Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4358 Serge 1
/*
2
 Copyright (C) Intel Corp.  2006.  All Rights Reserved.
3
 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4
 develop this 3D driver.
5
 
6
 Permission is hereby granted, free of charge, to any person obtaining
7
 a copy of this software and associated documentation files (the
8
 "Software"), to deal in the Software without restriction, including
9
 without limitation the rights to use, copy, modify, merge, publish,
10
 distribute, sublicense, and/or sell copies of the Software, and to
11
 permit persons to whom the Software is furnished to do so, subject to
12
 the following conditions:
13
 
14
 The above copyright notice and this permission notice (including the
15
 next paragraph) shall be included in all copies or substantial
16
 portions of the Software.
17
 
18
 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20
 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21
 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22
 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23
 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24
 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
 
26
 **********************************************************************/
27
 /*
28
  * Authors:
29
  *   Keith Whitwell 
30
  */
31
 
32
 
33
#include "main/glheader.h"
34
#include "main/macros.h"
35
#include "main/enums.h"
36
 
37
#include "program/program.h"
38
#include "intel_batchbuffer.h"
39
 
40
#include "brw_defines.h"
41
#include "brw_context.h"
42
#include "brw_eu.h"
43
#include "brw_gs.h"
44
 
45
/**
46
 * Allocate registers for GS.
47
 *
48
 * If sol_program is true, then:
49
 *
50
 * - The thread will be spawned with the "SVBI Payload Enable" bit set, so GRF
51
 *   1 needs to be set aside to hold the streamed vertex buffer indices.
52
 *
53
 * - The thread will need to use the destination_indices register.
54
 */
55
static void brw_gs_alloc_regs( struct brw_gs_compile *c,
56
			       GLuint nr_verts,
57
                               bool sol_program )
58
{
59
   GLuint i = 0,j;
60
 
61
   /* Register usage is static, precompute here:
62
    */
63
   c->reg.R0 = retype(brw_vec8_grf(i, 0), BRW_REGISTER_TYPE_UD); i++;
64
 
65
   /* Streamed vertex buffer indices */
66
   if (sol_program)
67
      c->reg.SVBI = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD);
68
 
69
   /* Payload vertices plus space for more generated vertices:
70
    */
71
   for (j = 0; j < nr_verts; j++) {
72
      c->reg.vertex[j] = brw_vec4_grf(i, 0);
73
      i += c->nr_regs;
74
   }
75
 
76
   c->reg.header = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD);
77
   c->reg.temp = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD);
78
 
79
   if (sol_program) {
80
      c->reg.destination_indices =
81
         retype(brw_vec4_grf(i++, 0), BRW_REGISTER_TYPE_UD);
82
   }
83
 
84
   c->prog_data.urb_read_length = c->nr_regs;
85
   c->prog_data.total_grf = i;
86
}
87
 
88
 
89
/**
90
 * Set up the initial value of c->reg.header register based on c->reg.R0.
91
 *
92
 * The following information is passed to the GS thread in R0, and needs to be
93
 * included in the first URB_WRITE or FF_SYNC message sent by the GS:
94
 *
95
 * - DWORD 0 [31:0] handle info (Gen4 only)
96
 * - DWORD 5 [7:0] FFTID
97
 * - DWORD 6 [31:0] Debug info
98
 * - DWORD 7 [31:0] Debug info
99
 *
100
 * This function sets up the above data by copying by copying the contents of
101
 * R0 to the header register.
102
 */
103
static void brw_gs_initialize_header(struct brw_gs_compile *c)
104
{
105
   struct brw_compile *p = &c->func;
106
   brw_MOV(p, c->reg.header, c->reg.R0);
107
}
108
 
109
/**
110
 * Overwrite DWORD 2 of c->reg.header with the given immediate unsigned value.
111
 *
112
 * In URB_WRITE messages, DWORD 2 contains the fields PrimType, PrimStart,
113
 * PrimEnd, Increment CL_INVOCATIONS, and SONumPrimsWritten, many of which we
114
 * need to be able to update on a per-vertex basis.
115
 */
116
static void brw_gs_overwrite_header_dw2(struct brw_gs_compile *c,
117
                                        unsigned dw2)
118
{
119
   struct brw_compile *p = &c->func;
120
   brw_MOV(p, get_element_ud(c->reg.header, 2), brw_imm_ud(dw2));
121
}
122
 
123
/**
124
 * Overwrite DWORD 2 of c->reg.header with the primitive type from c->reg.R0.
125
 *
126
 * When the thread is spawned, GRF 0 contains the primitive type in bits 4:0
127
 * of DWORD 2.  URB_WRITE messages need the primitive type in bits 6:2 of
128
 * DWORD 2.  So this function extracts the primitive type field, bitshifts it
129
 * appropriately, and stores it in c->reg.header.
130
 */
131
static void brw_gs_overwrite_header_dw2_from_r0(struct brw_gs_compile *c)
132
{
133
   struct brw_compile *p = &c->func;
134
   brw_AND(p, get_element_ud(c->reg.header, 2), get_element_ud(c->reg.R0, 2),
135
           brw_imm_ud(0x1f));
136
   brw_SHL(p, get_element_ud(c->reg.header, 2),
137
           get_element_ud(c->reg.header, 2), brw_imm_ud(2));
138
}
139
 
140
/**
141
 * Apply an additive offset to DWORD 2 of c->reg.header.
142
 *
143
 * This is used to set/unset the "PrimStart" and "PrimEnd" flags appropriately
144
 * for each vertex.
145
 */
146
static void brw_gs_offset_header_dw2(struct brw_gs_compile *c, int offset)
147
{
148
   struct brw_compile *p = &c->func;
149
   brw_ADD(p, get_element_d(c->reg.header, 2), get_element_d(c->reg.header, 2),
150
           brw_imm_d(offset));
151
}
152
 
153
 
154
/**
155
 * Emit a vertex using the URB_WRITE message.  Use the contents of
156
 * c->reg.header for the message header, and the registers starting at \c vert
157
 * for the vertex data.
158
 *
159
 * If \c last is true, then this is the last vertex, so no further URB space
160
 * should be allocated, and this message should end the thread.
161
 *
162
 * If \c last is false, then a new URB entry will be allocated, and its handle
163
 * will be stored in DWORD 0 of c->reg.header for use in the next URB_WRITE
164
 * message.
165
 */
166
static void brw_gs_emit_vue(struct brw_gs_compile *c,
167
			    struct brw_reg vert,
168
			    bool last)
169
{
170
   struct brw_compile *p = &c->func;
171
   bool allocate = !last;
172
 
173
   /* Copy the vertex from vertn into m1..mN+1:
174
    */
175
   brw_copy8(p, brw_message_reg(1), vert, c->nr_regs);
176
 
177
   /* Send each vertex as a seperate write to the urb.  This is
178
    * different to the concept in brw_sf_emit.c, where subsequent
179
    * writes are used to build up a single urb entry.  Each of these
180
    * writes instantiates a seperate urb entry, and a new one must be
181
    * allocated each time.
182
    */
183
   brw_urb_WRITE(p,
184
		 allocate ? c->reg.temp
185
                          : retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
186
		 0,
187
		 c->reg.header,
188
		 allocate,
189
		 1,		/* used */
190
		 c->nr_regs + 1, /* msg length */
191
		 allocate ? 1 : 0, /* response length */
192
		 allocate ? 0 : 1, /* eot */
193
		 1,		/* writes_complete */
194
		 0,		/* urb offset */
195
		 BRW_URB_SWIZZLE_NONE);
196
 
197
   if (allocate) {
198
      brw_MOV(p, get_element_ud(c->reg.header, 0),
199
              get_element_ud(c->reg.temp, 0));
200
   }
201
}
202
 
203
/**
204
 * Send an FF_SYNC message to ensure that all previously spawned GS threads
205
 * have finished sending primitives down the pipeline, and to allocate a URB
206
 * entry for the first output vertex.  Only needed on Ironlake+.
207
 *
208
 * This function modifies c->reg.header: in DWORD 1, it stores num_prim (which
209
 * is needed by the FF_SYNC message), and in DWORD 0, it stores the handle to
210
 * the allocated URB entry (which will be needed by the URB_WRITE meesage that
211
 * follows).
212
 */
213
static void brw_gs_ff_sync(struct brw_gs_compile *c, int num_prim)
214
{
215
   struct brw_compile *p = &c->func;
216
 
217
   brw_MOV(p, get_element_ud(c->reg.header, 1), brw_imm_ud(num_prim));
218
   brw_ff_sync(p,
219
               c->reg.temp,
220
               0,
221
               c->reg.header,
222
               1, /* allocate */
223
               1, /* response length */
224
 
225
   brw_MOV(p, get_element_ud(c->reg.header, 0),
226
           get_element_ud(c->reg.temp, 0));
227
}
228
 
229
 
230
void brw_gs_quads( struct brw_gs_compile *c, struct brw_gs_prog_key *key )
231
{
232
   struct brw_context *brw = c->func.brw;
233
 
234
   brw_gs_alloc_regs(c, 4, false);
235
   brw_gs_initialize_header(c);
236
   /* Use polygons for correct edgeflag behaviour. Note that vertex 3
237
    * is the PV for quads, but vertex 0 for polygons:
238
    */
239
   if (brw->gen == 5)
240
      brw_gs_ff_sync(c, 1);
241
   brw_gs_overwrite_header_dw2(
242
      c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
243
          | URB_WRITE_PRIM_START));
244
   if (key->pv_first) {
245
      brw_gs_emit_vue(c, c->reg.vertex[0], 0);
246
      brw_gs_overwrite_header_dw2(
247
         c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
248
      brw_gs_emit_vue(c, c->reg.vertex[1], 0);
249
      brw_gs_emit_vue(c, c->reg.vertex[2], 0);
250
      brw_gs_overwrite_header_dw2(
251
         c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
252
             | URB_WRITE_PRIM_END));
253
      brw_gs_emit_vue(c, c->reg.vertex[3], 1);
254
   }
255
   else {
256
      brw_gs_emit_vue(c, c->reg.vertex[3], 0);
257
      brw_gs_overwrite_header_dw2(
258
         c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
259
      brw_gs_emit_vue(c, c->reg.vertex[0], 0);
260
      brw_gs_emit_vue(c, c->reg.vertex[1], 0);
261
      brw_gs_overwrite_header_dw2(
262
         c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
263
             | URB_WRITE_PRIM_END));
264
      brw_gs_emit_vue(c, c->reg.vertex[2], 1);
265
   }
266
}
267
 
268
void brw_gs_quad_strip( struct brw_gs_compile *c, struct brw_gs_prog_key *key )
269
{
270
   struct brw_context *brw = c->func.brw;
271
 
272
   brw_gs_alloc_regs(c, 4, false);
273
   brw_gs_initialize_header(c);
274
 
275
   if (brw->gen == 5)
276
      brw_gs_ff_sync(c, 1);
277
   brw_gs_overwrite_header_dw2(
278
      c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
279
          | URB_WRITE_PRIM_START));
280
   if (key->pv_first) {
281
      brw_gs_emit_vue(c, c->reg.vertex[0], 0);
282
      brw_gs_overwrite_header_dw2(
283
         c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
284
      brw_gs_emit_vue(c, c->reg.vertex[1], 0);
285
      brw_gs_emit_vue(c, c->reg.vertex[2], 0);
286
      brw_gs_overwrite_header_dw2(
287
         c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
288
             | URB_WRITE_PRIM_END));
289
      brw_gs_emit_vue(c, c->reg.vertex[3], 1);
290
   }
291
   else {
292
      brw_gs_emit_vue(c, c->reg.vertex[2], 0);
293
      brw_gs_overwrite_header_dw2(
294
         c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
295
      brw_gs_emit_vue(c, c->reg.vertex[3], 0);
296
      brw_gs_emit_vue(c, c->reg.vertex[0], 0);
297
      brw_gs_overwrite_header_dw2(
298
         c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
299
             | URB_WRITE_PRIM_END));
300
      brw_gs_emit_vue(c, c->reg.vertex[1], 1);
301
   }
302
}
303
 
304
void brw_gs_lines( struct brw_gs_compile *c )
305
{
306
   struct brw_context *brw = c->func.brw;
307
 
308
   brw_gs_alloc_regs(c, 2, false);
309
   brw_gs_initialize_header(c);
310
 
311
   if (brw->gen == 5)
312
      brw_gs_ff_sync(c, 1);
313
   brw_gs_overwrite_header_dw2(
314
      c, ((_3DPRIM_LINESTRIP << URB_WRITE_PRIM_TYPE_SHIFT)
315
          | URB_WRITE_PRIM_START));
316
   brw_gs_emit_vue(c, c->reg.vertex[0], 0);
317
   brw_gs_overwrite_header_dw2(
318
      c, ((_3DPRIM_LINESTRIP << URB_WRITE_PRIM_TYPE_SHIFT)
319
          | URB_WRITE_PRIM_END));
320
   brw_gs_emit_vue(c, c->reg.vertex[1], 1);
321
}
322
 
323
/**
324
 * Generate the geometry shader program used on Gen6 to perform stream output
325
 * (transform feedback).
326
 */
327
void
328
gen6_sol_program(struct brw_gs_compile *c, struct brw_gs_prog_key *key,
329
	         unsigned num_verts, bool check_edge_flags)
330
{
331
   struct brw_compile *p = &c->func;
332
   c->prog_data.svbi_postincrement_value = num_verts;
333
 
334
   brw_gs_alloc_regs(c, num_verts, true);
335
   brw_gs_initialize_header(c);
336
 
337
   if (key->num_transform_feedback_bindings > 0) {
338
      unsigned vertex, binding;
339
      struct brw_reg destination_indices_uw =
340
         vec8(retype(c->reg.destination_indices, BRW_REGISTER_TYPE_UW));
341
 
342
      /* Note: since we use the binding table to keep track of buffer offsets
343
       * and stride, the GS doesn't need to keep track of a separate pointer
344
       * into each buffer; it uses a single pointer which increments by 1 for
345
       * each vertex.  So we use SVBI0 for this pointer, regardless of whether
346
       * transform feedback is in interleaved or separate attribs mode.
347
       *
348
       * Make sure that the buffers have enough room for all the vertices.
349
       */
350
      brw_ADD(p, get_element_ud(c->reg.temp, 0),
351
	         get_element_ud(c->reg.SVBI, 0), brw_imm_ud(num_verts));
352
      brw_CMP(p, vec1(brw_null_reg()), BRW_CONDITIONAL_LE,
353
	         get_element_ud(c->reg.temp, 0),
354
	         get_element_ud(c->reg.SVBI, 4));
355
      brw_IF(p, BRW_EXECUTE_1);
356
 
357
      /* Compute the destination indices to write to.  Usually we use SVBI[0]
358
       * + (0, 1, 2).  However, for odd-numbered triangles in tristrips, the
359
       * vertices come down the pipeline in reversed winding order, so we need
360
       * to flip the order when writing to the transform feedback buffer.  To
361
       * ensure that flatshading accuracy is preserved, we need to write them
362
       * in order SVBI[0] + (0, 2, 1) if we're using the first provoking
363
       * vertex convention, and in order SVBI[0] + (1, 0, 2) if we're using
364
       * the last provoking vertex convention.
365
       *
366
       * Note: since brw_imm_v can only be used in instructions in
367
       * packed-word execution mode, and SVBI is a double-word, we need to
368
       * first move the appropriate immediate constant ((0, 1, 2), (0, 2, 1),
369
       * or (1, 0, 2)) to the destination_indices register, and then add SVBI
370
       * using a separate instruction.  Also, since the immediate constant is
371
       * expressed as packed words, and we need to load double-words into
372
       * destination_indices, we need to intersperse zeros to fill the upper
373
       * halves of each double-word.
374
       */
375
      brw_MOV(p, destination_indices_uw,
376
              brw_imm_v(0x00020100)); /* (0, 1, 2) */
377
      if (num_verts == 3) {
378
         /* Get primitive type into temp register. */
379
         brw_AND(p, get_element_ud(c->reg.temp, 0),
380
                 get_element_ud(c->reg.R0, 2), brw_imm_ud(0x1f));
381
 
382
         /* Test if primitive type is TRISTRIP_REVERSE.  We need to do this as
383
          * an 8-wide comparison so that the conditional MOV that follows
384
          * moves all 8 words correctly.
385
          */
386
         brw_CMP(p, vec8(brw_null_reg()), BRW_CONDITIONAL_EQ,
387
                 get_element_ud(c->reg.temp, 0),
388
                 brw_imm_ud(_3DPRIM_TRISTRIP_REVERSE));
389
 
390
         /* If so, then overwrite destination_indices_uw with the appropriate
391
          * reordering.
392
          */
393
         brw_MOV(p, destination_indices_uw,
394
                 brw_imm_v(key->pv_first ? 0x00010200    /* (0, 2, 1) */
395
                                         : 0x00020001)); /* (1, 0, 2) */
396
         brw_set_predicate_control(p, BRW_PREDICATE_NONE);
397
      }
398
      brw_ADD(p, c->reg.destination_indices,
399
              c->reg.destination_indices, get_element_ud(c->reg.SVBI, 0));
400
 
401
      /* For each vertex, generate code to output each varying using the
402
       * appropriate binding table entry.
403
       */
404
      for (vertex = 0; vertex < num_verts; ++vertex) {
405
         /* Set up the correct destination index for this vertex */
406
         brw_MOV(p, get_element_ud(c->reg.header, 5),
407
                 get_element_ud(c->reg.destination_indices, vertex));
408
 
409
         for (binding = 0; binding < key->num_transform_feedback_bindings;
410
              ++binding) {
411
            unsigned char varying =
412
               key->transform_feedback_bindings[binding];
413
            unsigned char slot = c->vue_map.varying_to_slot[varying];
414
            /* From the Sandybridge PRM, Volume 2, Part 1, Section 4.5.1:
415
             *
416
             *   "Prior to End of Thread with a URB_WRITE, the kernel must
417
             *   ensure that all writes are complete by sending the final
418
             *   write as a committed write."
419
             */
420
            bool final_write =
421
               binding == key->num_transform_feedback_bindings - 1 &&
422
               vertex == num_verts - 1;
423
            struct brw_reg vertex_slot = c->reg.vertex[vertex];
424
            vertex_slot.nr += slot / 2;
425
            vertex_slot.subnr = (slot % 2) * 16;
426
            /* gl_PointSize is stored in VARYING_SLOT_PSIZ.w. */
427
            vertex_slot.dw1.bits.swizzle = varying == VARYING_SLOT_PSIZ
428
               ? BRW_SWIZZLE_WWWW : key->transform_feedback_swizzles[binding];
429
            brw_set_access_mode(p, BRW_ALIGN_16);
430
            brw_MOV(p, stride(c->reg.header, 4, 4, 1),
431
                    retype(vertex_slot, BRW_REGISTER_TYPE_UD));
432
            brw_set_access_mode(p, BRW_ALIGN_1);
433
            brw_svb_write(p,
434
                          final_write ? c->reg.temp : brw_null_reg(), /* dest */
435
                          1, /* msg_reg_nr */
436
                          c->reg.header, /* src0 */
437
                          SURF_INDEX_SOL_BINDING(binding), /* binding_table_index */
438
                          final_write); /* send_commit_msg */
439
         }
440
      }
441
      brw_ENDIF(p);
442
 
443
      /* Now, reinitialize the header register from R0 to restore the parts of
444
       * the register that we overwrote while streaming out transform feedback
445
       * data.
446
       */
447
      brw_gs_initialize_header(c);
448
 
449
      /* Finally, wait for the write commit to occur so that we can proceed to
450
       * other things safely.
451
       *
452
       * From the Sandybridge PRM, Volume 4, Part 1, Section 3.3:
453
       *
454
       *   The write commit does not modify the destination register, but
455
       *   merely clears the dependency associated with the destination
456
       *   register. Thus, a simple “mov” instruction using the register as a
457
       *   source is sufficient to wait for the write commit to occur.
458
       */
459
      brw_MOV(p, c->reg.temp, c->reg.temp);
460
   }
461
 
462
   brw_gs_ff_sync(c, 1);
463
 
464
   brw_gs_overwrite_header_dw2_from_r0(c);
465
   switch (num_verts) {
466
   case 1:
467
      brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_START | URB_WRITE_PRIM_END);
468
      brw_gs_emit_vue(c, c->reg.vertex[0], true);
469
      break;
470
   case 2:
471
      brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_START);
472
      brw_gs_emit_vue(c, c->reg.vertex[0], false);
473
      brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_END - URB_WRITE_PRIM_START);
474
      brw_gs_emit_vue(c, c->reg.vertex[1], true);
475
      break;
476
   case 3:
477
      if (check_edge_flags) {
478
         /* Only emit vertices 0 and 1 if this is the first triangle of the
479
          * polygon.  Otherwise they are redundant.
480
          */
481
         brw_set_conditionalmod(p, BRW_CONDITIONAL_NZ);
482
         brw_AND(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
483
                 get_element_ud(c->reg.R0, 2),
484
                 brw_imm_ud(BRW_GS_EDGE_INDICATOR_0));
485
         brw_IF(p, BRW_EXECUTE_1);
486
      }
487
      brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_START);
488
      brw_gs_emit_vue(c, c->reg.vertex[0], false);
489
      brw_gs_offset_header_dw2(c, -URB_WRITE_PRIM_START);
490
      brw_gs_emit_vue(c, c->reg.vertex[1], false);
491
      if (check_edge_flags) {
492
         brw_ENDIF(p);
493
         /* Only emit vertex 2 in PRIM_END mode if this is the last triangle
494
          * of the polygon.  Otherwise leave the primitive incomplete because
495
          * there are more polygon vertices coming.
496
          */
497
         brw_set_conditionalmod(p, BRW_CONDITIONAL_NZ);
498
         brw_AND(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
499
                 get_element_ud(c->reg.R0, 2),
500
                 brw_imm_ud(BRW_GS_EDGE_INDICATOR_1));
501
         brw_set_predicate_control(p, BRW_PREDICATE_NORMAL);
502
      }
503
      brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_END);
504
      brw_set_predicate_control(p, BRW_PREDICATE_NONE);
505
      brw_gs_emit_vue(c, c->reg.vertex[2], true);
506
      break;
507
   }
508
}