
83
{"lipshitz"             , "select lipshitz noise shaping dither" , 0             , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_LIPSHITZ}, INT_MIN, INT_MAX, PARAM, "dither_method"},
84
{"shibata"              , "select shibata noise shaping dither" , 0              , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
85
{"low_shibata"          , "select low shibata noise shaping dither" , 0          , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_LOW_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
86
{"high_shibata"         , "select high shibata noise shaping dither" , 0         , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_HIGH_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
87
{"f_weighted"           , "select f-weighted noise shaping dither" , 0           , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_F_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
88
{"modified_e_weighted"  , "select modified-e-weighted noise shaping dither" , 0  , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_MODIFIED_E_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
89
{"improved_e_weighted"  , "select improved-e-weighted noise shaping dither" , 0  , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_IMPROVED_E_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
90
 
91
{"filter_size"          , "set swr resampling filter size", OFFSET(filter_size)  , AV_OPT_TYPE_INT  , {.i64=32                    }, 0      , INT_MAX   , PARAM },
92
{"phase_shift"          , "set swr resampling phase shift", OFFSET(phase_shift)  , AV_OPT_TYPE_INT  , {.i64=10                    }, 0      , 24        , PARAM },
93
{"linear_interp"        , "enable linear interpolation" , OFFSET(linear_interp)  , AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , 1         , PARAM },
94
{"cutoff"               , "set cutoff frequency ratio"  , OFFSET(cutoff)         , AV_OPT_TYPE_DOUBLE,{.dbl=0.                    }, 0      , 1         , PARAM },
95
 
96
/* duplicate option in order to work with avconv */
97
{"resample_cutoff"      , "set cutoff frequency ratio"  , OFFSET(cutoff)         , AV_OPT_TYPE_DOUBLE,{.dbl=0.                    }, 0      , 1         , PARAM },
98
 
99
{"resampler"            , "set resampling Engine"       , OFFSET(engine)         , AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , SWR_ENGINE_NB-1, PARAM, "resampler"},
100
{"swr"                  , "select SW Resampler"         , 0                      , AV_OPT_TYPE_CONST, {.i64=SWR_ENGINE_SWR        }, INT_MIN, INT_MAX   , PARAM, "resampler"},
101
{"soxr"                 , "select SoX Resampler"        , 0                      , AV_OPT_TYPE_CONST, {.i64=SWR_ENGINE_SOXR       }, INT_MIN, INT_MAX   , PARAM, "resampler"},
102
{"precision"            , "set soxr resampling precision (in bits)"
103
                                                        , OFFSET(precision)      , AV_OPT_TYPE_DOUBLE,{.dbl=20.0                  }, 15.0   , 33.0      , PARAM },
104
{"cheby"                , "enable soxr Chebyshev passband & higher-precision irrational ratio approximation"
105
                                                        , OFFSET(cheby)          , AV_OPT_TYPE_INT  , {.i64=0                     }, 0      , 1         , PARAM },
106
{"min_comp"             , "set minimum difference between timestamps and audio data (in seconds) below which no timestamp compensation of either kind is applied"
107
                                                        , OFFSET(min_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=FLT_MAX               }, 0      , FLT_MAX   , PARAM },
108
{"min_hard_comp"        , "set minimum difference between timestamps and audio data (in seconds) to trigger padding/trimming the data."
109
                                                        , OFFSET(min_hard_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0.1                   }, 0      , INT_MAX   , PARAM },
110
{"comp_duration"        , "set duration (in seconds) over which data is stretched/squeezed to make it match the timestamps."
111
                                                        , OFFSET(soft_compensation_duration),AV_OPT_TYPE_FLOAT ,{.dbl=1                     }, 0      , INT_MAX   , PARAM },
112
{"max_soft_comp"        , "set maximum factor by which data is stretched/squeezed to make it match the timestamps."
113
                                                        , OFFSET(max_soft_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0                     }, INT_MIN, INT_MAX   , PARAM },
114
{"async"                , "simplified 1 parameter audio timestamp matching, 0(disabled), 1(filling and trimming), >1(maximum stretch/squeeze in samples per second)"
115
                                                        , OFFSET(async)          , AV_OPT_TYPE_FLOAT ,{.dbl=0                     }, INT_MIN, INT_MAX   , PARAM },
116
{"first_pts"            , "Assume the first pts should be this value (in samples)."
117
                                                        , OFFSET(firstpts_in_samples), AV_OPT_TYPE_INT64 ,{.i64=AV_NOPTS_VALUE    }, INT64_MIN,INT64_MAX, PARAM },
118
 
119
{ "matrix_encoding"     , "set matrixed stereo encoding" , OFFSET(matrix_encoding), AV_OPT_TYPE_INT   ,{.i64 = AV_MATRIX_ENCODING_NONE}, AV_MATRIX_ENCODING_NONE,     AV_MATRIX_ENCODING_NB-1, PARAM, "matrix_encoding" },
120
    { "none",  "select none",               0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_NONE  }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
121
    { "dolby", "select Dolby",              0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DOLBY }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
122
    { "dplii", "select Dolby Pro Logic II", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DPLII }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
123
 
124
{ "filter_type"         , "select swr filter type"      , OFFSET(filter_type)    , AV_OPT_TYPE_INT  , { .i64 = SWR_FILTER_TYPE_KAISER }, SWR_FILTER_TYPE_CUBIC, SWR_FILTER_TYPE_KAISER, PARAM, "filter_type" },
125
    { "cubic"           , "select cubic"                , 0                      , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_CUBIC            }, INT_MIN, INT_MAX, PARAM, "filter_type" },
126
    { "blackman_nuttall", "select Blackman Nuttall Windowed Sinc", 0             , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_BLACKMAN_NUTTALL }, INT_MIN, INT_MAX, PARAM, "filter_type" },
127
    { "kaiser"          , "select Kaiser Windowed Sinc" , 0                      , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_KAISER           }, INT_MIN, INT_MAX, PARAM, "filter_type" },
128
 
129
{ "kaiser_beta"         , "set swr Kaiser Window Beta"  , OFFSET(kaiser_beta)    , AV_OPT_TYPE_INT  , {.i64=9                     }, 2      , 16        , PARAM },
130
 
131
{ "output_sample_bits"  , "set swr number of output sample bits", OFFSET(dither.output_sample_bits), AV_OPT_TYPE_INT  , {.i64=0   }, 0      , 64        , PARAM },
132
{0}
133
};
134
 
135
static const char* context_to_name(void* ptr) {
136
    return "SWR";
137
}
138
 
139
static const AVClass av_class = {
140
    .class_name                = "SWResampler",
141
    .item_name                 = context_to_name,
142
    .option                    = options,
143
    .version                   = LIBAVUTIL_VERSION_INT,
144
    .log_level_offset_offset   = OFFSET(log_level_offset),
145
    .parent_log_context_offset = OFFSET(log_ctx),
146
    .category                  = AV_CLASS_CATEGORY_SWRESAMPLER,
147
};
148
 
149
unsigned swresample_version(void)
150
{
151
    av_assert0(LIBSWRESAMPLE_VERSION_MICRO >= 100);
152
    return LIBSWRESAMPLE_VERSION_INT;
153
}
154
 
155
const char *swresample_configuration(void)
156
{
157
    return FFMPEG_CONFIGURATION;
158
}
159
 
160
const char *swresample_license(void)
161
{
162
#define LICENSE_PREFIX "libswresample license: "
163
    return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
164
}
165
 
166
int swr_set_channel_mapping(struct SwrContext *s, const int *channel_map){
167
    if(!s || s->in_convert) // s needs to be allocated but not initialized
168
        return AVERROR(EINVAL);
169
    s->channel_map = channel_map;
170
    return 0;
171
}
172
 
173
const AVClass *swr_get_class(void)
174
{
175
    return &av_class;
176
}
177
 
178
av_cold struct SwrContext *swr_alloc(void){
179
    SwrContext *s= av_mallocz(sizeof(SwrContext));
180
    if(s){
181
        s->av_class= &av_class;
182
        av_opt_set_defaults(s);
183
    }
184
    return s;
185
}
186
 
187
struct SwrContext *swr_alloc_set_opts(struct SwrContext *s,
188
                                      int64_t out_ch_layout, enum AVSampleFormat out_sample_fmt, int out_sample_rate,
189
                                      int64_t  in_ch_layout, enum AVSampleFormat  in_sample_fmt, int  in_sample_rate,
190
                                      int log_offset, void *log_ctx){
191
    if(!s) s= swr_alloc();
192
    if(!s) return NULL;
193
 
194
    s->log_level_offset= log_offset;
195
    s->log_ctx= log_ctx;
196
 
197
    av_opt_set_int(s, "ocl", out_ch_layout,   0);
198
    av_opt_set_int(s, "osf", out_sample_fmt,  0);
199
    av_opt_set_int(s, "osr", out_sample_rate, 0);
200
    av_opt_set_int(s, "icl", in_ch_layout,    0);
201
    av_opt_set_int(s, "isf", in_sample_fmt,   0);
202
    av_opt_set_int(s, "isr", in_sample_rate,  0);
203
    av_opt_set_int(s, "tsf", AV_SAMPLE_FMT_NONE,   0);
204
    av_opt_set_int(s, "ich", av_get_channel_layout_nb_channels(s-> in_ch_layout), 0);
205
    av_opt_set_int(s, "och", av_get_channel_layout_nb_channels(s->out_ch_layout), 0);
206
    av_opt_set_int(s, "uch", 0, 0);
207
    return s;
208
}
209
 
210
static void set_audiodata_fmt(AudioData *a, enum AVSampleFormat fmt){
211
    a->fmt   = fmt;
212
    a->bps   = av_get_bytes_per_sample(fmt);
213
    a->planar= av_sample_fmt_is_planar(fmt);
214
}
215
 
216
static void free_temp(AudioData *a){
217
    av_free(a->data);
218
    memset(a, 0, sizeof(*a));
219
}
220
 
221
av_cold void swr_free(SwrContext **ss){
222
    SwrContext *s= *ss;
223
    if(s){
224
        free_temp(&s->postin);
225
        free_temp(&s->midbuf);
226
        free_temp(&s->preout);
227
        free_temp(&s->in_buffer);
228
        free_temp(&s->silence);
229
        free_temp(&s->drop_temp);
230
        free_temp(&s->dither.noise);
231
        free_temp(&s->dither.temp);
232
        swri_audio_convert_free(&s-> in_convert);
233
        swri_audio_convert_free(&s->out_convert);
234
        swri_audio_convert_free(&s->full_convert);
235
        if (s->resampler)
236
            s->resampler->free(&s->resample);
237
        swri_rematrix_free(s);
238
    }
239
 
240
    av_freep(ss);
241
}
242
 
243
av_cold int swr_init(struct SwrContext *s){
244
    int ret;
245
    s->in_buffer_index= 0;
246
    s->in_buffer_count= 0;
247
    s->resample_in_constraint= 0;
248
    free_temp(&s->postin);
249
    free_temp(&s->midbuf);
250
    free_temp(&s->preout);
251
    free_temp(&s->in_buffer);
252
    free_temp(&s->silence);
253
    free_temp(&s->drop_temp);
254
    free_temp(&s->dither.noise);
255
    free_temp(&s->dither.temp);
256
    memset(s->in.ch, 0, sizeof(s->in.ch));
257
    memset(s->out.ch, 0, sizeof(s->out.ch));
258
    swri_audio_convert_free(&s-> in_convert);
259
    swri_audio_convert_free(&s->out_convert);
260
    swri_audio_convert_free(&s->full_convert);
261
    swri_rematrix_free(s);
262
 
263
    s->flushed = 0;
264
 
265
    if(s-> in_sample_fmt >= AV_SAMPLE_FMT_NB){
266
        av_log(s, AV_LOG_ERROR, "Requested input sample format %d is invalid\n", s->in_sample_fmt);
267
        return AVERROR(EINVAL);
268
    }
269
    if(s->out_sample_fmt >= AV_SAMPLE_FMT_NB){
270
        av_log(s, AV_LOG_ERROR, "Requested output sample format %d is invalid\n", s->out_sample_fmt);
271
        return AVERROR(EINVAL);
272
    }
273
 
274
    if(av_get_channel_layout_nb_channels(s-> in_ch_layout) > SWR_CH_MAX) {
275
        av_log(s, AV_LOG_WARNING, "Input channel layout 0x%"PRIx64" is invalid or unsupported.\n", s-> in_ch_layout);
276
        s->in_ch_layout = 0;
277
    }
278
 
279
    if(av_get_channel_layout_nb_channels(s->out_ch_layout) > SWR_CH_MAX) {
280
        av_log(s, AV_LOG_WARNING, "Output channel layout 0x%"PRIx64" is invalid or unsupported.\n", s->out_ch_layout);
281
        s->out_ch_layout = 0;
282
    }
283
 
284
    switch(s->engine){
285
#if CONFIG_LIBSOXR
286
        extern struct Resampler const soxr_resampler;
287
        case SWR_ENGINE_SOXR: s->resampler = &soxr_resampler; break;
288
#endif
289
        case SWR_ENGINE_SWR : s->resampler = &swri_resampler; break;
290
        default:
291
            av_log(s, AV_LOG_ERROR, "Requested resampling engine is unavailable\n");
292
            return AVERROR(EINVAL);
293
    }
294
 
295
    if(!s->used_ch_count)
296
        s->used_ch_count= s->in.ch_count;
297
 
298
    if(s->used_ch_count && s-> in_ch_layout && s->used_ch_count != av_get_channel_layout_nb_channels(s-> in_ch_layout)){
299
        av_log(s, AV_LOG_WARNING, "Input channel layout has a different number of channels than the number of used channels, ignoring layout\n");
300
        s-> in_ch_layout= 0;
301
    }
302
 
303
    if(!s-> in_ch_layout)
304
        s-> in_ch_layout= av_get_default_channel_layout(s->used_ch_count);
305
    if(!s->out_ch_layout)
306
        s->out_ch_layout= av_get_default_channel_layout(s->out.ch_count);
307
 
308
    s->rematrix= s->out_ch_layout  !=s->in_ch_layout || s->rematrix_volume!=1.0 ||
309
                 s->rematrix_custom;
310
 
311
    if(s->int_sample_fmt == AV_SAMPLE_FMT_NONE){
312
        if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_S16P){
313
            s->int_sample_fmt= AV_SAMPLE_FMT_S16P;
314
        }else if(   av_get_planar_sample_fmt(s-> in_sample_fmt) == AV_SAMPLE_FMT_S32P
315
                 && av_get_planar_sample_fmt(s->out_sample_fmt) == AV_SAMPLE_FMT_S32P
316
                 && !s->rematrix
317
                 && s->engine != SWR_ENGINE_SOXR){
318
            s->int_sample_fmt= AV_SAMPLE_FMT_S32P;
319
        }else if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_FLTP){
320
            s->int_sample_fmt= AV_SAMPLE_FMT_FLTP;
321
        }else{
322
            av_log(s, AV_LOG_DEBUG, "Using double precision mode\n");
323
            s->int_sample_fmt= AV_SAMPLE_FMT_DBLP;
324
        }
325
    }
326
 
327
    if(   s->int_sample_fmt != AV_SAMPLE_FMT_S16P
328
        &&s->int_sample_fmt != AV_SAMPLE_FMT_S32P
329
        &&s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
330
        &&s->int_sample_fmt != AV_SAMPLE_FMT_DBLP){
331
        av_log(s, AV_LOG_ERROR, "Requested sample format %s is not supported internally, S16/S32/FLT/DBL is supported\n", av_get_sample_fmt_name(s->int_sample_fmt));
332
        return AVERROR(EINVAL);
333
    }
334
 
335
    set_audiodata_fmt(&s-> in, s-> in_sample_fmt);
336
    set_audiodata_fmt(&s->out, s->out_sample_fmt);
337
 
338
    if (s->firstpts_in_samples != AV_NOPTS_VALUE) {
339
        if (!s->async && s->min_compensation >= FLT_MAX/2)
340
            s->async = 1;
341
        s->firstpts =
342
        s->outpts   = s->firstpts_in_samples * s->out_sample_rate;
343
    } else
344
        s->firstpts = AV_NOPTS_VALUE;
345
 
346
    if (s->async) {
347
        if (s->min_compensation >= FLT_MAX/2)
348
            s->min_compensation = 0.001;
349
        if (s->async > 1.0001) {
350
            s->max_soft_compensation = s->async / (double) s->in_sample_rate;
351
        }
352
    }
353
 
354
    if (s->out_sample_rate!=s->in_sample_rate || (s->flags & SWR_FLAG_RESAMPLE)){
355
        s->resample = s->resampler->init(s->resample, s->out_sample_rate, s->in_sample_rate, s->filter_size, s->phase_shift, s->linear_interp, s->cutoff, s->int_sample_fmt, s->filter_type, s->kaiser_beta, s->precision, s->cheby);
356
    }else
357
        s->resampler->free(&s->resample);
358
    if(    s->int_sample_fmt != AV_SAMPLE_FMT_S16P
359
        && s->int_sample_fmt != AV_SAMPLE_FMT_S32P
360
        && s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
361
        && s->int_sample_fmt != AV_SAMPLE_FMT_DBLP
362
        && s->resample){
363
        av_log(s, AV_LOG_ERROR, "Resampling only supported with internal s16/s32/flt/dbl\n");
364
        return -1;
365
    }
366
 
367
#define RSC 1 //FIXME finetune
368
    if(!s-> in.ch_count)
369
        s-> in.ch_count= av_get_channel_layout_nb_channels(s-> in_ch_layout);
370
    if(!s->used_ch_count)
371
        s->used_ch_count= s->in.ch_count;
372
    if(!s->out.ch_count)
373
        s->out.ch_count= av_get_channel_layout_nb_channels(s->out_ch_layout);
374
 
375
    if(!s-> in.ch_count){
376
        av_assert0(!s->in_ch_layout);
377
        av_log(s, AV_LOG_ERROR, "Input channel count and layout are unset\n");
378
        return -1;
379
    }
380
 
381
    if ((!s->out_ch_layout || !s->in_ch_layout) && s->used_ch_count != s->out.ch_count && !s->rematrix_custom) {
382
        char l1[1024], l2[1024];
383
        av_get_channel_layout_string(l1, sizeof(l1), s-> in.ch_count, s-> in_ch_layout);
384
        av_get_channel_layout_string(l2, sizeof(l2), s->out.ch_count, s->out_ch_layout);
385
        av_log(s, AV_LOG_ERROR, "Rematrix is needed between %s and %s "
386
               "but there is not enough information to do it\n", l1, l2);
387
        return -1;
388
    }
389
 
390
av_assert0(s->used_ch_count);
391
av_assert0(s->out.ch_count);
392
    s->resample_first= RSC*s->out.ch_count/s->in.ch_count - RSC < s->out_sample_rate/(float)s-> in_sample_rate - 1.0;
393
 
394
    s->in_buffer= s->in;
395
    s->silence  = s->in;
396
    s->drop_temp= s->out;
397
 
398
    if(!s->resample && !s->rematrix && !s->channel_map && !s->dither.method){
399
        s->full_convert = swri_audio_convert_alloc(s->out_sample_fmt,
400
                                                   s-> in_sample_fmt, s-> in.ch_count, NULL, 0);
401
        return 0;
402
    }
403
 
404
    s->in_convert = swri_audio_convert_alloc(s->int_sample_fmt,
405
                                             s-> in_sample_fmt, s->used_ch_count, s->channel_map, 0);
406
    s->out_convert= swri_audio_convert_alloc(s->out_sample_fmt,
407
                                             s->int_sample_fmt, s->out.ch_count, NULL, 0);
408
 
409
    if (!s->in_convert || !s->out_convert)
410
        return AVERROR(ENOMEM);
411
 
412
    s->postin= s->in;
413
    s->preout= s->out;
414
    s->midbuf= s->in;
415
 
416
    if(s->channel_map){
417
        s->postin.ch_count=
418
        s->midbuf.ch_count= s->used_ch_count;
419
        if(s->resample)
420
            s->in_buffer.ch_count= s->used_ch_count;
421
    }
422
    if(!s->resample_first){
423
        s->midbuf.ch_count= s->out.ch_count;
424
        if(s->resample)
425
            s->in_buffer.ch_count = s->out.ch_count;
426
    }
427
 
428
    set_audiodata_fmt(&s->postin, s->int_sample_fmt);
429
    set_audiodata_fmt(&s->midbuf, s->int_sample_fmt);
430
    set_audiodata_fmt(&s->preout, s->int_sample_fmt);
431
 
432
    if(s->resample){
433
        set_audiodata_fmt(&s->in_buffer, s->int_sample_fmt);
434
    }
435
 
436
    if ((ret = swri_dither_init(s, s->out_sample_fmt, s->int_sample_fmt)) < 0)
437
        return ret;
438
 
439
    if(s->rematrix || s->dither.method)
440
        return swri_rematrix_init(s);
441
 
442
    return 0;
443
}
444
 
445
int swri_realloc_audio(AudioData *a, int count){
446
    int i, countb;
447
    AudioData old;
448
 
449
    if(count < 0 || count > INT_MAX/2/a->bps/a->ch_count)
450
        return AVERROR(EINVAL);
451
 
452
    if(a->count >= count)
453
        return 0;
454
 
455
    count*=2;
456
 
457
    countb= FFALIGN(count*a->bps, ALIGN);
458
    old= *a;
459
 
460
    av_assert0(a->bps);
461
    av_assert0(a->ch_count);
462
 
463
    a->data= av_mallocz(countb*a->ch_count);
464
    if(!a->data)
465
        return AVERROR(ENOMEM);
466
    for(i=0; ich_count; i++){
467
        a->ch[i]= a->data + i*(a->planar ? countb : a->bps);
468
        if(a->planar) memcpy(a->ch[i], old.ch[i], a->count*a->bps);
469
    }
470
    if(!a->planar) memcpy(a->ch[0], old.ch[0], a->count*a->ch_count*a->bps);
471
    av_freep(&old.data);
472
    a->count= count;
473
 
474
    return 1;
475
}
476
 
477
static void copy(AudioData *out, AudioData *in,
478
                 int count){
479
    av_assert0(out->planar == in->planar);
480
    av_assert0(out->bps == in->bps);
481
    av_assert0(out->ch_count == in->ch_count);
482
    if(out->planar){
483
        int ch;
484
        for(ch=0; chch_count; ch++)
485
            memcpy(out->ch[ch], in->ch[ch], count*out->bps);
486
    }else
487
        memcpy(out->ch[0], in->ch[0], count*out->ch_count*out->bps);
488
}
489
 
490
static void fill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
491
    int i;
492
    if(!in_arg){
493
        memset(out->ch, 0, sizeof(out->ch));
494
    }else if(out->planar){
495
        for(i=0; ich_count; i++)
496
            out->ch[i]= in_arg[i];
497
    }else{
498
        for(i=0; ich_count; i++)
499
            out->ch[i]= in_arg[0] + i*out->bps;
500
    }
501
}
502
 
503
static void reversefill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
504
    int i;
505
    if(out->planar){
506
        for(i=0; ich_count; i++)
507
            in_arg[i]= out->ch[i];
508
    }else{
509
        in_arg[0]= out->ch[0];
510
    }
511
}
512
 
513
/**
514
 *
515
 * out may be equal in.
516
 */
517
static void buf_set(AudioData *out, AudioData *in, int count){
518
    int ch;
519
    if(in->planar){
520
        for(ch=0; chch_count; ch++)
521
            out->ch[ch]= in->ch[ch] + count*out->bps;
522
    }else{
523
        for(ch=out->ch_count-1; ch>=0; ch--)
524
            out->ch[ch]= in->ch[0] + (ch + count*out->ch_count) * out->bps;
525
    }
526
}
527
 
528
/**
529
 *
530
 * @return number of samples output per channel
531
 */
532
static int resample(SwrContext *s, AudioData *out_param, int out_count,
533
                             const AudioData * in_param, int in_count){
534
    AudioData in, out, tmp;
535
    int ret_sum=0;
536
    int border=0;
537
 
538
    av_assert1(s->in_buffer.ch_count == in_param->ch_count);
539
    av_assert1(s->in_buffer.planar   == in_param->planar);
540
    av_assert1(s->in_buffer.fmt      == in_param->fmt);
541
 
542
    tmp=out=*out_param;
543
    in =  *in_param;
544
 
545
    do{
546
        int ret, size, consumed;
547
        if(!s->resample_in_constraint && s->in_buffer_count){
548
            buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
549
            ret= s->resampler->multiple_resample(s->resample, &out, out_count, &tmp, s->in_buffer_count, &consumed);
550
            out_count -= ret;
551
            ret_sum += ret;
552
            buf_set(&out, &out, ret);
553
            s->in_buffer_count -= consumed;
554
            s->in_buffer_index += consumed;
555
 
556
            if(!in_count)
557
                break;
558
            if(s->in_buffer_count <= border){
559
                buf_set(&in, &in, -s->in_buffer_count);
560
                in_count += s->in_buffer_count;
561
                s->in_buffer_count=0;
562
                s->in_buffer_index=0;
563
                border = 0;
564
            }
565
        }
566
 
567
        if((s->flushed || in_count) && !s->in_buffer_count){
568
            s->in_buffer_index=0;
569
            ret= s->resampler->multiple_resample(s->resample, &out, out_count, &in, in_count, &consumed);
570
            out_count -= ret;
571
            ret_sum += ret;
572
            buf_set(&out, &out, ret);
573
            in_count -= consumed;
574
            buf_set(&in, &in, consumed);
575
        }
576
 
577
        //TODO is this check sane considering the advanced copy avoidance below
578
        size= s->in_buffer_index + s->in_buffer_count + in_count;
579
        if(   size > s->in_buffer.count
580
           && s->in_buffer_count + in_count <= s->in_buffer_index){
581
            buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
582
            copy(&s->in_buffer, &tmp, s->in_buffer_count);
583
            s->in_buffer_index=0;
584
        }else
585
            if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
586
                return ret;
587
 
588
        if(in_count){
589
            int count= in_count;
590
            if(s->in_buffer_count && s->in_buffer_count+2 < count && out_count) count= s->in_buffer_count+2;
591
 
592
            buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
593
            copy(&tmp, &in, /*in_*/count);
594
            s->in_buffer_count += count;
595
            in_count -= count;
596
            border += count;
597
            buf_set(&in, &in, count);
598
            s->resample_in_constraint= 0;
599
            if(s->in_buffer_count != count || in_count)
600
                continue;
601
        }
602
        break;
603
    }while(1);
604
 
605
    s->resample_in_constraint= !!out_count;
606
 
607
    return ret_sum;
608
}
609
 
610
static int swr_convert_internal(struct SwrContext *s, AudioData *out, int out_count,
611
                                                      AudioData *in , int  in_count){
612
    AudioData *postin, *midbuf, *preout;
613
    int ret/*, in_max*/;
614
    AudioData preout_tmp, midbuf_tmp;
615
 
616
    if(s->full_convert){
617
        av_assert0(!s->resample);
618
        swri_audio_convert(s->full_convert, out, in, in_count);
619
        return out_count;
620
    }
621
 
622
//     in_max= out_count*(int64_t)s->in_sample_rate / s->out_sample_rate + resample_filter_taps;
623
//     in_count= FFMIN(in_count, in_in + 2 - s->hist_buffer_count);
624
 
625
    if((ret=swri_realloc_audio(&s->postin, in_count))<0)
626
        return ret;
627
    if(s->resample_first){
628
        av_assert0(s->midbuf.ch_count == s->used_ch_count);
629
        if((ret=swri_realloc_audio(&s->midbuf, out_count))<0)
630
            return ret;
631
    }else{
632
        av_assert0(s->midbuf.ch_count ==  s->out.ch_count);
633
        if((ret=swri_realloc_audio(&s->midbuf,  in_count))<0)
634
            return ret;
635
    }
636
    if((ret=swri_realloc_audio(&s->preout, out_count))<0)
637
        return ret;
638
 
639
    postin= &s->postin;
640
 
641
    midbuf_tmp= s->midbuf;
642
    midbuf= &midbuf_tmp;
643
    preout_tmp= s->preout;
644
    preout= &preout_tmp;
645
 
646
    if(s->int_sample_fmt == s-> in_sample_fmt && s->in.planar && !s->channel_map)
647
        postin= in;
648
 
649
    if(s->resample_first ? !s->resample : !s->rematrix)
650
        midbuf= postin;
651
 
652
    if(s->resample_first ? !s->rematrix : !s->resample)
653
        preout= midbuf;
654
 
655
    if(s->int_sample_fmt == s->out_sample_fmt && s->out.planar
656
       && !(s->out_sample_fmt==AV_SAMPLE_FMT_S32P && (s->dither.output_sample_bits&31))){
657
        if(preout==in){
658
            out_count= FFMIN(out_count, in_count); //TODO check at the end if this is needed or redundant
659
            av_assert0(s->in.planar); //we only support planar internally so it has to be, we support copying non planar though
660
            copy(out, in, out_count);
661
            return out_count;
662
        }
663
        else if(preout==postin) preout= midbuf= postin= out;
664
        else if(preout==midbuf) preout= midbuf= out;
665
        else                    preout= out;
666
    }
667
 
668
    if(in != postin){
669
        swri_audio_convert(s->in_convert, postin, in, in_count);
670
    }
671
 
672
    if(s->resample_first){
673
        if(postin != midbuf)
674
            out_count= resample(s, midbuf, out_count, postin, in_count);
675
        if(midbuf != preout)
676
            swri_rematrix(s, preout, midbuf, out_count, preout==out);
677
    }else{
678
        if(postin != midbuf)
679
            swri_rematrix(s, midbuf, postin, in_count, midbuf==out);
680
        if(midbuf != preout)
681
            out_count= resample(s, preout, out_count, midbuf, in_count);
682
    }
683
 
684
    if(preout != out && out_count){
685
        AudioData *conv_src = preout;
686
        if(s->dither.method){
687
            int ch;
688
            int dither_count= FFMAX(out_count, 1<<16);
689
 
690
            if (preout == in) {
691
                conv_src = &s->dither.temp;
692
                if((ret=swri_realloc_audio(&s->dither.temp, dither_count))<0)
693
                    return ret;
694
            }
695
 
696
            if((ret=swri_realloc_audio(&s->dither.noise, dither_count))<0)
697
                return ret;
698
            if(ret)
699
                for(ch=0; chdither.noise.ch_count; ch++)
700
                    swri_get_dither(s, s->dither.noise.ch[ch], s->dither.noise.count, 12345678913579<dither.noise.fmt);
701
            av_assert0(s->dither.noise.ch_count == preout->ch_count);
702
 
703
            if(s->dither.noise_pos + out_count > s->dither.noise.count)
704
                s->dither.noise_pos = 0;
705
 
706
            if (s->dither.method < SWR_DITHER_NS){
707
                if (s->mix_2_1_simd) {
708
                    int len1= out_count&~15;
709
                    int off = len1 * preout->bps;
710
 
711
                    if(len1)
712
                        for(ch=0; chch_count; ch++)
713
                            s->mix_2_1_simd(conv_src->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos, s->native_simd_one, 0, 0, len1);
714
                    if(out_count != len1)
715
                        for(ch=0; chch_count; ch++)
716
                            s->mix_2_1_f(conv_src->ch[ch] + off, preout->ch[ch] + off, s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos + off + len1, s->native_one, 0, 0, out_count - len1);
717
                } else {
718
                    for(ch=0; chch_count; ch++)
719
                        s->mix_2_1_f(conv_src->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos, s->native_one, 0, 0, out_count);
720
                }
721
            } else {
722
                switch(s->int_sample_fmt) {
723
                case AV_SAMPLE_FMT_S16P :swri_noise_shaping_int16(s, conv_src, preout, &s->dither.noise, out_count); break;
724
                case AV_SAMPLE_FMT_S32P :swri_noise_shaping_int32(s, conv_src, preout, &s->dither.noise, out_count); break;
725
                case AV_SAMPLE_FMT_FLTP :swri_noise_shaping_float(s, conv_src, preout, &s->dither.noise, out_count); break;
726
                case AV_SAMPLE_FMT_DBLP :swri_noise_shaping_double(s,conv_src, preout, &s->dither.noise, out_count); break;
727
                }
728
            }
729
            s->dither.noise_pos += out_count;
730
        }
731
//FIXME packed doesn't need more than 1 chan here!
732
        swri_audio_convert(s->out_convert, out, conv_src, out_count);
733
    }
734
    return out_count;
735
}
736
 
737
int swr_convert(struct SwrContext *s, uint8_t *out_arg[SWR_CH_MAX], int out_count,
738
                                const uint8_t *in_arg [SWR_CH_MAX], int  in_count){
739
    AudioData * in= &s->in;
740
    AudioData *out= &s->out;
741
 
742
    while(s->drop_output > 0){
743
        int ret;
744
        uint8_t *tmp_arg[SWR_CH_MAX];
745
#define MAX_DROP_STEP 16384
746
        if((ret=swri_realloc_audio(&s->drop_temp, FFMIN(s->drop_output, MAX_DROP_STEP)))<0)
747
            return ret;
748
 
749
        reversefill_audiodata(&s->drop_temp, tmp_arg);
750
        s->drop_output *= -1; //FIXME find a less hackish solution
751
        ret = swr_convert(s, tmp_arg, FFMIN(-s->drop_output, MAX_DROP_STEP), in_arg, in_count); //FIXME optimize but this is as good as never called so maybe it doesn't matter
752
        s->drop_output *= -1;
753
        in_count = 0;
754
        if(ret>0) {
755
            s->drop_output -= ret;
756
            continue;
757
        }
758
 
759
        if(s->drop_output || !out_arg)
760
            return 0;
761
    }
762
 
763
    if(!in_arg){
764
        if(s->resample){
765
            if (!s->flushed)
766
                s->resampler->flush(s);
767
            s->resample_in_constraint = 0;
768
            s->flushed = 1;
769
        }else if(!s->in_buffer_count){
770
            return 0;
771
        }
772
    }else
773
        fill_audiodata(in ,  (void*)in_arg);
774
 
775
    fill_audiodata(out, out_arg);
776
 
777
    if(s->resample){
778
        int ret = swr_convert_internal(s, out, out_count, in, in_count);
779
        if(ret>0 && !s->drop_output)
780
            s->outpts += ret * (int64_t)s->in_sample_rate;
781
        return ret;
782
    }else{
783
        AudioData tmp= *in;
784
        int ret2=0;
785
        int ret, size;
786
        size = FFMIN(out_count, s->in_buffer_count);
787
        if(size){
788
            buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
789
            ret= swr_convert_internal(s, out, size, &tmp, size);
790
            if(ret<0)
791
                return ret;
792
            ret2= ret;
793
            s->in_buffer_count -= ret;
794
            s->in_buffer_index += ret;
795
            buf_set(out, out, ret);
796
            out_count -= ret;
797
            if(!s->in_buffer_count)
798
                s->in_buffer_index = 0;
799
        }
800
 
801
        if(in_count){
802
            size= s->in_buffer_index + s->in_buffer_count + in_count - out_count;
803
 
804
            if(in_count > out_count) { //FIXME move after swr_convert_internal
805
                if(   size > s->in_buffer.count
806
                && s->in_buffer_count + in_count - out_count <= s->in_buffer_index){
807
                    buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
808
                    copy(&s->in_buffer, &tmp, s->in_buffer_count);
809
                    s->in_buffer_index=0;
810
                }else
811
                    if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
812
                        return ret;
813
            }
814
 
815
            if(out_count){
816
                size = FFMIN(in_count, out_count);
817
                ret= swr_convert_internal(s, out, size, in, size);
818
                if(ret<0)
819
                    return ret;
820
                buf_set(in, in, ret);
821
                in_count -= ret;
822
                ret2 += ret;
823
            }
824
            if(in_count){
825
                buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
826
                copy(&tmp, in, in_count);
827
                s->in_buffer_count += in_count;
828
            }
829
        }
830
        if(ret2>0 && !s->drop_output)
831
            s->outpts += ret2 * (int64_t)s->in_sample_rate;
832
        return ret2;
833
    }
834
}
835
 
836
int swr_drop_output(struct SwrContext *s, int count){
837
    s->drop_output += count;
838
 
839
    if(s->drop_output <= 0)
840
        return 0;
841
 
842
    av_log(s, AV_LOG_VERBOSE, "discarding %d audio samples\n", count);
843
    return swr_convert(s, NULL, s->drop_output, NULL, 0);
844
}
845
 
846
int swr_inject_silence(struct SwrContext *s, int count){
847
    int ret, i;
848
    uint8_t *tmp_arg[SWR_CH_MAX];
849
 
850
    if(count <= 0)
851
        return 0;
852
 
853
#define MAX_SILENCE_STEP 16384
854
    while (count > MAX_SILENCE_STEP) {
855
        if ((ret = swr_inject_silence(s, MAX_SILENCE_STEP)) < 0)
856
            return ret;
857
        count -= MAX_SILENCE_STEP;
858
    }
859
 
860
    if((ret=swri_realloc_audio(&s->silence, count))<0)
861
        return ret;
862
 
863
    if(s->silence.planar) for(i=0; isilence.ch_count; i++) {
864
        memset(s->silence.ch[i], s->silence.bps==1 ? 0x80 : 0, count*s->silence.bps);
865
    } else
866
        memset(s->silence.ch[0], s->silence.bps==1 ? 0x80 : 0, count*s->silence.bps*s->silence.ch_count);
867
 
868
    reversefill_audiodata(&s->silence, tmp_arg);
869
    av_log(s, AV_LOG_VERBOSE, "adding %d audio samples of silence\n", count);
870
    ret = swr_convert(s, NULL, 0, (const uint8_t**)tmp_arg, count);
871
    return ret;
872
}
873
 
874
int64_t swr_get_delay(struct SwrContext *s, int64_t base){
875
    if (s->resampler && s->resample){
876
        return s->resampler->get_delay(s, base);
877
    }else{
878
        return (s->in_buffer_count*base + (s->in_sample_rate>>1))/ s->in_sample_rate;
879
    }
880
}
881
 
882
int swr_set_compensation(struct SwrContext *s, int sample_delta, int compensation_distance){
883
    int ret;
884
 
885
    if (!s || compensation_distance < 0)
886
        return AVERROR(EINVAL);
887
    if (!compensation_distance && sample_delta)
888
        return AVERROR(EINVAL);
889
    if (!s->resample) {
890
        s->flags |= SWR_FLAG_RESAMPLE;
891
        ret = swr_init(s);
892
        if (ret < 0)
893
            return ret;
894
    }
895
    if (!s->resampler->set_compensation){
896
        return AVERROR(EINVAL);
897
    }else{
898
        return s->resampler->set_compensation(s->resample, sample_delta, compensation_distance);
899
    }
900
}
901
 
902
int64_t swr_next_pts(struct SwrContext *s, int64_t pts){
903
    if(pts == INT64_MIN)
904
        return s->outpts;
905
 
906
    if (s->firstpts == AV_NOPTS_VALUE)
907
        s->outpts = s->firstpts = pts;
908
 
909
    if(s->min_compensation >= FLT_MAX) {
910
        return (s->outpts = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate));
911
    } else {
912
        int64_t delta = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate) - s->outpts + s->drop_output*(int64_t)s->in_sample_rate;
913
        double fdelta = delta /(double)(s->in_sample_rate * (int64_t)s->out_sample_rate);
914
 
915
        if(fabs(fdelta) > s->min_compensation) {
916
            if(s->outpts == s->firstpts || fabs(fdelta) > s->min_hard_compensation){
917
                int ret;
918
                if(delta > 0) ret = swr_inject_silence(s,  delta / s->out_sample_rate);
919
                else          ret = swr_drop_output   (s, -delta / s-> in_sample_rate);
920
                if(ret<0){
921
                    av_log(s, AV_LOG_ERROR, "Failed to compensate for timestamp delta of %f\n", fdelta);
922
                }
923
            } else if(s->soft_compensation_duration && s->max_soft_compensation) {
924
                int duration = s->out_sample_rate * s->soft_compensation_duration;
925
                double max_soft_compensation = s->max_soft_compensation / (s->max_soft_compensation < 0 ? -s->in_sample_rate : 1);
926
                int comp = av_clipf(fdelta, -max_soft_compensation, max_soft_compensation) * duration ;
927
                av_log(s, AV_LOG_VERBOSE, "compensating audio timestamp drift:%f compensation:%d in:%d\n", fdelta, comp, duration);
928
                swr_set_compensation(s, comp, duration);
929
            }
930
        }
931
 
932
        return s->outpts;
933
    }
934
}