Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5131 clevermous 1
/*
2
    SDL - Simple DirectMedia Layer
3
    Copyright (C) 1997, 1998, 1999, 2000, 2001  Sam Lantinga
4
 
5
    This library is free software; you can redistribute it and/or
6
    modify it under the terms of the GNU Library General Public
7
    License as published by the Free Software Foundation; either
8
    version 2 of the License, or (at your option) any later version.
9
 
10
    This library is distributed in the hope that it will be useful,
11
    but WITHOUT ANY WARRANTY; without even the implied warranty of
12
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13
    Library General Public License for more details.
14
 
15
    You should have received a copy of the GNU Library General Public
16
    License along with this library; if not, write to the Free
17
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18
 
19
    Sam Lantinga
20
    slouken@devolution.com
21
*/
22
 
23
 
24
/*
25
 * RLE encoding for software colorkey and alpha-channel acceleration
26
 *
27
 * Original version by Sam Lantinga
28
 *
29
 * Mattias Engdegård (Yorick): Rewrite. New encoding format, encoder and
30
 * decoder. Added per-surface alpha blitter. Added per-pixel alpha
31
 * format, encoder and blitter.
32
 *
33
 * Many thanks to Xark and johns for hints, benchmarks and useful comments
34
 * leading to this code.
35
 *
36
 * Welcome to Macro Mayhem.
37
 */
38
 
39
/*
40
 * The encoding translates the image data to a stream of segments of the form
41
 *
42
 *   
43
 *
44
 * where  is the number of transparent pixels to skip,
45
 *         is the number of opaque pixels to blit,
46
 * and    are the pixels themselves.
47
 *
48
 * This basic structure is used both for colorkeyed surfaces, used for simple
49
 * binary transparency and for per-surface alpha blending, and for surfaces
50
 * with per-pixel alpha. The details differ, however:
51
 *
52
 * Encoding of colorkeyed surfaces:
53
 *
54
 *   Encoded pixels always have the same format as the target surface.
55
 *    and  are unsigned 8 bit integers, except for 32 bit depth
56
 *   where they are 16 bit. This makes the pixel data aligned at all times.
57
 *   Segments never wrap around from one scan line to the next.
58
 *
59
 *   The end of the sequence is marked by a zero , pair at the *
60
 *   beginning of a line.
61
 *
62
 * Encoding of surfaces with per-pixel alpha:
63
 *
64
 *   The sequence begins with a struct RLEDestFormat describing the target
65
 *   pixel format, to provide reliable un-encoding.
66
 *
67
 *   Each scan line is encoded twice: First all completely opaque pixels,
68
 *   encoded in the target format as described above, and then all
69
 *   partially transparent (translucent) pixels (where 1 <= alpha <= 254),
70
 *   in the following 32-bit format:
71
 *
72
 *   For 32-bit targets, each pixel has the target RGB format but with
73
 *   the alpha value occupying the highest 8 bits. The  and 
74
 *   counts are 16 bit.
75
 *
76
 *   For 16-bit targets, each pixel has the target RGB format, but with
77
 *   the middle component (usually green) shifted 16 steps to the left,
78
 *   and the hole filled with the 5 most significant bits of the alpha value.
79
 *   i.e. if the target has the format         rrrrrggggggbbbbb,
80
 *   the encoded pixel will be 00000gggggg00000rrrrr0aaaaabbbbb.
81
 *   The  and  counts are 8 bit for the opaque lines, 16 bit
82
 *   for the translucent lines. Two padding bytes may be inserted
83
 *   before each translucent line to keep them 32-bit aligned.
84
 *
85
 *   The end of the sequence is marked by a zero , pair at the
86
 *   beginning of an opaque line.
87
 */
88
 
89
#include 
90
#include 
91
#include 
92
 
93
#include "SDL_types.h"
94
#include "SDL_video.h"
95
#include "SDL_error.h"
96
#include "SDL_sysvideo.h"
97
#include "SDL_blit.h"
98
#include "SDL_memops.h"
99
#include "SDL_RLEaccel_c.h"
100
 
101
#ifndef MAX
102
#define MAX(a, b) ((a) > (b) ? (a) : (b))
103
#endif
104
#ifndef MIN
105
#define MIN(a, b) ((a) < (b) ? (a) : (b))
106
#endif
107
 
108
#define PIXEL_COPY(to, from, len, bpp)			\
109
do {							\
110
    if(bpp == 4) {					\
111
	SDL_memcpy4(to, from, (unsigned)(len));		\
112
    } else {						\
113
	SDL_memcpy(to, from, (unsigned)(len) * (bpp));	\
114
    }							\
115
} while(0)
116
 
117
/*
118
 * Various colorkey blit methods, for opaque and per-surface alpha
119
 */
120
 
121
#define OPAQUE_BLIT(to, from, length, bpp, alpha)	\
122
    PIXEL_COPY(to, from, length, bpp)
123
 
124
/*
125
 * For 32bpp pixels on the form 0x00rrggbb:
126
 * If we treat the middle component separately, we can process the two
127
 * remaining in parallel. This is safe to do because of the gap to the left
128
 * of each component, so the bits from the multiplication don't collide.
129
 * This can be used for any RGB permutation of course.
130
 */
131
#define ALPHA_BLIT32_888(to, from, length, bpp, alpha)		\
132
    do {							\
133
        int i;							\
134
	Uint32 *src = (Uint32 *)(from);				\
135
	Uint32 *dst = (Uint32 *)(to);				\
136
	for(i = 0; i < (int)(length); i++) {			\
137
	    Uint32 s = *src++;					\
138
	    Uint32 d = *dst;					\
139
	    Uint32 s1 = s & 0xff00ff;				\
140
	    Uint32 d1 = d & 0xff00ff;				\
141
	    d1 = (d1 + ((s1 - d1) * alpha >> 8)) & 0xff00ff;	\
142
	    s &= 0xff00;					\
143
	    d &= 0xff00;					\
144
	    d = (d + ((s - d) * alpha >> 8)) & 0xff00;		\
145
	    *dst++ = d1 | d;					\
146
	}							\
147
    } while(0)
148
 
149
/*
150
 * For 16bpp pixels we can go a step further: put the middle component
151
 * in the high 16 bits of a 32 bit word, and process all three RGB
152
 * components at the same time. Since the smallest gap is here just
153
 * 5 bits, we have to scale alpha down to 5 bits as well.
154
 */
155
#define ALPHA_BLIT16_565(to, from, length, bpp, alpha)	\
156
    do {						\
157
        int i;						\
158
	Uint16 *src = (Uint16 *)(from);			\
159
	Uint16 *dst = (Uint16 *)(to);			\
160
	for(i = 0; i < (int)(length); i++) {		\
161
	    Uint32 s = *src++;				\
162
	    Uint32 d = *dst;				\
163
	    s = (s | s << 16) & 0x07e0f81f;		\
164
	    d = (d | d << 16) & 0x07e0f81f;		\
165
	    d += (s - d) * alpha >> 5;			\
166
	    d &= 0x07e0f81f;				\
167
	    *dst++ = d | d >> 16;			\
168
	}						\
169
    } while(0)
170
 
171
#define ALPHA_BLIT16_555(to, from, length, bpp, alpha)	\
172
    do {						\
173
        int i;						\
174
	Uint16 *src = (Uint16 *)(from);			\
175
	Uint16 *dst = (Uint16 *)(to);			\
176
	for(i = 0; i < (int)(length); i++) {		\
177
	    Uint32 s = *src++;				\
178
	    Uint32 d = *dst;				\
179
	    s = (s | s << 16) & 0x03e07c1f;		\
180
	    d = (d | d << 16) & 0x03e07c1f;		\
181
	    d += (s - d) * alpha >> 5;			\
182
	    d &= 0x03e07c1f;				\
183
	    *dst++ = d | d >> 16;			\
184
	}						\
185
    } while(0)
186
 
187
/*
188
 * The general slow catch-all function, for remaining depths and formats
189
 */
190
#define ALPHA_BLIT_ANY(to, from, length, bpp, alpha)			\
191
    do {								\
192
        int i;								\
193
	Uint8 *src = from;						\
194
	Uint8 *dst = to;						\
195
	for(i = 0; i < (int)(length); i++) {				\
196
	    Uint32 s, d;						\
197
	    unsigned rs, gs, bs, rd, gd, bd;				\
198
	    switch(bpp) {						\
199
	    case 2:							\
200
		s = *(Uint16 *)src;					\
201
		d = *(Uint16 *)dst;					\
202
		break;							\
203
	    case 3:							\
204
		if(SDL_BYTEORDER == SDL_BIG_ENDIAN) {			\
205
		    s = (src[0] << 16) | (src[1] << 8) | src[2];	\
206
		    d = (dst[0] << 16) | (dst[1] << 8) | dst[2];	\
207
		} else {						\
208
		    s = (src[2] << 16) | (src[1] << 8) | src[0];	\
209
		    d = (dst[2] << 16) | (dst[1] << 8) | dst[0];	\
210
		}							\
211
		break;							\
212
	    case 4:							\
213
		s = *(Uint32 *)src;					\
214
		d = *(Uint32 *)dst;					\
215
		break;							\
216
	    }								\
217
	    RGB_FROM_PIXEL(s, fmt, rs, gs, bs);				\
218
	    RGB_FROM_PIXEL(d, fmt, rd, gd, bd);				\
219
	    rd += (rs - rd) * alpha >> 8;				\
220
	    gd += (gs - gd) * alpha >> 8;				\
221
	    bd += (bs - bd) * alpha >> 8;				\
222
	    PIXEL_FROM_RGB(d, fmt, rd, gd, bd);				\
223
	    switch(bpp) {						\
224
	    case 2:							\
225
		*(Uint16 *)dst = d;					\
226
		break;							\
227
	    case 3:							\
228
		if(SDL_BYTEORDER == SDL_BIG_ENDIAN) {			\
229
		    dst[0] = d >> 16;					\
230
		    dst[1] = d >> 8;					\
231
		    dst[2] = d;						\
232
		} else {						\
233
		    dst[0] = d;						\
234
		    dst[1] = d >> 8;					\
235
		    dst[2] = d >> 16;					\
236
		}							\
237
		break;							\
238
	    case 4:							\
239
		*(Uint32 *)dst = d;					\
240
		break;							\
241
	    }								\
242
	    src += bpp;							\
243
	    dst += bpp;							\
244
	}								\
245
    } while(0)
246
 
247
 
248
/*
249
 * Special case: 50% alpha (alpha=128)
250
 * This is treated specially because it can be optimized very well, and
251
 * since it is good for many cases of semi-translucency.
252
 * The theory is to do all three components at the same time:
253
 * First zero the lowest bit of each component, which gives us room to
254
 * add them. Then shift right and add the sum of the lowest bits.
255
 */
256
#define ALPHA_BLIT32_888_50(to, from, length, bpp, alpha)		\
257
    do {								\
258
        int i;								\
259
	Uint32 *src = (Uint32 *)(from);					\
260
	Uint32 *dst = (Uint32 *)(to);					\
261
	for(i = 0; i < (int)(length); i++) {				\
262
	    Uint32 s = *src++;						\
263
	    Uint32 d = *dst;						\
264
	    *dst++ = (((s & 0x00fefefe) + (d & 0x00fefefe)) >> 1)	\
265
		     + (s & d & 0x00010101);				\
266
	}								\
267
    } while(0)
268
 
269
/*
270
 * For 16bpp, we can actually blend two pixels in parallel, if we take
271
 * care to shift before we add, not after.
272
 */
273
 
274
/* helper: blend a single 16 bit pixel at 50% */
275
#define BLEND16_50(dst, src, mask)			\
276
    do {						\
277
        Uint32 s = *src++;				\
278
	Uint32 d = *dst;				\
279
	*dst++ = (((s & mask) + (d & mask)) >> 1)	\
280
	         + (s & d & (~mask & 0xffff));		\
281
    } while(0)
282
 
283
/* basic 16bpp blender. mask is the pixels to keep when adding. */
284
#define ALPHA_BLIT16_50(to, from, length, bpp, alpha, mask)		\
285
    do {								\
286
	unsigned n = (length);						\
287
	Uint16 *src = (Uint16 *)(from);					\
288
	Uint16 *dst = (Uint16 *)(to);					\
289
	if(((unsigned long)src ^ (unsigned long)dst) & 3) {		\
290
	    /* source and destination not in phase, blit one by one */	\
291
	    while(n--)							\
292
		BLEND16_50(dst, src, mask);				\
293
	} else {							\
294
	    if((unsigned long)src & 3) {				\
295
		/* first odd pixel */					\
296
		BLEND16_50(dst, src, mask);				\
297
		n--;							\
298
	    }								\
299
	    for(; n > 1; n -= 2) {					\
300
		Uint32 s = *(Uint32 *)src;				\
301
		Uint32 d = *(Uint32 *)dst;				\
302
		*(Uint32 *)dst = ((s & (mask | mask << 16)) >> 1)	\
303
		               + ((d & (mask | mask << 16)) >> 1)	\
304
		               + (s & d & (~(mask | mask << 16)));	\
305
		src += 2;						\
306
		dst += 2;						\
307
	    }								\
308
	    if(n)							\
309
		BLEND16_50(dst, src, mask); /* last odd pixel */	\
310
	}								\
311
    } while(0)
312
 
313
#define ALPHA_BLIT16_565_50(to, from, length, bpp, alpha)	\
314
    ALPHA_BLIT16_50(to, from, length, bpp, alpha, 0xf7de)
315
 
316
#define ALPHA_BLIT16_555_50(to, from, length, bpp, alpha)	\
317
    ALPHA_BLIT16_50(to, from, length, bpp, alpha, 0xfbde)
318
 
319
 
320
#define CHOOSE_BLIT(blitter, alpha, fmt)				\
321
    do {								\
322
        if(alpha == 255) {						\
323
	    switch(fmt->BytesPerPixel) {				\
324
	    case 1: blitter(1, Uint8, OPAQUE_BLIT); break;		\
325
	    case 2: blitter(2, Uint8, OPAQUE_BLIT); break;		\
326
	    case 3: blitter(3, Uint8, OPAQUE_BLIT); break;		\
327
	    case 4: blitter(4, Uint16, OPAQUE_BLIT); break;		\
328
	    }								\
329
	} else {							\
330
	    switch(fmt->BytesPerPixel) {				\
331
	    case 1:							\
332
		/* No 8bpp alpha blitting */				\
333
		break;							\
334
									\
335
	    case 2:							\
336
		switch(fmt->Rmask | fmt->Gmask | fmt->Bmask) {		\
337
		case 0xffff:						\
338
		    if(fmt->Gmask == 0x07e0				\
339
		       || fmt->Rmask == 0x07e0				\
340
		       || fmt->Bmask == 0x07e0) {			\
341
			if(alpha == 128)				\
342
			    blitter(2, Uint8, ALPHA_BLIT16_565_50);	\
343
			else {						\
344
			    alpha >>= 3; /* use 5 bit alpha */		\
345
			    blitter(2, Uint8, ALPHA_BLIT16_565);	\
346
			}						\
347
		    } else						\
348
			goto general16;					\
349
		    break;						\
350
									\
351
		case 0x7fff:						\
352
		    if(fmt->Gmask == 0x03e0				\
353
		       || fmt->Rmask == 0x03e0				\
354
		       || fmt->Bmask == 0x03e0) {			\
355
			if(alpha == 128)				\
356
			    blitter(2, Uint8, ALPHA_BLIT16_555_50);	\
357
			else {						\
358
			    alpha >>= 3; /* use 5 bit alpha */		\
359
			    blitter(2, Uint8, ALPHA_BLIT16_555);	\
360
			}						\
361
			break;						\
362
		    }							\
363
		    /* fallthrough */					\
364
									\
365
		default:						\
366
		general16:						\
367
		    blitter(2, Uint8, ALPHA_BLIT_ANY);			\
368
		}							\
369
		break;							\
370
									\
371
	    case 3:							\
372
		blitter(3, Uint8, ALPHA_BLIT_ANY);			\
373
		break;							\
374
									\
375
	    case 4:							\
376
		if((fmt->Rmask | fmt->Gmask | fmt->Bmask) == 0x00ffffff	\
377
		   && (fmt->Gmask == 0xff00 || fmt->Rmask == 0xff00	\
378
		       || fmt->Bmask == 0xff00)) {			\
379
		    if(alpha == 128)					\
380
			blitter(4, Uint16, ALPHA_BLIT32_888_50);	\
381
		    else						\
382
			blitter(4, Uint16, ALPHA_BLIT32_888);		\
383
		} else							\
384
		    blitter(4, Uint16, ALPHA_BLIT_ANY);			\
385
		break;							\
386
	    }								\
387
	}								\
388
    } while(0)
389
 
390
 
391
/*
392
 * This takes care of the case when the surface is clipped on the left and/or
393
 * right. Top clipping has already been taken care of.
394
 */
395
static void RLEClipBlit(int w, Uint8 *srcbuf, SDL_Surface *dst,
396
			Uint8 *dstbuf, SDL_Rect *srcrect, unsigned alpha)
397
{
398
    SDL_PixelFormat *fmt = dst->format;
399
 
400
#define RLECLIPBLIT(bpp, Type, do_blit)					   \
401
    do {								   \
402
	int linecount = srcrect->h;					   \
403
	int ofs = 0;							   \
404
	int left = srcrect->x;						   \
405
	int right = left + srcrect->w;					   \
406
	dstbuf -= left * bpp;						   \
407
	for(;;) {							   \
408
	    int run;							   \
409
	    ofs += *(Type *)srcbuf;					   \
410
	    run = ((Type *)srcbuf)[1];					   \
411
	    srcbuf += 2 * sizeof(Type);					   \
412
	    if(run) {							   \
413
		/* clip to left and right borders */			   \
414
		if(ofs < right) {					   \
415
		    int start = 0;					   \
416
		    int len = run;					   \
417
		    int startcol;					   \
418
		    if(left - ofs > 0) {				   \
419
			start = left - ofs;				   \
420
			len -= start;					   \
421
			if(len <= 0)					   \
422
			    goto nocopy ## bpp ## do_blit;		   \
423
		    }							   \
424
		    startcol = ofs + start;				   \
425
		    if(len > right - startcol)				   \
426
			len = right - startcol;				   \
427
		    do_blit(dstbuf + startcol * bpp, srcbuf + start * bpp, \
428
			    len, bpp, alpha);				   \
429
		}							   \
430
	    nocopy ## bpp ## do_blit:					   \
431
		srcbuf += run * bpp;					   \
432
		ofs += run;						   \
433
	    } else if(!ofs)						   \
434
		break;							   \
435
	    if(ofs == w) {						   \
436
		ofs = 0;						   \
437
		dstbuf += dst->pitch;					   \
438
		if(!--linecount)					   \
439
		    break;						   \
440
	    }								   \
441
	}								   \
442
    } while(0)
443
 
444
    CHOOSE_BLIT(RLECLIPBLIT, alpha, fmt);
445
 
446
#undef RLECLIPBLIT
447
 
448
}
449
 
450
 
451
/* blit a colorkeyed RLE surface */
452
int SDL_RLEBlit(SDL_Surface *src, SDL_Rect *srcrect,
453
		SDL_Surface *dst, SDL_Rect *dstrect)
454
{
455
	Uint8 *dstbuf;
456
	Uint8 *srcbuf;
457
	int x, y;
458
	int w = src->w;
459
	unsigned alpha;
460
 
461
	/* Lock the destination if necessary */
462
	if ( dst->flags & (SDL_HWSURFACE|SDL_ASYNCBLIT) ) {
463
		SDL_VideoDevice *video = current_video;
464
		SDL_VideoDevice *this  = current_video;
465
		if ( video->LockHWSurface(this, dst) < 0 ) {
466
			return(-1);
467
		}
468
	}
469
 
470
	/* Set up the source and destination pointers */
471
	x = dstrect->x;
472
	y = dstrect->y;
473
	dstbuf = (Uint8 *)dst->pixels + dst->offset
474
	         + y * dst->pitch + x * src->format->BytesPerPixel;
475
	srcbuf = (Uint8 *)src->map->sw_data->aux_data;
476
 
477
	{
478
	    /* skip lines at the top if neccessary */
479
	    int vskip = srcrect->y;
480
	    int ofs = 0;
481
	    if(vskip) {
482
 
483
#define RLESKIP(bpp, Type)			\
484
		for(;;) {			\
485
		    int run;			\
486
		    ofs += *(Type *)srcbuf;	\
487
		    run = ((Type *)srcbuf)[1];	\
488
		    srcbuf += sizeof(Type) * 2;	\
489
		    if(run) {			\
490
			srcbuf += run * bpp;	\
491
			ofs += run;		\
492
		    } else if(!ofs)		\
493
			goto done;		\
494
		    if(ofs == w) {		\
495
			ofs = 0;		\
496
			if(!--vskip)		\
497
			    break;		\
498
		    }				\
499
		}
500
 
501
		switch(src->format->BytesPerPixel) {
502
		case 1: RLESKIP(1, Uint8); break;
503
		case 2: RLESKIP(2, Uint8); break;
504
		case 3: RLESKIP(3, Uint8); break;
505
		case 4: RLESKIP(4, Uint16); break;
506
		}
507
 
508
#undef RLESKIP
509
 
510
	    }
511
	}
512
 
513
	alpha = (src->flags & SDL_SRCALPHA) == SDL_SRCALPHA
514
	        ? src->format->alpha : 255;
515
	/* if left or right edge clipping needed, call clip blit */
516
	if ( srcrect->x || srcrect->w != src->w ) {
517
	    RLEClipBlit(w, srcbuf, dst, dstbuf, srcrect, alpha);
518
	} else {
519
	    SDL_PixelFormat *fmt = src->format;
520
 
521
#define RLEBLIT(bpp, Type, do_blit)					      \
522
	    do {							      \
523
		int linecount = srcrect->h;				      \
524
		int ofs = 0;						      \
525
		for(;;) {						      \
526
		    unsigned run;					      \
527
		    ofs += *(Type *)srcbuf;				      \
528
		    run = ((Type *)srcbuf)[1];				      \
529
		    srcbuf += 2 * sizeof(Type);				      \
530
		    if(run) {						      \
531
			do_blit(dstbuf + ofs * bpp, srcbuf, run, bpp, alpha); \
532
			srcbuf += run * bpp;				      \
533
			ofs += run;					      \
534
		    } else if(!ofs)					      \
535
			break;						      \
536
		    if(ofs == w) {					      \
537
			ofs = 0;					      \
538
			dstbuf += dst->pitch;				      \
539
			if(!--linecount)				      \
540
			    break;					      \
541
		    }							      \
542
		}							      \
543
	    } while(0)
544
 
545
	    CHOOSE_BLIT(RLEBLIT, alpha, fmt);
546
 
547
#undef RLEBLIT
548
	}
549
 
550
done:
551
	/* Unlock the destination if necessary */
552
	if ( dst->flags & (SDL_HWSURFACE|SDL_ASYNCBLIT) ) {
553
		SDL_VideoDevice *video = current_video;
554
		SDL_VideoDevice *this  = current_video;
555
		video->UnlockHWSurface(this, dst);
556
	}
557
	return(0);
558
}
559
 
560
#undef OPAQUE_BLIT
561
 
562
/*
563
 * Per-pixel blitting macros for translucent pixels:
564
 * These use the same techniques as the per-surface blitting macros
565
 */
566
 
567
/*
568
 * For 32bpp pixels, we have made sure the alpha is stored in the top
569
 * 8 bits, so proceed as usual
570
 */
571
#define BLIT_TRANSL_888(src, dst)				\
572
    do {							\
573
        Uint32 s = src;						\
574
	Uint32 d = dst;						\
575
	unsigned alpha = s >> 24;				\
576
	Uint32 s1 = s & 0xff00ff;				\
577
	Uint32 d1 = d & 0xff00ff;				\
578
	d1 = (d1 + ((s1 - d1) * alpha >> 8)) & 0xff00ff;	\
579
	s &= 0xff00;						\
580
	d &= 0xff00;						\
581
	d = (d + ((s - d) * alpha >> 8)) & 0xff00;		\
582
	dst = d1 | d;						\
583
    } while(0)
584
 
585
/*
586
 * For 16bpp pixels, we have stored the 5 most significant alpha bits in
587
 * bits 5-10. As before, we can process all 3 RGB components at the same time.
588
 */
589
#define BLIT_TRANSL_565(src, dst)		\
590
    do {					\
591
        Uint32 s = src;				\
592
	Uint32 d = dst;				\
593
	unsigned alpha = (s & 0x3e0) >> 5;	\
594
	s &= 0x07e0f81f;			\
595
	d = (d | d << 16) & 0x07e0f81f;		\
596
	d += (s - d) * alpha >> 5;		\
597
	d &= 0x07e0f81f;			\
598
	dst = d | d >> 16;			\
599
    } while(0)
600
 
601
#define BLIT_TRANSL_555(src, dst)		\
602
    do {					\
603
        Uint32 s = src;				\
604
	Uint32 d = dst;				\
605
	unsigned alpha = (s & 0x3e0) >> 5;	\
606
	s &= 0x03e07c1f;			\
607
	d = (d | d << 16) & 0x03e07c1f;		\
608
	d += (s - d) * alpha >> 5;		\
609
	d &= 0x03e07c1f;			\
610
	dst = d | d >> 16;			\
611
    } while(0)
612
 
613
/* used to save the destination format in the encoding. Designed to be
614
   macro-compatible with SDL_PixelFormat but without the unneeded fields */
615
typedef struct {
616
    	Uint8  BytesPerPixel;
617
	Uint8  Rloss;
618
	Uint8  Gloss;
619
	Uint8  Bloss;
620
	Uint8  Rshift;
621
	Uint8  Gshift;
622
	Uint8  Bshift;
623
	Uint8  Ashift;
624
	Uint32 Rmask;
625
	Uint32 Gmask;
626
	Uint32 Bmask;
627
	Uint32 Amask;
628
} RLEDestFormat;
629
 
630
/* blit a pixel-alpha RLE surface clipped at the right and/or left edges */
631
static void RLEAlphaClipBlit(int w, Uint8 *srcbuf, SDL_Surface *dst,
632
			     Uint8 *dstbuf, SDL_Rect *srcrect)
633
{
634
    SDL_PixelFormat *df = dst->format;
635
    /*
636
     * clipped blitter: Ptype is the destination pixel type,
637
     * Ctype the translucent count type, and do_blend the macro
638
     * to blend one pixel.
639
     */
640
#define RLEALPHACLIPBLIT(Ptype, Ctype, do_blend)			  \
641
    do {								  \
642
	int linecount = srcrect->h;					  \
643
	int left = srcrect->x;						  \
644
	int right = left + srcrect->w;					  \
645
	dstbuf -= left * sizeof(Ptype);					  \
646
	do {								  \
647
	    int ofs = 0;						  \
648
	    /* blit opaque pixels on one line */			  \
649
	    do {							  \
650
		unsigned run;						  \
651
		ofs += ((Ctype *)srcbuf)[0];				  \
652
		run = ((Ctype *)srcbuf)[1];				  \
653
		srcbuf += 2 * sizeof(Ctype);				  \
654
		if(run) {						  \
655
		    /* clip to left and right borders */		  \
656
		    int cofs = ofs;					  \
657
		    int crun = run;					  \
658
		    if(left - cofs > 0) {				  \
659
			crun -= left - cofs;				  \
660
			cofs = left;					  \
661
		    }							  \
662
		    if(crun > right - cofs)				  \
663
			crun = right - cofs;				  \
664
		    if(crun > 0)					  \
665
			PIXEL_COPY(dstbuf + cofs * sizeof(Ptype),	  \
666
				   srcbuf + (cofs - ofs) * sizeof(Ptype), \
667
				   (unsigned)crun, sizeof(Ptype));	  \
668
		    srcbuf += run * sizeof(Ptype);			  \
669
		    ofs += run;						  \
670
		} else if(!ofs)						  \
671
		    return;						  \
672
	    } while(ofs < w);						  \
673
	    /* skip padding if necessary */				  \
674
	    if(sizeof(Ptype) == 2)					  \
675
		srcbuf += (unsigned long)srcbuf & 2;			  \
676
	    /* blit translucent pixels on the same line */		  \
677
	    ofs = 0;							  \
678
	    do {							  \
679
		unsigned run;						  \
680
		ofs += ((Uint16 *)srcbuf)[0];				  \
681
		run = ((Uint16 *)srcbuf)[1];				  \
682
		srcbuf += 4;						  \
683
		if(run) {						  \
684
		    /* clip to left and right borders */		  \
685
		    int cofs = ofs;					  \
686
		    int crun = run;					  \
687
		    if(left - cofs > 0) {				  \
688
			crun -= left - cofs;				  \
689
			cofs = left;					  \
690
		    }							  \
691
		    if(crun > right - cofs)				  \
692
			crun = right - cofs;				  \
693
		    if(crun > 0) {					  \
694
			Ptype *dst = (Ptype *)dstbuf + cofs;		  \
695
			Uint32 *src = (Uint32 *)srcbuf + (cofs - ofs);	  \
696
			int i;						  \
697
			for(i = 0; i < crun; i++)			  \
698
			    do_blend(src[i], dst[i]);			  \
699
		    }							  \
700
		    srcbuf += run * 4;					  \
701
		    ofs += run;						  \
702
		}							  \
703
	    } while(ofs < w);						  \
704
	    dstbuf += dst->pitch;					  \
705
	} while(--linecount);						  \
706
    } while(0)
707
 
708
    switch(df->BytesPerPixel) {
709
    case 2:
710
	if(df->Gmask == 0x07e0 || df->Rmask == 0x07e0
711
	   || df->Bmask == 0x07e0)
712
	    RLEALPHACLIPBLIT(Uint16, Uint8, BLIT_TRANSL_565);
713
	else
714
	    RLEALPHACLIPBLIT(Uint16, Uint8, BLIT_TRANSL_555);
715
	break;
716
    case 4:
717
	RLEALPHACLIPBLIT(Uint32, Uint16, BLIT_TRANSL_888);
718
	break;
719
    }
720
}
721
 
722
/* blit a pixel-alpha RLE surface */
723
int SDL_RLEAlphaBlit(SDL_Surface *src, SDL_Rect *srcrect,
724
		     SDL_Surface *dst, SDL_Rect *dstrect)
725
{
726
    int x, y;
727
    int w = src->w;
728
    Uint8 *srcbuf, *dstbuf;
729
    SDL_PixelFormat *df = dst->format;
730
 
731
    /* Lock the destination if necessary */
732
    if(dst->flags & (SDL_HWSURFACE|SDL_ASYNCBLIT)) {
733
	SDL_VideoDevice *video = current_video;
734
	SDL_VideoDevice *this  = current_video;
735
	if(video->LockHWSurface(this, dst) < 0) {
736
	    return -1;
737
	}
738
    }
739
 
740
    x = dstrect->x;
741
    y = dstrect->y;
742
    dstbuf = (Uint8 *)dst->pixels + dst->offset
743
	     + y * dst->pitch + x * df->BytesPerPixel;
744
    srcbuf = (Uint8 *)src->map->sw_data->aux_data + sizeof(RLEDestFormat);
745
 
746
    {
747
	/* skip lines at the top if necessary */
748
	int vskip = srcrect->y;
749
	if(vskip) {
750
	    int ofs;
751
	    if(df->BytesPerPixel == 2) {
752
		/* the 16/32 interleaved format */
753
		do {
754
		    /* skip opaque line */
755
		    ofs = 0;
756
		    do {
757
			int run;
758
			ofs += srcbuf[0];
759
			run = srcbuf[1];
760
			srcbuf += 2;
761
			if(run) {
762
			    srcbuf += 2 * run;
763
			    ofs += run;
764
			} else if(!ofs)
765
			    goto done;
766
		    } while(ofs < w);
767
 
768
		    /* skip padding */
769
		    srcbuf += (unsigned long)srcbuf & 2;
770
 
771
		    /* skip translucent line */
772
		    ofs = 0;
773
		    do {
774
			int run;
775
			ofs += ((Uint16 *)srcbuf)[0];
776
			run = ((Uint16 *)srcbuf)[1];
777
			srcbuf += 4 * (run + 1);
778
			ofs += run;
779
		    } while(ofs < w);
780
		} while(--vskip);
781
	    } else {
782
		/* the 32/32 interleaved format */
783
		vskip <<= 1;	/* opaque and translucent have same format */
784
		do {
785
		    ofs = 0;
786
		    do {
787
			int run;
788
			ofs += ((Uint16 *)srcbuf)[0];
789
			run = ((Uint16 *)srcbuf)[1];
790
			srcbuf += 4;
791
			if(run) {
792
			    srcbuf += 4 * run;
793
			    ofs += run;
794
			} else if(!ofs)
795
			    goto done;
796
		    } while(ofs < w);
797
		} while(--vskip);
798
	    }
799
	}
800
    }
801
 
802
    /* if left or right edge clipping needed, call clip blit */
803
    if(srcrect->x || srcrect->w != src->w) {
804
	RLEAlphaClipBlit(w, srcbuf, dst, dstbuf, srcrect);
805
    } else {
806
 
807
	/*
808
	 * non-clipped blitter. Ptype is the destination pixel type,
809
	 * Ctype the translucent count type, and do_blend the
810
	 * macro to blend one pixel.
811
	 */
812
#define RLEALPHABLIT(Ptype, Ctype, do_blend)				 \
813
	do {								 \
814
	    int linecount = srcrect->h;					 \
815
	    do {							 \
816
		int ofs = 0;						 \
817
		/* blit opaque pixels on one line */			 \
818
		do {							 \
819
		    unsigned run;					 \
820
		    ofs += ((Ctype *)srcbuf)[0];			 \
821
		    run = ((Ctype *)srcbuf)[1];				 \
822
		    srcbuf += 2 * sizeof(Ctype);			 \
823
		    if(run) {						 \
824
			PIXEL_COPY(dstbuf + ofs * sizeof(Ptype), srcbuf, \
825
				   run, sizeof(Ptype));			 \
826
			srcbuf += run * sizeof(Ptype);			 \
827
			ofs += run;					 \
828
		    } else if(!ofs)					 \
829
			goto done;					 \
830
		} while(ofs < w);					 \
831
		/* skip padding if necessary */				 \
832
		if(sizeof(Ptype) == 2)					 \
833
		    srcbuf += (unsigned long)srcbuf & 2;		 \
834
		/* blit translucent pixels on the same line */		 \
835
		ofs = 0;						 \
836
		do {							 \
837
		    unsigned run;					 \
838
		    ofs += ((Uint16 *)srcbuf)[0];			 \
839
		    run = ((Uint16 *)srcbuf)[1];			 \
840
		    srcbuf += 4;					 \
841
		    if(run) {						 \
842
			Ptype *dst = (Ptype *)dstbuf + ofs;		 \
843
			unsigned i;					 \
844
			for(i = 0; i < run; i++) {			 \
845
			    Uint32 src = *(Uint32 *)srcbuf;		 \
846
			    do_blend(src, *dst);			 \
847
			    srcbuf += 4;				 \
848
			    dst++;					 \
849
			}						 \
850
			ofs += run;					 \
851
		    }							 \
852
		} while(ofs < w);					 \
853
		dstbuf += dst->pitch;					 \
854
	    } while(--linecount);					 \
855
	} while(0)
856
 
857
	switch(df->BytesPerPixel) {
858
	case 2:
859
	    if(df->Gmask == 0x07e0 || df->Rmask == 0x07e0
860
	       || df->Bmask == 0x07e0)
861
		RLEALPHABLIT(Uint16, Uint8, BLIT_TRANSL_565);
862
	    else
863
		RLEALPHABLIT(Uint16, Uint8, BLIT_TRANSL_555);
864
	    break;
865
	case 4:
866
	    RLEALPHABLIT(Uint32, Uint16, BLIT_TRANSL_888);
867
	    break;
868
	}
869
    }
870
 
871
 done:
872
    /* Unlock the destination if necessary */
873
    if(dst->flags & (SDL_HWSURFACE|SDL_ASYNCBLIT)) {
874
	SDL_VideoDevice *video = current_video;
875
	SDL_VideoDevice *this  = current_video;
876
	video->UnlockHWSurface(this, dst);
877
    }
878
    return 0;
879
}
880
 
881
/*
882
 * Auxiliary functions:
883
 * The encoding functions take 32bpp rgb + a, and
884
 * return the number of bytes copied to the destination.
885
 * The decoding functions copy to 32bpp rgb + a, and
886
 * return the number of bytes copied from the source.
887
 * These are only used in the encoder and un-RLE code and are therefore not
888
 * highly optimised.
889
 */
890
 
891
/* encode 32bpp rgb + a into 16bpp rgb, losing alpha */
892
static int copy_opaque_16(void *dst, Uint32 *src, int n,
893
			  SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt)
894
{
895
    int i;
896
    Uint16 *d = dst;
897
    for(i = 0; i < n; i++) {
898
	unsigned r, g, b;
899
	RGB_FROM_PIXEL(*src, sfmt, r, g, b);
900
	PIXEL_FROM_RGB(*d, dfmt, r, g, b);
901
	src++;
902
	d++;
903
    }
904
    return n * 2;
905
}
906
 
907
/* decode opaque pixels from 16bpp to 32bpp rgb + a */
908
static int uncopy_opaque_16(Uint32 *dst, void *src, int n,
909
			    RLEDestFormat *sfmt, SDL_PixelFormat *dfmt)
910
{
911
    int i;
912
    Uint16 *s = src;
913
    unsigned alpha = dfmt->Amask ? 255 : 0;
914
    for(i = 0; i < n; i++) {
915
	unsigned r, g, b;
916
	RGB_FROM_PIXEL(*s, sfmt, r, g, b);
917
	PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, alpha);
918
	s++;
919
	dst++;
920
    }
921
    return n * 2;
922
}
923
 
924
 
925
 
926
/* encode 32bpp rgb + a into 32bpp G0RAB format for blitting into 565 */
927
static int copy_transl_565(void *dst, Uint32 *src, int n,
928
			   SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt)
929
{
930
    int i;
931
    Uint32 *d = dst;
932
    for(i = 0; i < n; i++) {
933
	unsigned r, g, b, a;
934
	Uint16 pix;
935
	RGBA_FROM_8888(*src, sfmt, r, g, b, a);
936
	PIXEL_FROM_RGB(pix, dfmt, r, g, b);
937
	*d = ((pix & 0x7e0) << 16) | (pix & 0xf81f) | ((a << 2) & 0x7e0);
938
	src++;
939
	d++;
940
    }
941
    return n * 4;
942
}
943
 
944
/* encode 32bpp rgb + a into 32bpp G0RAB format for blitting into 555 */
945
static int copy_transl_555(void *dst, Uint32 *src, int n,
946
			   SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt)
947
{
948
    int i;
949
    Uint32 *d = dst;
950
    for(i = 0; i < n; i++) {
951
	unsigned r, g, b, a;
952
	Uint16 pix;
953
	RGBA_FROM_8888(*src, sfmt, r, g, b, a);
954
	PIXEL_FROM_RGB(pix, dfmt, r, g, b);
955
	*d = ((pix & 0x3e0) << 16) | (pix & 0xfc1f) | ((a << 2) & 0x3e0);
956
	src++;
957
	d++;
958
    }
959
    return n * 4;
960
}
961
 
962
/* decode translucent pixels from 32bpp GORAB to 32bpp rgb + a */
963
static int uncopy_transl_16(Uint32 *dst, void *src, int n,
964
			    RLEDestFormat *sfmt, SDL_PixelFormat *dfmt)
965
{
966
    int i;
967
    Uint32 *s = src;
968
    for(i = 0; i < n; i++) {
969
	unsigned r, g, b, a;
970
	Uint32 pix = *s++;
971
	a = (pix & 0x3e0) >> 2;
972
	pix = (pix & ~0x3e0) | pix >> 16;
973
	RGB_FROM_PIXEL(pix, sfmt, r, g, b);
974
	PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, a);
975
	dst++;
976
    }
977
    return n * 4;
978
}
979
 
980
/* encode 32bpp rgba into 32bpp rgba, keeping alpha (dual purpose) */
981
static int copy_32(void *dst, Uint32 *src, int n,
982
		   SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt)
983
{
984
    int i;
985
    Uint32 *d = dst;
986
    for(i = 0; i < n; i++) {
987
	unsigned r, g, b, a;
988
	Uint32 pixel;
989
	RGBA_FROM_8888(*src, sfmt, r, g, b, a);
990
	PIXEL_FROM_RGB(pixel, dfmt, r, g, b);
991
	*d++ = pixel | a << 24;
992
	src++;
993
    }
994
    return n * 4;
995
}
996
 
997
/* decode 32bpp rgba into 32bpp rgba, keeping alpha (dual purpose) */
998
static int uncopy_32(Uint32 *dst, void *src, int n,
999
		     RLEDestFormat *sfmt, SDL_PixelFormat *dfmt)
1000
{
1001
    int i;
1002
    Uint32 *s = src;
1003
    for(i = 0; i < n; i++) {
1004
	unsigned r, g, b, a;
1005
	Uint32 pixel = *s++;
1006
	RGB_FROM_PIXEL(pixel, sfmt, r, g, b);
1007
	a = pixel >> 24;
1008
	PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, a);
1009
	dst++;
1010
    }
1011
    return n * 4;
1012
}
1013
 
1014
#define ISOPAQUE(pixel, fmt) ((((pixel) & fmt->Amask) >> fmt->Ashift) == 255)
1015
 
1016
#define ISTRANSL(pixel, fmt)	\
1017
    ((unsigned)((((pixel) & fmt->Amask) >> fmt->Ashift) - 1U) < 254U)
1018
 
1019
/* convert surface to be quickly alpha-blittable onto dest, if possible */
1020
static int RLEAlphaSurface(SDL_Surface *surface)
1021
{
1022
    SDL_Surface *dest;
1023
    SDL_PixelFormat *df;
1024
    int maxsize = 0;
1025
    int max_opaque_run;
1026
    int max_transl_run = 65535;
1027
    unsigned masksum;
1028
    Uint8 *rlebuf, *dst;
1029
    int (*copy_opaque)(void *, Uint32 *, int,
1030
		       SDL_PixelFormat *, SDL_PixelFormat *);
1031
    int (*copy_transl)(void *, Uint32 *, int,
1032
		       SDL_PixelFormat *, SDL_PixelFormat *);
1033
 
1034
    dest = surface->map->dst;
1035
    if(!dest)
1036
	return -1;
1037
    df = dest->format;
1038
    if(surface->format->BitsPerPixel != 32)
1039
	return -1;		/* only 32bpp source supported */
1040
 
1041
    /* find out whether the destination is one we support,
1042
       and determine the max size of the encoded result */
1043
    masksum = df->Rmask | df->Gmask | df->Bmask;
1044
    switch(df->BytesPerPixel) {
1045
    case 2:
1046
	/* 16bpp: only support 565 and 555 formats */
1047
	switch(masksum) {
1048
	case 0xffff:
1049
	    if(df->Gmask == 0x07e0
1050
	       || df->Rmask == 0x07e0 || df->Bmask == 0x07e0) {
1051
		copy_opaque = copy_opaque_16;
1052
		copy_transl = copy_transl_565;
1053
	    } else
1054
		return -1;
1055
	    break;
1056
	case 0x7fff:
1057
	    if(df->Gmask == 0x03e0
1058
	       || df->Rmask == 0x03e0 || df->Bmask == 0x03e0) {
1059
		copy_opaque = copy_opaque_16;
1060
		copy_transl = copy_transl_555;
1061
	    } else
1062
		return -1;
1063
	    break;
1064
	default:
1065
	    return -1;
1066
	}
1067
	max_opaque_run = 255;	/* runs stored as bytes */
1068
 
1069
	/* worst case is alternating opaque and translucent pixels,
1070
	   with room for alignment padding between lines */
1071
	maxsize = surface->h * (2 + (4 + 2) * (surface->w + 1)) + 2;
1072
	break;
1073
    case 4:
1074
	if(masksum != 0x00ffffff)
1075
	    return -1;		/* requires unused high byte */
1076
	copy_opaque = copy_32;
1077
	copy_transl = copy_32;
1078
	max_opaque_run = 255;	/* runs stored as short ints */
1079
 
1080
	/* worst case is alternating opaque and translucent pixels */
1081
	maxsize = surface->h * 2 * 4 * (surface->w + 1) + 4;
1082
	break;
1083
    default:
1084
	return -1;		/* anything else unsupported right now */
1085
    }
1086
 
1087
    maxsize += sizeof(RLEDestFormat);
1088
    rlebuf = (Uint8 *)malloc(maxsize);
1089
    if(!rlebuf) {
1090
	SDL_OutOfMemory();
1091
	return -1;
1092
    }
1093
    {
1094
	/* save the destination format so we can undo the encoding later */
1095
	RLEDestFormat *r = (RLEDestFormat *)rlebuf;
1096
	r->BytesPerPixel = df->BytesPerPixel;
1097
	r->Rloss = df->Rloss;
1098
	r->Gloss = df->Gloss;
1099
	r->Bloss = df->Bloss;
1100
	r->Rshift = df->Rshift;
1101
	r->Gshift = df->Gshift;
1102
	r->Bshift = df->Bshift;
1103
	r->Ashift = df->Ashift;
1104
	r->Rmask = df->Rmask;
1105
	r->Gmask = df->Gmask;
1106
	r->Bmask = df->Bmask;
1107
	r->Amask = df->Amask;
1108
    }
1109
    dst = rlebuf + sizeof(RLEDestFormat);
1110
 
1111
    /* Do the actual encoding */
1112
    {
1113
	int x, y;
1114
	int h = surface->h, w = surface->w;
1115
	SDL_PixelFormat *sf = surface->format;
1116
	Uint32 *src = (Uint32 *)((Uint8 *)surface->pixels + surface->offset);
1117
	Uint8 *lastline = dst;	/* end of last non-blank line */
1118
 
1119
	/* opaque counts are 8 or 16 bits, depending on target depth */
1120
#define ADD_OPAQUE_COUNTS(n, m)			\
1121
	if(df->BytesPerPixel == 4) {		\
1122
	    ((Uint16 *)dst)[0] = n;		\
1123
	    ((Uint16 *)dst)[1] = m;		\
1124
	    dst += 4;				\
1125
	} else {				\
1126
	    dst[0] = n;				\
1127
	    dst[1] = m;				\
1128
	    dst += 2;				\
1129
	}
1130
 
1131
	/* translucent counts are always 16 bit */
1132
#define ADD_TRANSL_COUNTS(n, m)		\
1133
	(((Uint16 *)dst)[0] = n, ((Uint16 *)dst)[1] = m, dst += 4)
1134
 
1135
	for(y = 0; y < h; y++) {
1136
	    int runstart, skipstart;
1137
	    int blankline = 0;
1138
	    /* First encode all opaque pixels of a scan line */
1139
	    x = 0;
1140
	    do {
1141
		int run, skip, len;
1142
		skipstart = x;
1143
		while(x < w && !ISOPAQUE(src[x], sf))
1144
		    x++;
1145
		runstart = x;
1146
		while(x < w && ISOPAQUE(src[x], sf))
1147
		    x++;
1148
		skip = runstart - skipstart;
1149
		if(skip == w)
1150
		    blankline = 1;
1151
		run = x - runstart;
1152
		while(skip > max_opaque_run) {
1153
		    ADD_OPAQUE_COUNTS(max_opaque_run, 0);
1154
		    skip -= max_opaque_run;
1155
		}
1156
		len = MIN(run, max_opaque_run);
1157
		ADD_OPAQUE_COUNTS(skip, len);
1158
		dst += copy_opaque(dst, src + runstart, len, sf, df);
1159
		runstart += len;
1160
		run -= len;
1161
		while(run) {
1162
		    len = MIN(run, max_opaque_run);
1163
		    ADD_OPAQUE_COUNTS(0, len);
1164
		    dst += copy_opaque(dst, src + runstart, len, sf, df);
1165
		    runstart += len;
1166
		    run -= len;
1167
		}
1168
	    } while(x < w);
1169
 
1170
	    /* Make sure the next output address is 32-bit aligned */
1171
	    dst += (unsigned long)dst & 2;
1172
 
1173
	    /* Next, encode all translucent pixels of the same scan line */
1174
	    x = 0;
1175
	    do {
1176
		int run, skip, len;
1177
		skipstart = x;
1178
		while(x < w && !ISTRANSL(src[x], sf))
1179
		    x++;
1180
		runstart = x;
1181
		while(x < w && ISTRANSL(src[x], sf))
1182
		    x++;
1183
		skip = runstart - skipstart;
1184
		blankline &= (skip == w);
1185
		run = x - runstart;
1186
		while(skip > max_transl_run) {
1187
		    ADD_TRANSL_COUNTS(max_transl_run, 0);
1188
		    skip -= max_transl_run;
1189
		}
1190
		len = MIN(run, max_transl_run);
1191
		ADD_TRANSL_COUNTS(skip, len);
1192
		dst += copy_transl(dst, src + runstart, len, sf, df);
1193
		runstart += len;
1194
		run -= len;
1195
		while(run) {
1196
		    len = MIN(run, max_transl_run);
1197
		    ADD_TRANSL_COUNTS(0, len);
1198
		    dst += copy_transl(dst, src + runstart, len, sf, df);
1199
		    runstart += len;
1200
		    run -= len;
1201
		}
1202
		if(!blankline)
1203
		    lastline = dst;
1204
	    } while(x < w);
1205
 
1206
	    src += surface->pitch >> 2;
1207
	}
1208
	dst = lastline;		/* back up past trailing blank lines */
1209
	ADD_OPAQUE_COUNTS(0, 0);
1210
    }
1211
 
1212
#undef ADD_OPAQUE_COUNTS
1213
#undef ADD_TRANSL_COUNTS
1214
 
1215
    /* Now that we have it encoded, release the original pixels */
1216
    if((surface->flags & SDL_PREALLOC) != SDL_PREALLOC
1217
       && (surface->flags & SDL_HWSURFACE) != SDL_HWSURFACE) {
1218
	free( surface->pixels );
1219
	surface->pixels = NULL;
1220
    }
1221
 
1222
    /* realloc the buffer to release unused memory */
1223
    {
1224
	Uint8 *p = realloc(rlebuf, dst - rlebuf);
1225
	if(!p)
1226
	    p = rlebuf;
1227
	surface->map->sw_data->aux_data = p;
1228
    }
1229
 
1230
    return 0;
1231
}
1232
 
1233
static Uint32 getpix_8(Uint8 *srcbuf)
1234
{
1235
    return *srcbuf;
1236
}
1237
 
1238
static Uint32 getpix_16(Uint8 *srcbuf)
1239
{
1240
    return *(Uint16 *)srcbuf;
1241
}
1242
 
1243
static Uint32 getpix_24(Uint8 *srcbuf)
1244
{
1245
    if(SDL_BYTEORDER == SDL_LIL_ENDIAN)
1246
	return srcbuf[0] + (srcbuf[1] << 8) + (srcbuf[2] << 16);
1247
    else
1248
	return (srcbuf[0] << 16) + (srcbuf[1] << 8) + srcbuf[2];
1249
}
1250
 
1251
static Uint32 getpix_32(Uint8 *srcbuf)
1252
{
1253
    return *(Uint32 *)srcbuf;
1254
}
1255
 
1256
typedef Uint32 (*getpix_func)(Uint8 *);
1257
 
1258
static getpix_func getpixes[4] = {
1259
    getpix_8, getpix_16, getpix_24, getpix_32
1260
};
1261
 
1262
static int RLEColorkeySurface(SDL_Surface *surface)
1263
{
1264
        Uint8 *rlebuf, *dst;
1265
	int maxn;
1266
	int y;
1267
	Uint8 *srcbuf, *curbuf, *lastline;
1268
	int maxsize = 0;
1269
	int skip, run;
1270
	int bpp = surface->format->BytesPerPixel;
1271
	getpix_func getpix;
1272
	Uint32 ckey, rgbmask;
1273
	int w, h;
1274
 
1275
	/* calculate the worst case size for the compressed surface */
1276
	switch(bpp) {
1277
	case 1:
1278
	    /* worst case is alternating opaque and transparent pixels,
1279
	       starting with an opaque pixel */
1280
	    maxsize = surface->h * 3 * (surface->w / 2 + 1) + 2;
1281
	    break;
1282
	case 2:
1283
	case 3:
1284
	    /* worst case is solid runs, at most 255 pixels wide */
1285
	    maxsize = surface->h * (2 * (surface->w / 255 + 1)
1286
				    + surface->w * bpp) + 2;
1287
	    break;
1288
	case 4:
1289
	    /* worst case is solid runs, at most 65535 pixels wide */
1290
	    maxsize = surface->h * (4 * (surface->w / 65535 + 1)
1291
				    + surface->w * 4) + 4;
1292
	    break;
1293
	}
1294
 
1295
	rlebuf = (Uint8 *)malloc(maxsize);
1296
	if ( rlebuf == NULL ) {
1297
		SDL_OutOfMemory();
1298
		return(-1);
1299
	}
1300
 
1301
	/* Set up the conversion */
1302
	srcbuf = (Uint8 *)surface->pixels+surface->offset;
1303
	curbuf = srcbuf;
1304
	maxn = bpp == 4 ? 65535 : 255;
1305
	skip = run = 0;
1306
	dst = rlebuf;
1307
	rgbmask = ~surface->format->Amask;
1308
	ckey = surface->format->colorkey & rgbmask;
1309
	lastline = dst;
1310
	getpix = getpixes[bpp - 1];
1311
	w = surface->w;
1312
	h = surface->h;
1313
 
1314
#define ADD_COUNTS(n, m)			\
1315
	if(bpp == 4) {				\
1316
	    ((Uint16 *)dst)[0] = n;		\
1317
	    ((Uint16 *)dst)[1] = m;		\
1318
	    dst += 4;				\
1319
	} else {				\
1320
	    dst[0] = n;				\
1321
	    dst[1] = m;				\
1322
	    dst += 2;				\
1323
	}
1324
 
1325
	for(y = 0; y < h; y++) {
1326
	    int x = 0;
1327
	    int blankline = 0;
1328
	    do {
1329
		int run, skip, len;
1330
		int runstart;
1331
		int skipstart = x;
1332
 
1333
		/* find run of transparent, then opaque pixels */
1334
		while(x < w && (getpix(srcbuf + x * bpp) & rgbmask) == ckey)
1335
		    x++;
1336
		runstart = x;
1337
		while(x < w && (getpix(srcbuf + x * bpp) & rgbmask) != ckey)
1338
		    x++;
1339
		skip = runstart - skipstart;
1340
		if(skip == w)
1341
		    blankline = 1;
1342
		run = x - runstart;
1343
 
1344
		/* encode segment */
1345
		while(skip > maxn) {
1346
		    ADD_COUNTS(maxn, 0);
1347
		    skip -= maxn;
1348
		}
1349
		len = MIN(run, maxn);
1350
		ADD_COUNTS(skip, len);
1351
		memcpy(dst, srcbuf + runstart * bpp, len * bpp);
1352
		dst += len * bpp;
1353
		run -= len;
1354
		runstart += len;
1355
		while(run) {
1356
		    len = MIN(run, maxn);
1357
		    ADD_COUNTS(0, len);
1358
		    memcpy(dst, srcbuf + runstart * bpp, len * bpp);
1359
		    dst += len * bpp;
1360
		    runstart += len;
1361
		    run -= len;
1362
		}
1363
		if(!blankline)
1364
		    lastline = dst;
1365
	    } while(x < w);
1366
 
1367
	    srcbuf += surface->pitch;
1368
	}
1369
	dst = lastline;		/* back up bast trailing blank lines */
1370
	ADD_COUNTS(0, 0);
1371
 
1372
#undef ADD_COUNTS
1373
 
1374
	/* Now that we have it encoded, release the original pixels */
1375
	if((surface->flags & SDL_PREALLOC) != SDL_PREALLOC
1376
	   && (surface->flags & SDL_HWSURFACE) != SDL_HWSURFACE) {
1377
	    free( surface->pixels );
1378
	    surface->pixels = NULL;
1379
	}
1380
 
1381
	/* realloc the buffer to release unused memory */
1382
	{
1383
	    /* If realloc returns NULL, the original block is left intact */
1384
	    Uint8 *p = realloc(rlebuf, dst - rlebuf);
1385
	    if(!p)
1386
		p = rlebuf;
1387
	    surface->map->sw_data->aux_data = p;
1388
	}
1389
 
1390
	return(0);
1391
}
1392
 
1393
int SDL_RLESurface(SDL_Surface *surface)
1394
{
1395
	int retcode;
1396
 
1397
	/* Clear any previous RLE conversion */
1398
	if ( (surface->flags & SDL_RLEACCEL) == SDL_RLEACCEL ) {
1399
		SDL_UnRLESurface(surface, 1);
1400
	}
1401
 
1402
	/* We don't support RLE encoding of bitmaps */
1403
	if ( surface->format->BitsPerPixel < 8 ) {
1404
		return(-1);
1405
	}
1406
 
1407
	/* Lock the surface if it's in hardware */
1408
	if ( surface->flags & (SDL_HWSURFACE|SDL_ASYNCBLIT) ) {
1409
		SDL_VideoDevice *video = current_video;
1410
		SDL_VideoDevice *this  = current_video;
1411
		if ( video->LockHWSurface(this, surface) < 0 ) {
1412
			return(-1);
1413
		}
1414
	}
1415
 
1416
	/* Encode */
1417
	if((surface->flags & SDL_SRCCOLORKEY) == SDL_SRCCOLORKEY) {
1418
	    retcode = RLEColorkeySurface(surface);
1419
	} else {
1420
	    if((surface->flags & SDL_SRCALPHA) == SDL_SRCALPHA
1421
	       && surface->format->Amask != 0)
1422
		retcode = RLEAlphaSurface(surface);
1423
	    else
1424
		retcode = -1;	/* no RLE for per-surface alpha sans ckey */
1425
	}
1426
 
1427
	/* Unlock the surface if it's in hardware */
1428
	if ( surface->flags & (SDL_HWSURFACE|SDL_ASYNCBLIT) ) {
1429
		SDL_VideoDevice *video = current_video;
1430
		SDL_VideoDevice *this  = current_video;
1431
		video->UnlockHWSurface(this, surface);
1432
	}
1433
 
1434
	if(retcode < 0)
1435
	    return -1;
1436
 
1437
	/* The surface is now accelerated */
1438
	surface->flags |= SDL_RLEACCEL;
1439
 
1440
	return(0);
1441
}
1442
 
1443
/*
1444
 * Un-RLE a surface with pixel alpha
1445
 * This may not give back exactly the image before RLE-encoding; all
1446
 * completely transparent pixels will be lost, and colour and alpha depth
1447
 * may have been reduced (when encoding for 16bpp targets).
1448
 */
1449
static void UnRLEAlpha(SDL_Surface *surface)
1450
{
1451
    Uint8 *srcbuf;
1452
    Uint32 *dst;
1453
    SDL_PixelFormat *sf = surface->format;
1454
    RLEDestFormat *df = surface->map->sw_data->aux_data;
1455
    int (*uncopy_opaque)(Uint32 *, void *, int,
1456
			 RLEDestFormat *, SDL_PixelFormat *);
1457
    int (*uncopy_transl)(Uint32 *, void *, int,
1458
			 RLEDestFormat *, SDL_PixelFormat *);
1459
    int w = surface->w;
1460
    int bpp = df->BytesPerPixel;
1461
 
1462
    if(bpp == 2) {
1463
	uncopy_opaque = uncopy_opaque_16;
1464
	uncopy_transl = uncopy_transl_16;
1465
    } else {
1466
	uncopy_opaque = uncopy_transl = uncopy_32;
1467
    }
1468
 
1469
    surface->pixels = malloc(surface->h * surface->pitch);
1470
    /* fill background with transparent pixels */
1471
    memset(surface->pixels, 0, surface->h * surface->pitch);
1472
 
1473
    dst = surface->pixels;
1474
    srcbuf = (Uint8 *)(df + 1);
1475
    for(;;) {
1476
	/* copy opaque pixels */
1477
	int ofs = 0;
1478
	do {
1479
	    unsigned run;
1480
	    if(bpp == 2) {
1481
		ofs += srcbuf[0];
1482
		run = srcbuf[1];
1483
		srcbuf += 2;
1484
	    } else {
1485
		ofs += ((Uint16 *)srcbuf)[0];
1486
		run = ((Uint16 *)srcbuf)[1];
1487
		srcbuf += 4;
1488
	    }
1489
	    if(run) {
1490
		srcbuf += uncopy_opaque(dst + ofs, srcbuf, run, df, sf);
1491
		ofs += run;
1492
	    } else if(!ofs)
1493
		return;
1494
	} while(ofs < w);
1495
 
1496
	/* skip padding if needed */
1497
	if(bpp == 2)
1498
	    srcbuf += (unsigned long)srcbuf & 2;
1499
 
1500
	/* copy translucent pixels */
1501
	ofs = 0;
1502
	do {
1503
	    unsigned run;
1504
	    ofs += ((Uint16 *)srcbuf)[0];
1505
	    run = ((Uint16 *)srcbuf)[1];
1506
	    srcbuf += 4;
1507
	    if(run) {
1508
		srcbuf += uncopy_transl(dst + ofs, srcbuf, run, df, sf);
1509
		ofs += run;
1510
	    }
1511
	} while(ofs < w);
1512
	dst += surface->pitch >> 2;
1513
    }
1514
}
1515
 
1516
void SDL_UnRLESurface(SDL_Surface *surface, int recode)
1517
{
1518
    if ( (surface->flags & SDL_RLEACCEL) == SDL_RLEACCEL ) {
1519
	surface->flags &= ~SDL_RLEACCEL;
1520
 
1521
	if(recode && (surface->flags & SDL_PREALLOC) != SDL_PREALLOC
1522
	   && (surface->flags & SDL_HWSURFACE) != SDL_HWSURFACE) {
1523
	    if((surface->flags & SDL_SRCCOLORKEY) == SDL_SRCCOLORKEY) {
1524
		SDL_Rect full;
1525
		unsigned alpha_flag;
1526
 
1527
		/* re-create the original surface */
1528
		surface->pixels = malloc(surface->h * surface->pitch);
1529
 
1530
		/* fill it with the background colour */
1531
		SDL_FillRect(surface, NULL, surface->format->colorkey);
1532
 
1533
		/* now render the encoded surface */
1534
		full.x = full.y = 0;
1535
		full.w = surface->w;
1536
		full.h = surface->h;
1537
		alpha_flag = surface->flags & SDL_SRCALPHA;
1538
		surface->flags &= ~SDL_SRCALPHA; /* opaque blit */
1539
		SDL_RLEBlit(surface, &full, surface, &full);
1540
		surface->flags |= alpha_flag;
1541
	    } else
1542
		UnRLEAlpha(surface);
1543
	}
1544
 
1545
	if ( surface->map && surface->map->sw_data->aux_data ) {
1546
	    free(surface->map->sw_data->aux_data);
1547
	    surface->map->sw_data->aux_data = NULL;
1548
	}
1549
    }
1550
}
1551