Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5564 serge 1
/*
2
 * Mesa 3-D graphics library
3
 *
4
 * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a
7
 * copy of this software and associated documentation files (the "Software"),
8
 * to deal in the Software without restriction, including without limitation
9
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10
 * and/or sell copies of the Software, and to permit persons to whom the
11
 * Software is furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included
14
 * in all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22
 * OTHER DEALINGS IN THE SOFTWARE.
23
 */
24
 
25
/*
26
 * Triangle Rasterizer Template
27
 *
28
 * This file is #include'd to generate custom triangle rasterizers.
29
 *
30
 * The following macros may be defined to indicate what auxillary information
31
 * must be interpolated across the triangle:
32
 *    INTERP_Z        - if defined, interpolate integer Z values
33
 *    INTERP_RGB      - if defined, interpolate integer RGB values
34
 *    INTERP_ALPHA    - if defined, interpolate integer Alpha values
35
 *    INTERP_INT_TEX  - if defined, interpolate integer ST texcoords
36
 *                         (fast, simple 2-D texture mapping, without
37
 *                         perspective correction)
38
 *    INTERP_ATTRIBS  - if defined, interpolate arbitrary attribs (texcoords,
39
 *                         varying vars, etc)  This also causes W to be
40
 *                         computed for perspective correction).
41
 *
42
 * When one can directly address pixels in the color buffer the following
43
 * macros can be defined and used to compute pixel addresses during
44
 * rasterization (see pRow):
45
 *    PIXEL_TYPE          - the datatype of a pixel (GLubyte, GLushort, GLuint)
46
 *    BYTES_PER_ROW       - number of bytes per row in the color buffer
47
 *    PIXEL_ADDRESS(X,Y)  - returns the address of pixel at (X,Y) where
48
 *                          Y==0 at bottom of screen and increases upward.
49
 *
50
 * Similarly, for direct depth buffer access, this type is used for depth
51
 * buffer addressing (see zRow):
52
 *    DEPTH_TYPE          - either GLushort or GLuint
53
 *
54
 * Optionally, one may provide one-time setup code per triangle:
55
 *    SETUP_CODE    - code which is to be executed once per triangle
56
 *
57
 * The following macro MUST be defined:
58
 *    RENDER_SPAN(span) - code to write a span of pixels.
59
 *
60
 * This code was designed for the origin to be in the lower-left corner.
61
 *
62
 * Inspired by triangle rasterizer code written by Allen Akin.  Thanks Allen!
63
 *
64
 *
65
 * Some notes on rasterization accuracy:
66
 *
67
 * This code uses fixed point arithmetic (the GLfixed type) to iterate
68
 * over the triangle edges and interpolate ancillary data (such as Z,
69
 * color, secondary color, etc).  The number of fractional bits in
70
 * GLfixed and the value of SUB_PIXEL_BITS has a direct bearing on the
71
 * accuracy of rasterization.
72
 *
73
 * If SUB_PIXEL_BITS=4 then we'll snap the vertices to the nearest
74
 * 1/16 of a pixel.  If we're walking up a long, nearly vertical edge
75
 * (dx=1/16, dy=1024) we'll need 4 + 10 = 14 fractional bits in
76
 * GLfixed to walk the edge without error.  If the maximum viewport
77
 * height is 4K pixels, then we'll need 4 + 12 = 16 fractional bits.
78
 *
79
 * Historically, Mesa has used 11 fractional bits in GLfixed, snaps
80
 * vertices to 1/16 pixel and allowed a maximum viewport height of 2K
81
 * pixels.  11 fractional bits is actually insufficient for accurately
82
 * rasterizing some triangles.  More recently, the maximum viewport
83
 * height was increased to 4K pixels.  Thus, Mesa should be using 16
84
 * fractional bits in GLfixed.  Unfortunately, there may be some issues
85
 * with setting FIXED_FRAC_BITS=16, such as multiplication overflow.
86
 * This will have to be examined in some detail...
87
 *
88
 * For now, if you find rasterization errors, particularly with tall,
89
 * sliver triangles, try increasing FIXED_FRAC_BITS and/or decreasing
90
 * SUB_PIXEL_BITS.
91
 */
92
 
93
 
94
#ifndef MAX_GLUINT
95
#define MAX_GLUINT	0xffffffffu
96
#endif
97
 
98
 
99
/*
100
 * Some code we unfortunately need to prevent negative interpolated colors.
101
 */
102
#ifndef CLAMP_INTERPOLANT
103
#define CLAMP_INTERPOLANT(CHANNEL, CHANNELSTEP, LEN)		\
104
do {								\
105
   GLfixed endVal = span.CHANNEL + (LEN) * span.CHANNELSTEP;	\
106
   if (endVal < 0) {						\
107
      span.CHANNEL -= endVal;					\
108
   }								\
109
   if (span.CHANNEL < 0) {					\
110
      span.CHANNEL = 0;						\
111
   }								\
112
} while (0)
113
#endif
114
 
115
 
116
static void NAME(struct gl_context *ctx, const SWvertex *v0,
117
                                 const SWvertex *v1,
118
                                 const SWvertex *v2 )
119
{
120
   typedef struct {
121
      const SWvertex *v0, *v1;   /* Y(v0) < Y(v1) */
122
      GLfloat dx;	/* X(v1) - X(v0) */
123
      GLfloat dy;	/* Y(v1) - Y(v0) */
124
      GLfloat dxdy;	/* dx/dy */
125
      GLfixed fdxdy;	/* dx/dy in fixed-point */
126
      GLfloat adjy;	/* adjust from v[0]->fy to fsy, scaled */
127
      GLfixed fsx;	/* first sample point x coord */
128
      GLfixed fsy;
129
      GLfixed fx0;	/* fixed pt X of lower endpoint */
130
      GLint lines;	/* number of lines to be sampled on this edge */
131
   } EdgeT;
132
 
133
   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
134
#ifdef INTERP_Z
135
   const GLint depthBits = ctx->DrawBuffer->Visual.depthBits;
136
   const GLint fixedToDepthShift = depthBits <= 16 ? FIXED_SHIFT : 0;
137
   const GLfloat maxDepth = ctx->DrawBuffer->_DepthMaxF;
138
#define FixedToDepth(F)  ((F) >> fixedToDepthShift)
139
#endif
140
   EdgeT eMaj, eTop, eBot;
141
   GLfloat oneOverArea;
142
   const SWvertex *vMin, *vMid, *vMax;  /* Y(vMin)<=Y(vMid)<=Y(vMax) */
143
   GLfloat bf = SWRAST_CONTEXT(ctx)->_BackfaceSign;
144
   const GLint snapMask = ~((FIXED_ONE / (1 << SUB_PIXEL_BITS)) - 1); /* for x/y coord snapping */
145
   GLfixed vMin_fx, vMin_fy, vMid_fx, vMid_fy, vMax_fx, vMax_fy;
146
 
147
   SWspan span;
148
 
149
   (void) swrast;
150
 
151
   INIT_SPAN(span, GL_POLYGON);
152
   span.y = 0; /* silence warnings */
153
 
154
#ifdef INTERP_Z
155
   (void) fixedToDepthShift;
156
#endif
157
 
158
   /*
159
   printf("%s()\n", __func__);
160
   printf("  %g, %g, %g\n",
161
          v0->attrib[VARYING_SLOT_POS][0],
162
          v0->attrib[VARYING_SLOT_POS][1],
163
          v0->attrib[VARYING_SLOT_POS][2]);
164
   printf("  %g, %g, %g\n",
165
          v1->attrib[VARYING_SLOT_POS][0],
166
          v1->attrib[VARYING_SLOT_POS][1],
167
          v1->attrib[VARYING_SLOT_POS][2]);
168
   printf("  %g, %g, %g\n",
169
          v2->attrib[VARYING_SLOT_POS][0],
170
          v2->attrib[VARYING_SLOT_POS][1],
171
          v2->attrib[VARYING_SLOT_POS][2]);
172
   */
173
 
174
   /* Compute fixed point x,y coords w/ half-pixel offsets and snapping.
175
    * And find the order of the 3 vertices along the Y axis.
176
    */
177
   {
178
      const GLfixed fy0 = FloatToFixed(v0->attrib[VARYING_SLOT_POS][1] - 0.5F) & snapMask;
179
      const GLfixed fy1 = FloatToFixed(v1->attrib[VARYING_SLOT_POS][1] - 0.5F) & snapMask;
180
      const GLfixed fy2 = FloatToFixed(v2->attrib[VARYING_SLOT_POS][1] - 0.5F) & snapMask;
181
      if (fy0 <= fy1) {
182
         if (fy1 <= fy2) {
183
            /* y0 <= y1 <= y2 */
184
            vMin = v0;   vMid = v1;   vMax = v2;
185
            vMin_fy = fy0;  vMid_fy = fy1;  vMax_fy = fy2;
186
         }
187
         else if (fy2 <= fy0) {
188
            /* y2 <= y0 <= y1 */
189
            vMin = v2;   vMid = v0;   vMax = v1;
190
            vMin_fy = fy2;  vMid_fy = fy0;  vMax_fy = fy1;
191
         }
192
         else {
193
            /* y0 <= y2 <= y1 */
194
            vMin = v0;   vMid = v2;   vMax = v1;
195
            vMin_fy = fy0;  vMid_fy = fy2;  vMax_fy = fy1;
196
            bf = -bf;
197
         }
198
      }
199
      else {
200
         if (fy0 <= fy2) {
201
            /* y1 <= y0 <= y2 */
202
            vMin = v1;   vMid = v0;   vMax = v2;
203
            vMin_fy = fy1;  vMid_fy = fy0;  vMax_fy = fy2;
204
            bf = -bf;
205
         }
206
         else if (fy2 <= fy1) {
207
            /* y2 <= y1 <= y0 */
208
            vMin = v2;   vMid = v1;   vMax = v0;
209
            vMin_fy = fy2;  vMid_fy = fy1;  vMax_fy = fy0;
210
            bf = -bf;
211
         }
212
         else {
213
            /* y1 <= y2 <= y0 */
214
            vMin = v1;   vMid = v2;   vMax = v0;
215
            vMin_fy = fy1;  vMid_fy = fy2;  vMax_fy = fy0;
216
         }
217
      }
218
 
219
      /* fixed point X coords */
220
      vMin_fx = FloatToFixed(vMin->attrib[VARYING_SLOT_POS][0] + 0.5F) & snapMask;
221
      vMid_fx = FloatToFixed(vMid->attrib[VARYING_SLOT_POS][0] + 0.5F) & snapMask;
222
      vMax_fx = FloatToFixed(vMax->attrib[VARYING_SLOT_POS][0] + 0.5F) & snapMask;
223
   }
224
 
225
   /* vertex/edge relationship */
226
   eMaj.v0 = vMin;   eMaj.v1 = vMax;   /*TODO: .v1's not needed */
227
   eTop.v0 = vMid;   eTop.v1 = vMax;
228
   eBot.v0 = vMin;   eBot.v1 = vMid;
229
 
230
   /* compute deltas for each edge:  vertex[upper] - vertex[lower] */
231
   eMaj.dx = FixedToFloat(vMax_fx - vMin_fx);
232
   eMaj.dy = FixedToFloat(vMax_fy - vMin_fy);
233
   eTop.dx = FixedToFloat(vMax_fx - vMid_fx);
234
   eTop.dy = FixedToFloat(vMax_fy - vMid_fy);
235
   eBot.dx = FixedToFloat(vMid_fx - vMin_fx);
236
   eBot.dy = FixedToFloat(vMid_fy - vMin_fy);
237
 
238
   /* compute area, oneOverArea and perform backface culling */
239
   {
240
      const GLfloat area = eMaj.dx * eBot.dy - eBot.dx * eMaj.dy;
241
 
242
      if (IS_INF_OR_NAN(area) || area == 0.0F)
243
         return;
244
 
245
      if (area * bf * swrast->_BackfaceCullSign < 0.0)
246
         return;
247
 
248
      oneOverArea = 1.0F / area;
249
 
250
      /* 0 = front, 1 = back */
251
      span.facing = oneOverArea * bf > 0.0F;
252
   }
253
 
254
   /* Edge setup.  For a triangle strip these could be reused... */
255
   {
256
      eMaj.fsy = FixedCeil(vMin_fy);
257
      eMaj.lines = FixedToInt(FixedCeil(vMax_fy - eMaj.fsy));
258
      if (eMaj.lines > 0) {
259
         eMaj.dxdy = eMaj.dx / eMaj.dy;
260
         eMaj.fdxdy = SignedFloatToFixed(eMaj.dxdy);
261
         eMaj.adjy = (GLfloat) (eMaj.fsy - vMin_fy);  /* SCALED! */
262
         eMaj.fx0 = vMin_fx;
263
         eMaj.fsx = eMaj.fx0 + (GLfixed) (eMaj.adjy * eMaj.dxdy);
264
      }
265
      else {
266
         return;  /*CULLED*/
267
      }
268
 
269
      eTop.fsy = FixedCeil(vMid_fy);
270
      eTop.lines = FixedToInt(FixedCeil(vMax_fy - eTop.fsy));
271
      if (eTop.lines > 0) {
272
         eTop.dxdy = eTop.dx / eTop.dy;
273
         eTop.fdxdy = SignedFloatToFixed(eTop.dxdy);
274
         eTop.adjy = (GLfloat) (eTop.fsy - vMid_fy); /* SCALED! */
275
         eTop.fx0 = vMid_fx;
276
         eTop.fsx = eTop.fx0 + (GLfixed) (eTop.adjy * eTop.dxdy);
277
      }
278
 
279
      eBot.fsy = FixedCeil(vMin_fy);
280
      eBot.lines = FixedToInt(FixedCeil(vMid_fy - eBot.fsy));
281
      if (eBot.lines > 0) {
282
         eBot.dxdy = eBot.dx / eBot.dy;
283
         eBot.fdxdy = SignedFloatToFixed(eBot.dxdy);
284
         eBot.adjy = (GLfloat) (eBot.fsy - vMin_fy);  /* SCALED! */
285
         eBot.fx0 = vMin_fx;
286
         eBot.fsx = eBot.fx0 + (GLfixed) (eBot.adjy * eBot.dxdy);
287
      }
288
   }
289
 
290
   /*
291
    * Conceptually, we view a triangle as two subtriangles
292
    * separated by a perfectly horizontal line.  The edge that is
293
    * intersected by this line is one with maximal absolute dy; we
294
    * call it a ``major'' edge.  The other two edges are the
295
    * ``top'' edge (for the upper subtriangle) and the ``bottom''
296
    * edge (for the lower subtriangle).  If either of these two
297
    * edges is horizontal or very close to horizontal, the
298
    * corresponding subtriangle might cover zero sample points;
299
    * we take care to handle such cases, for performance as well
300
    * as correctness.
301
    *
302
    * By stepping rasterization parameters along the major edge,
303
    * we can avoid recomputing them at the discontinuity where
304
    * the top and bottom edges meet.  However, this forces us to
305
    * be able to scan both left-to-right and right-to-left.
306
    * Also, we must determine whether the major edge is at the
307
    * left or right side of the triangle.  We do this by
308
    * computing the magnitude of the cross-product of the major
309
    * and top edges.  Since this magnitude depends on the sine of
310
    * the angle between the two edges, its sign tells us whether
311
    * we turn to the left or to the right when travelling along
312
    * the major edge to the top edge, and from this we infer
313
    * whether the major edge is on the left or the right.
314
    *
315
    * Serendipitously, this cross-product magnitude is also a
316
    * value we need to compute the iteration parameter
317
    * derivatives for the triangle, and it can be used to perform
318
    * backface culling because its sign tells us whether the
319
    * triangle is clockwise or counterclockwise.  In this code we
320
    * refer to it as ``area'' because it's also proportional to
321
    * the pixel area of the triangle.
322
    */
323
 
324
   {
325
      GLint scan_from_left_to_right;  /* true if scanning left-to-right */
326
 
327
      /*
328
       * Execute user-supplied setup code
329
       */
330
#ifdef SETUP_CODE
331
      SETUP_CODE
332
#endif
333
 
334
      scan_from_left_to_right = (oneOverArea < 0.0F);
335
 
336
 
337
      /* compute d?/dx and d?/dy derivatives */
338
#ifdef INTERP_Z
339
      span.interpMask |= SPAN_Z;
340
      {
341
         GLfloat eMaj_dz = vMax->attrib[VARYING_SLOT_POS][2] - vMin->attrib[VARYING_SLOT_POS][2];
342
         GLfloat eBot_dz = vMid->attrib[VARYING_SLOT_POS][2] - vMin->attrib[VARYING_SLOT_POS][2];
343
         span.attrStepX[VARYING_SLOT_POS][2] = oneOverArea * (eMaj_dz * eBot.dy - eMaj.dy * eBot_dz);
344
         if (span.attrStepX[VARYING_SLOT_POS][2] > maxDepth ||
345
             span.attrStepX[VARYING_SLOT_POS][2] < -maxDepth) {
346
            /* probably a sliver triangle */
347
            span.attrStepX[VARYING_SLOT_POS][2] = 0.0;
348
            span.attrStepY[VARYING_SLOT_POS][2] = 0.0;
349
         }
350
         else {
351
            span.attrStepY[VARYING_SLOT_POS][2] = oneOverArea * (eMaj.dx * eBot_dz - eMaj_dz * eBot.dx);
352
         }
353
         if (depthBits <= 16)
354
            span.zStep = SignedFloatToFixed(span.attrStepX[VARYING_SLOT_POS][2]);
355
         else
356
            span.zStep = (GLint) span.attrStepX[VARYING_SLOT_POS][2];
357
      }
358
#endif
359
#ifdef INTERP_RGB
360
      span.interpMask |= SPAN_RGBA;
361
      if (ctx->Light.ShadeModel == GL_SMOOTH) {
362
         GLfloat eMaj_dr = (GLfloat) (vMax->color[RCOMP] - vMin->color[RCOMP]);
363
         GLfloat eBot_dr = (GLfloat) (vMid->color[RCOMP] - vMin->color[RCOMP]);
364
         GLfloat eMaj_dg = (GLfloat) (vMax->color[GCOMP] - vMin->color[GCOMP]);
365
         GLfloat eBot_dg = (GLfloat) (vMid->color[GCOMP] - vMin->color[GCOMP]);
366
         GLfloat eMaj_db = (GLfloat) (vMax->color[BCOMP] - vMin->color[BCOMP]);
367
         GLfloat eBot_db = (GLfloat) (vMid->color[BCOMP] - vMin->color[BCOMP]);
368
#  ifdef INTERP_ALPHA
369
         GLfloat eMaj_da = (GLfloat) (vMax->color[ACOMP] - vMin->color[ACOMP]);
370
         GLfloat eBot_da = (GLfloat) (vMid->color[ACOMP] - vMin->color[ACOMP]);
371
#  endif
372
         span.attrStepX[VARYING_SLOT_COL0][0] = oneOverArea * (eMaj_dr * eBot.dy - eMaj.dy * eBot_dr);
373
         span.attrStepY[VARYING_SLOT_COL0][0] = oneOverArea * (eMaj.dx * eBot_dr - eMaj_dr * eBot.dx);
374
         span.attrStepX[VARYING_SLOT_COL0][1] = oneOverArea * (eMaj_dg * eBot.dy - eMaj.dy * eBot_dg);
375
         span.attrStepY[VARYING_SLOT_COL0][1] = oneOverArea * (eMaj.dx * eBot_dg - eMaj_dg * eBot.dx);
376
         span.attrStepX[VARYING_SLOT_COL0][2] = oneOverArea * (eMaj_db * eBot.dy - eMaj.dy * eBot_db);
377
         span.attrStepY[VARYING_SLOT_COL0][2] = oneOverArea * (eMaj.dx * eBot_db - eMaj_db * eBot.dx);
378
         span.redStep   = SignedFloatToFixed(span.attrStepX[VARYING_SLOT_COL0][0]);
379
         span.greenStep = SignedFloatToFixed(span.attrStepX[VARYING_SLOT_COL0][1]);
380
         span.blueStep  = SignedFloatToFixed(span.attrStepX[VARYING_SLOT_COL0][2]);
381
#  ifdef INTERP_ALPHA
382
         span.attrStepX[VARYING_SLOT_COL0][3] = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da);
383
         span.attrStepY[VARYING_SLOT_COL0][3] = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx);
384
         span.alphaStep = SignedFloatToFixed(span.attrStepX[VARYING_SLOT_COL0][3]);
385
#  endif /* INTERP_ALPHA */
386
      }
387
      else {
388
         assert(ctx->Light.ShadeModel == GL_FLAT);
389
         span.interpMask |= SPAN_FLAT;
390
         span.attrStepX[VARYING_SLOT_COL0][0] = span.attrStepY[VARYING_SLOT_COL0][0] = 0.0F;
391
         span.attrStepX[VARYING_SLOT_COL0][1] = span.attrStepY[VARYING_SLOT_COL0][1] = 0.0F;
392
         span.attrStepX[VARYING_SLOT_COL0][2] = span.attrStepY[VARYING_SLOT_COL0][2] = 0.0F;
393
	 span.redStep   = 0;
394
	 span.greenStep = 0;
395
	 span.blueStep  = 0;
396
#  ifdef INTERP_ALPHA
397
         span.attrStepX[VARYING_SLOT_COL0][3] = span.attrStepY[VARYING_SLOT_COL0][3] = 0.0F;
398
	 span.alphaStep = 0;
399
#  endif
400
      }
401
#endif /* INTERP_RGB */
402
#ifdef INTERP_INT_TEX
403
      {
404
         GLfloat eMaj_ds = (vMax->attrib[VARYING_SLOT_TEX0][0] - vMin->attrib[VARYING_SLOT_TEX0][0]) * S_SCALE;
405
         GLfloat eBot_ds = (vMid->attrib[VARYING_SLOT_TEX0][0] - vMin->attrib[VARYING_SLOT_TEX0][0]) * S_SCALE;
406
         GLfloat eMaj_dt = (vMax->attrib[VARYING_SLOT_TEX0][1] - vMin->attrib[VARYING_SLOT_TEX0][1]) * T_SCALE;
407
         GLfloat eBot_dt = (vMid->attrib[VARYING_SLOT_TEX0][1] - vMin->attrib[VARYING_SLOT_TEX0][1]) * T_SCALE;
408
         span.attrStepX[VARYING_SLOT_TEX0][0] = oneOverArea * (eMaj_ds * eBot.dy - eMaj.dy * eBot_ds);
409
         span.attrStepY[VARYING_SLOT_TEX0][0] = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx);
410
         span.attrStepX[VARYING_SLOT_TEX0][1] = oneOverArea * (eMaj_dt * eBot.dy - eMaj.dy * eBot_dt);
411
         span.attrStepY[VARYING_SLOT_TEX0][1] = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx);
412
         span.intTexStep[0] = SignedFloatToFixed(span.attrStepX[VARYING_SLOT_TEX0][0]);
413
         span.intTexStep[1] = SignedFloatToFixed(span.attrStepX[VARYING_SLOT_TEX0][1]);
414
      }
415
#endif
416
#ifdef INTERP_ATTRIBS
417
      {
418
         /* attrib[VARYING_SLOT_POS][3] is 1/W */
419
         const GLfloat wMax = vMax->attrib[VARYING_SLOT_POS][3];
420
         const GLfloat wMin = vMin->attrib[VARYING_SLOT_POS][3];
421
         const GLfloat wMid = vMid->attrib[VARYING_SLOT_POS][3];
422
         {
423
            const GLfloat eMaj_dw = wMax - wMin;
424
            const GLfloat eBot_dw = wMid - wMin;
425
            span.attrStepX[VARYING_SLOT_POS][3] = oneOverArea * (eMaj_dw * eBot.dy - eMaj.dy * eBot_dw);
426
            span.attrStepY[VARYING_SLOT_POS][3] = oneOverArea * (eMaj.dx * eBot_dw - eMaj_dw * eBot.dx);
427
         }
428
         ATTRIB_LOOP_BEGIN
429
            if (swrast->_InterpMode[attr] == GL_FLAT) {
430
               ASSIGN_4V(span.attrStepX[attr], 0.0, 0.0, 0.0, 0.0);
431
               ASSIGN_4V(span.attrStepY[attr], 0.0, 0.0, 0.0, 0.0);
432
            }
433
            else {
434
               GLuint c;
435
               for (c = 0; c < 4; c++) {
436
                  GLfloat eMaj_da = vMax->attrib[attr][c] * wMax - vMin->attrib[attr][c] * wMin;
437
                  GLfloat eBot_da = vMid->attrib[attr][c] * wMid - vMin->attrib[attr][c] * wMin;
438
                  span.attrStepX[attr][c] = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da);
439
                  span.attrStepY[attr][c] = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx);
440
               }
441
            }
442
         ATTRIB_LOOP_END
443
      }
444
#endif
445
 
446
      /*
447
       * We always sample at pixel centers.  However, we avoid
448
       * explicit half-pixel offsets in this code by incorporating
449
       * the proper offset in each of x and y during the
450
       * transformation to window coordinates.
451
       *
452
       * We also apply the usual rasterization rules to prevent
453
       * cracks and overlaps.  A pixel is considered inside a
454
       * subtriangle if it meets all of four conditions: it is on or
455
       * to the right of the left edge, strictly to the left of the
456
       * right edge, on or below the top edge, and strictly above
457
       * the bottom edge.  (Some edges may be degenerate.)
458
       *
459
       * The following discussion assumes left-to-right scanning
460
       * (that is, the major edge is on the left); the right-to-left
461
       * case is a straightforward variation.
462
       *
463
       * We start by finding the half-integral y coordinate that is
464
       * at or below the top of the triangle.  This gives us the
465
       * first scan line that could possibly contain pixels that are
466
       * inside the triangle.
467
       *
468
       * Next we creep down the major edge until we reach that y,
469
       * and compute the corresponding x coordinate on the edge.
470
       * Then we find the half-integral x that lies on or just
471
       * inside the edge.  This is the first pixel that might lie in
472
       * the interior of the triangle.  (We won't know for sure
473
       * until we check the other edges.)
474
       *
475
       * As we rasterize the triangle, we'll step down the major
476
       * edge.  For each step in y, we'll move an integer number
477
       * of steps in x.  There are two possible x step sizes, which
478
       * we'll call the ``inner'' step (guaranteed to land on the
479
       * edge or inside it) and the ``outer'' step (guaranteed to
480
       * land on the edge or outside it).  The inner and outer steps
481
       * differ by one.  During rasterization we maintain an error
482
       * term that indicates our distance from the true edge, and
483
       * select either the inner step or the outer step, whichever
484
       * gets us to the first pixel that falls inside the triangle.
485
       *
486
       * All parameters (z, red, etc.) as well as the buffer
487
       * addresses for color and z have inner and outer step values,
488
       * so that we can increment them appropriately.  This method
489
       * eliminates the need to adjust parameters by creeping a
490
       * sub-pixel amount into the triangle at each scanline.
491
       */
492
 
493
      {
494
         GLint subTriangle;
495
         GLfixed fxLeftEdge = 0, fxRightEdge = 0;
496
         GLfixed fdxLeftEdge = 0, fdxRightEdge = 0;
497
         GLfixed fError = 0, fdError = 0;
498
#ifdef PIXEL_ADDRESS
499
         PIXEL_TYPE *pRow = NULL;
500
         GLint dPRowOuter = 0, dPRowInner;  /* offset in bytes */
501
#endif
502
#ifdef INTERP_Z
503
#  ifdef DEPTH_TYPE
504
         struct gl_renderbuffer *zrb
505
            = ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer;
506
         DEPTH_TYPE *zRow = NULL;
507
         GLint dZRowOuter = 0, dZRowInner;  /* offset in bytes */
508
#  endif
509
         GLuint zLeft = 0;
510
         GLfixed fdzOuter = 0, fdzInner;
511
#endif
512
#ifdef INTERP_RGB
513
         GLint rLeft = 0, fdrOuter = 0, fdrInner;
514
         GLint gLeft = 0, fdgOuter = 0, fdgInner;
515
         GLint bLeft = 0, fdbOuter = 0, fdbInner;
516
#endif
517
#ifdef INTERP_ALPHA
518
         GLint aLeft = 0, fdaOuter = 0, fdaInner;
519
#endif
520
#ifdef INTERP_INT_TEX
521
         GLfixed sLeft=0, dsOuter=0, dsInner;
522
         GLfixed tLeft=0, dtOuter=0, dtInner;
523
#endif
524
#ifdef INTERP_ATTRIBS
525
         GLfloat wLeft = 0, dwOuter = 0, dwInner;
526
         GLfloat attrLeft[VARYING_SLOT_MAX][4];
527
         GLfloat daOuter[VARYING_SLOT_MAX][4], daInner[VARYING_SLOT_MAX][4];
528
#endif
529
 
530
         for (subTriangle=0; subTriangle<=1; subTriangle++) {
531
            EdgeT *eLeft, *eRight;
532
            int setupLeft, setupRight;
533
            int lines;
534
 
535
            if (subTriangle==0) {
536
               /* bottom half */
537
               if (scan_from_left_to_right) {
538
                  eLeft = &eMaj;
539
                  eRight = &eBot;
540
                  lines = eRight->lines;
541
                  setupLeft = 1;
542
                  setupRight = 1;
543
               }
544
               else {
545
                  eLeft = &eBot;
546
                  eRight = &eMaj;
547
                  lines = eLeft->lines;
548
                  setupLeft = 1;
549
                  setupRight = 1;
550
               }
551
            }
552
            else {
553
               /* top half */
554
               if (scan_from_left_to_right) {
555
                  eLeft = &eMaj;
556
                  eRight = &eTop;
557
                  lines = eRight->lines;
558
                  setupLeft = 0;
559
                  setupRight = 1;
560
               }
561
               else {
562
                  eLeft = &eTop;
563
                  eRight = &eMaj;
564
                  lines = eLeft->lines;
565
                  setupLeft = 1;
566
                  setupRight = 0;
567
               }
568
               if (lines == 0)
569
                  return;
570
            }
571
 
572
            if (setupLeft && eLeft->lines > 0) {
573
               const SWvertex *vLower = eLeft->v0;
574
               const GLfixed fsy = eLeft->fsy;
575
               const GLfixed fsx = eLeft->fsx;  /* no fractional part */
576
               const GLfixed fx = FixedCeil(fsx);  /* no fractional part */
577
               const GLfixed adjx = (GLfixed) (fx - eLeft->fx0); /* SCALED! */
578
               const GLfixed adjy = (GLfixed) eLeft->adjy;      /* SCALED! */
579
               GLint idxOuter;
580
               GLfloat dxOuter;
581
               GLfixed fdxOuter;
582
 
583
               fError = fx - fsx - FIXED_ONE;
584
               fxLeftEdge = fsx - FIXED_EPSILON;
585
               fdxLeftEdge = eLeft->fdxdy;
586
               fdxOuter = FixedFloor(fdxLeftEdge - FIXED_EPSILON);
587
               fdError = fdxOuter - fdxLeftEdge + FIXED_ONE;
588
               idxOuter = FixedToInt(fdxOuter);
589
               dxOuter = (GLfloat) idxOuter;
590
               span.y = FixedToInt(fsy);
591
 
592
               /* silence warnings on some compilers */
593
               (void) dxOuter;
594
               (void) adjx;
595
               (void) adjy;
596
               (void) vLower;
597
 
598
#ifdef PIXEL_ADDRESS
599
               {
600
                  pRow = (PIXEL_TYPE *) PIXEL_ADDRESS(FixedToInt(fxLeftEdge), span.y);
601
                  dPRowOuter = -((int)BYTES_PER_ROW) + idxOuter * sizeof(PIXEL_TYPE);
602
                  /* negative because Y=0 at bottom and increases upward */
603
               }
604
#endif
605
               /*
606
                * Now we need the set of parameter (z, color, etc.) values at
607
                * the point (fx, fsy).  This gives us properly-sampled parameter
608
                * values that we can step from pixel to pixel.  Furthermore,
609
                * although we might have intermediate results that overflow
610
                * the normal parameter range when we step temporarily outside
611
                * the triangle, we shouldn't overflow or underflow for any
612
                * pixel that's actually inside the triangle.
613
                */
614
 
615
#ifdef INTERP_Z
616
               {
617
                  GLfloat z0 = vLower->attrib[VARYING_SLOT_POS][2];
618
                  if (depthBits <= 16) {
619
                     /* interpolate fixed-pt values */
620
                     GLfloat tmp = (z0 * FIXED_SCALE
621
                                    + span.attrStepX[VARYING_SLOT_POS][2] * adjx
622
                                    + span.attrStepY[VARYING_SLOT_POS][2] * adjy) + FIXED_HALF;
623
                     if (tmp < MAX_GLUINT / 2)
624
                        zLeft = (GLfixed) tmp;
625
                     else
626
                        zLeft = MAX_GLUINT / 2;
627
                     fdzOuter = SignedFloatToFixed(span.attrStepY[VARYING_SLOT_POS][2] +
628
                                                   dxOuter * span.attrStepX[VARYING_SLOT_POS][2]);
629
                  }
630
                  else {
631
                     /* interpolate depth values w/out scaling */
632
                     zLeft = (GLuint) (z0 + span.attrStepX[VARYING_SLOT_POS][2] * FixedToFloat(adjx)
633
                                          + span.attrStepY[VARYING_SLOT_POS][2] * FixedToFloat(adjy));
634
                     fdzOuter = (GLint) (span.attrStepY[VARYING_SLOT_POS][2] +
635
                                         dxOuter * span.attrStepX[VARYING_SLOT_POS][2]);
636
                  }
637
#  ifdef DEPTH_TYPE
638
                  zRow = (DEPTH_TYPE *)
639
                    _swrast_pixel_address(zrb, FixedToInt(fxLeftEdge), span.y);
640
                  dZRowOuter = (ctx->DrawBuffer->Width + idxOuter) * sizeof(DEPTH_TYPE);
641
#  endif
642
               }
643
#endif
644
#ifdef INTERP_RGB
645
               if (ctx->Light.ShadeModel == GL_SMOOTH) {
646
                  rLeft = (GLint)(ChanToFixed(vLower->color[RCOMP])
647
                                  + span.attrStepX[VARYING_SLOT_COL0][0] * adjx
648
                                  + span.attrStepY[VARYING_SLOT_COL0][0] * adjy) + FIXED_HALF;
649
                  gLeft = (GLint)(ChanToFixed(vLower->color[GCOMP])
650
                                  + span.attrStepX[VARYING_SLOT_COL0][1] * adjx
651
                                  + span.attrStepY[VARYING_SLOT_COL0][1] * adjy) + FIXED_HALF;
652
                  bLeft = (GLint)(ChanToFixed(vLower->color[BCOMP])
653
                                  + span.attrStepX[VARYING_SLOT_COL0][2] * adjx
654
                                  + span.attrStepY[VARYING_SLOT_COL0][2] * adjy) + FIXED_HALF;
655
                  fdrOuter = SignedFloatToFixed(span.attrStepY[VARYING_SLOT_COL0][0]
656
                                                + dxOuter * span.attrStepX[VARYING_SLOT_COL0][0]);
657
                  fdgOuter = SignedFloatToFixed(span.attrStepY[VARYING_SLOT_COL0][1]
658
                                                + dxOuter * span.attrStepX[VARYING_SLOT_COL0][1]);
659
                  fdbOuter = SignedFloatToFixed(span.attrStepY[VARYING_SLOT_COL0][2]
660
                                                + dxOuter * span.attrStepX[VARYING_SLOT_COL0][2]);
661
#  ifdef INTERP_ALPHA
662
                  aLeft = (GLint)(ChanToFixed(vLower->color[ACOMP])
663
                                  + span.attrStepX[VARYING_SLOT_COL0][3] * adjx
664
                                  + span.attrStepY[VARYING_SLOT_COL0][3] * adjy) + FIXED_HALF;
665
                  fdaOuter = SignedFloatToFixed(span.attrStepY[VARYING_SLOT_COL0][3]
666
                                                + dxOuter * span.attrStepX[VARYING_SLOT_COL0][3]);
667
#  endif
668
               }
669
               else {
670
                  assert(ctx->Light.ShadeModel == GL_FLAT);
671
                  rLeft = ChanToFixed(v2->color[RCOMP]);
672
                  gLeft = ChanToFixed(v2->color[GCOMP]);
673
                  bLeft = ChanToFixed(v2->color[BCOMP]);
674
                  fdrOuter = fdgOuter = fdbOuter = 0;
675
#  ifdef INTERP_ALPHA
676
                  aLeft = ChanToFixed(v2->color[ACOMP]);
677
                  fdaOuter = 0;
678
#  endif
679
               }
680
#endif /* INTERP_RGB */
681
 
682
 
683
#ifdef INTERP_INT_TEX
684
               {
685
                  GLfloat s0, t0;
686
                  s0 = vLower->attrib[VARYING_SLOT_TEX0][0] * S_SCALE;
687
                  sLeft = (GLfixed)(s0 * FIXED_SCALE + span.attrStepX[VARYING_SLOT_TEX0][0] * adjx
688
                                 + span.attrStepY[VARYING_SLOT_TEX0][0] * adjy) + FIXED_HALF;
689
                  dsOuter = SignedFloatToFixed(span.attrStepY[VARYING_SLOT_TEX0][0]
690
                                               + dxOuter * span.attrStepX[VARYING_SLOT_TEX0][0]);
691
 
692
                  t0 = vLower->attrib[VARYING_SLOT_TEX0][1] * T_SCALE;
693
                  tLeft = (GLfixed)(t0 * FIXED_SCALE + span.attrStepX[VARYING_SLOT_TEX0][1] * adjx
694
                                 + span.attrStepY[VARYING_SLOT_TEX0][1] * adjy) + FIXED_HALF;
695
                  dtOuter = SignedFloatToFixed(span.attrStepY[VARYING_SLOT_TEX0][1]
696
                                               + dxOuter * span.attrStepX[VARYING_SLOT_TEX0][1]);
697
               }
698
#endif
699
#ifdef INTERP_ATTRIBS
700
               {
701
                  const GLuint attr = VARYING_SLOT_POS;
702
                  wLeft = vLower->attrib[VARYING_SLOT_POS][3]
703
                        + (span.attrStepX[attr][3] * adjx
704
                           + span.attrStepY[attr][3] * adjy) * (1.0F/FIXED_SCALE);
705
                  dwOuter = span.attrStepY[attr][3] + dxOuter * span.attrStepX[attr][3];
706
               }
707
               ATTRIB_LOOP_BEGIN
708
                  const GLfloat invW = vLower->attrib[VARYING_SLOT_POS][3];
709
                  if (swrast->_InterpMode[attr] == GL_FLAT) {
710
                     GLuint c;
711
                     for (c = 0; c < 4; c++) {
712
                        attrLeft[attr][c] = v2->attrib[attr][c] * invW;
713
                        daOuter[attr][c] = 0.0;
714
                     }
715
                  }
716
                  else {
717
                     GLuint c;
718
                     for (c = 0; c < 4; c++) {
719
                        const GLfloat a = vLower->attrib[attr][c] * invW;
720
                        attrLeft[attr][c] = a + (  span.attrStepX[attr][c] * adjx
721
                                                 + span.attrStepY[attr][c] * adjy) * (1.0F/FIXED_SCALE);
722
                        daOuter[attr][c] = span.attrStepY[attr][c] + dxOuter * span.attrStepX[attr][c];
723
                     }
724
                  }
725
               ATTRIB_LOOP_END
726
#endif
727
            } /*if setupLeft*/
728
 
729
 
730
            if (setupRight && eRight->lines>0) {
731
               fxRightEdge = eRight->fsx - FIXED_EPSILON;
732
               fdxRightEdge = eRight->fdxdy;
733
            }
734
 
735
            if (lines==0) {
736
               continue;
737
            }
738
 
739
 
740
            /* Rasterize setup */
741
#ifdef PIXEL_ADDRESS
742
            dPRowInner = dPRowOuter + sizeof(PIXEL_TYPE);
743
#endif
744
#ifdef INTERP_Z
745
#  ifdef DEPTH_TYPE
746
            dZRowInner = dZRowOuter + sizeof(DEPTH_TYPE);
747
#  endif
748
            fdzInner = fdzOuter + span.zStep;
749
#endif
750
#ifdef INTERP_RGB
751
            fdrInner = fdrOuter + span.redStep;
752
            fdgInner = fdgOuter + span.greenStep;
753
            fdbInner = fdbOuter + span.blueStep;
754
#endif
755
#ifdef INTERP_ALPHA
756
            fdaInner = fdaOuter + span.alphaStep;
757
#endif
758
#ifdef INTERP_INT_TEX
759
            dsInner = dsOuter + span.intTexStep[0];
760
            dtInner = dtOuter + span.intTexStep[1];
761
#endif
762
#ifdef INTERP_ATTRIBS
763
            dwInner = dwOuter + span.attrStepX[VARYING_SLOT_POS][3];
764
            ATTRIB_LOOP_BEGIN
765
               GLuint c;
766
               for (c = 0; c < 4; c++) {
767
                  daInner[attr][c] = daOuter[attr][c] + span.attrStepX[attr][c];
768
               }
769
            ATTRIB_LOOP_END
770
#endif
771
 
772
            while (lines > 0) {
773
               /* initialize the span interpolants to the leftmost value */
774
               /* ff = fixed-pt fragment */
775
               const GLint right = FixedToInt(fxRightEdge);
776
               span.x = FixedToInt(fxLeftEdge);
777
               if (right <= span.x)
778
                  span.end = 0;
779
               else
780
                  span.end = right - span.x;
781
 
782
#ifdef INTERP_Z
783
               span.z = zLeft;
784
#endif
785
#ifdef INTERP_RGB
786
               span.red = rLeft;
787
               span.green = gLeft;
788
               span.blue = bLeft;
789
#endif
790
#ifdef INTERP_ALPHA
791
               span.alpha = aLeft;
792
#endif
793
#ifdef INTERP_INT_TEX
794
               span.intTex[0] = sLeft;
795
               span.intTex[1] = tLeft;
796
#endif
797
 
798
#ifdef INTERP_ATTRIBS
799
               span.attrStart[VARYING_SLOT_POS][3] = wLeft;
800
               ATTRIB_LOOP_BEGIN
801
                  GLuint c;
802
                  for (c = 0; c < 4; c++) {
803
                     span.attrStart[attr][c] = attrLeft[attr][c];
804
                  }
805
               ATTRIB_LOOP_END
806
#endif
807
 
808
               /* This is where we actually generate fragments */
809
               /* XXX the test for span.y > 0 _shouldn't_ be needed but
810
                * it fixes a problem on 64-bit Opterons (bug 4842).
811
                */
812
               if (span.end > 0 && span.y >= 0) {
813
                  const GLint len = span.end - 1;
814
                  (void) len;
815
#ifdef INTERP_RGB
816
                  CLAMP_INTERPOLANT(red, redStep, len);
817
                  CLAMP_INTERPOLANT(green, greenStep, len);
818
                  CLAMP_INTERPOLANT(blue, blueStep, len);
819
#endif
820
#ifdef INTERP_ALPHA
821
                  CLAMP_INTERPOLANT(alpha, alphaStep, len);
822
#endif
823
                  {
824
                     RENDER_SPAN( span );
825
                  }
826
               }
827
 
828
               /*
829
                * Advance to the next scan line.  Compute the
830
                * new edge coordinates, and adjust the
831
                * pixel-center x coordinate so that it stays
832
                * on or inside the major edge.
833
                */
834
               span.y++;
835
               lines--;
836
 
837
               fxLeftEdge += fdxLeftEdge;
838
               fxRightEdge += fdxRightEdge;
839
 
840
               fError += fdError;
841
               if (fError >= 0) {
842
                  fError -= FIXED_ONE;
843
 
844
#ifdef PIXEL_ADDRESS
845
                  pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowOuter);
846
#endif
847
#ifdef INTERP_Z
848
#  ifdef DEPTH_TYPE
849
                  zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowOuter);
850
#  endif
851
                  zLeft += fdzOuter;
852
#endif
853
#ifdef INTERP_RGB
854
                  rLeft += fdrOuter;
855
                  gLeft += fdgOuter;
856
                  bLeft += fdbOuter;
857
#endif
858
#ifdef INTERP_ALPHA
859
                  aLeft += fdaOuter;
860
#endif
861
#ifdef INTERP_INT_TEX
862
                  sLeft += dsOuter;
863
                  tLeft += dtOuter;
864
#endif
865
#ifdef INTERP_ATTRIBS
866
                  wLeft += dwOuter;
867
                  ATTRIB_LOOP_BEGIN
868
                     GLuint c;
869
                     for (c = 0; c < 4; c++) {
870
                        attrLeft[attr][c] += daOuter[attr][c];
871
                     }
872
                  ATTRIB_LOOP_END
873
#endif
874
               }
875
               else {
876
#ifdef PIXEL_ADDRESS
877
                  pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowInner);
878
#endif
879
#ifdef INTERP_Z
880
#  ifdef DEPTH_TYPE
881
                  zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowInner);
882
#  endif
883
                  zLeft += fdzInner;
884
#endif
885
#ifdef INTERP_RGB
886
                  rLeft += fdrInner;
887
                  gLeft += fdgInner;
888
                  bLeft += fdbInner;
889
#endif
890
#ifdef INTERP_ALPHA
891
                  aLeft += fdaInner;
892
#endif
893
#ifdef INTERP_INT_TEX
894
                  sLeft += dsInner;
895
                  tLeft += dtInner;
896
#endif
897
#ifdef INTERP_ATTRIBS
898
                  wLeft += dwInner;
899
                  ATTRIB_LOOP_BEGIN
900
                     GLuint c;
901
                     for (c = 0; c < 4; c++) {
902
                        attrLeft[attr][c] += daInner[attr][c];
903
                     }
904
                  ATTRIB_LOOP_END
905
#endif
906
               }
907
            } /*while lines>0*/
908
 
909
         } /* for subTriangle */
910
 
911
      }
912
   }
913
}
914
 
915
#undef SETUP_CODE
916
#undef RENDER_SPAN
917
 
918
#undef PIXEL_TYPE
919
#undef BYTES_PER_ROW
920
#undef PIXEL_ADDRESS
921
#undef DEPTH_TYPE
922
 
923
#undef INTERP_Z
924
#undef INTERP_RGB
925
#undef INTERP_ALPHA
926
#undef INTERP_INT_TEX
927
#undef INTERP_ATTRIBS
928
 
929
#undef S_SCALE
930
#undef T_SCALE
931
 
932
#undef FixedToDepth
933
 
934
#undef NAME