Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5205 clevermous 1
/*
2
** $Id: lopcodes.h,v 1.142 2011/07/15 12:50:29 roberto Exp $
3
** Opcodes for Lua virtual machine
4
** See Copyright Notice in lua.h
5
*/
6
 
7
#ifndef lopcodes_h
8
#define lopcodes_h
9
 
10
#include "llimits.h"
11
 
12
 
13
/*===========================================================================
14
  We assume that instructions are unsigned numbers.
15
  All instructions have an opcode in the first 6 bits.
16
  Instructions can have the following fields:
17
	`A' : 8 bits
18
	`B' : 9 bits
19
	`C' : 9 bits
20
	'Ax' : 26 bits ('A', 'B', and 'C' together)
21
	`Bx' : 18 bits (`B' and `C' together)
22
	`sBx' : signed Bx
23
 
24
  A signed argument is represented in excess K; that is, the number
25
  value is the unsigned value minus K. K is exactly the maximum value
26
  for that argument (so that -max is represented by 0, and +max is
27
  represented by 2*max), which is half the maximum for the corresponding
28
  unsigned argument.
29
===========================================================================*/
30
 
31
 
32
enum OpMode {iABC, iABx, iAsBx, iAx};  /* basic instruction format */
33
 
34
 
35
/*
36
** size and position of opcode arguments.
37
*/
38
#define SIZE_C		9
39
#define SIZE_B		9
40
#define SIZE_Bx		(SIZE_C + SIZE_B)
41
#define SIZE_A		8
42
#define SIZE_Ax		(SIZE_C + SIZE_B + SIZE_A)
43
 
44
#define SIZE_OP		6
45
 
46
#define POS_OP		0
47
#define POS_A		(POS_OP + SIZE_OP)
48
#define POS_C		(POS_A + SIZE_A)
49
#define POS_B		(POS_C + SIZE_C)
50
#define POS_Bx		POS_C
51
#define POS_Ax		POS_A
52
 
53
 
54
/*
55
** limits for opcode arguments.
56
** we use (signed) int to manipulate most arguments,
57
** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
58
*/
59
#if SIZE_Bx < LUAI_BITSINT-1
60
#define MAXARG_Bx        ((1<
61
#define MAXARG_sBx        (MAXARG_Bx>>1)         /* `sBx' is signed */
62
#else
63
#define MAXARG_Bx        MAX_INT
64
#define MAXARG_sBx        MAX_INT
65
#endif
66
 
67
#if SIZE_Ax < LUAI_BITSINT-1
68
#define MAXARG_Ax	((1<
69
#else
70
#define MAXARG_Ax	MAX_INT
71
#endif
72
 
73
 
74
#define MAXARG_A        ((1<
75
#define MAXARG_B        ((1<
76
#define MAXARG_C        ((1<
77
 
78
 
79
/* creates a mask with `n' 1 bits at position `p' */
80
#define MASK1(n,p)	((~((~(Instruction)0)<<(n)))<<(p))
81
 
82
/* creates a mask with `n' 0 bits at position `p' */
83
#define MASK0(n,p)	(~MASK1(n,p))
84
 
85
/*
86
** the following macros help to manipulate instructions
87
*/
88
 
89
#define GET_OPCODE(i)	(cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
90
#define SET_OPCODE(i,o)	((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
91
		((cast(Instruction, o)<
92
 
93
#define getarg(i,pos,size)	(cast(int, ((i)>>pos) & MASK1(size,0)))
94
#define setarg(i,v,pos,size)	((i) = (((i)&MASK0(size,pos)) | \
95
                ((cast(Instruction, v)<
96
 
97
#define GETARG_A(i)	getarg(i, POS_A, SIZE_A)
98
#define SETARG_A(i,v)	setarg(i, v, POS_A, SIZE_A)
99
 
100
#define GETARG_B(i)	getarg(i, POS_B, SIZE_B)
101
#define SETARG_B(i,v)	setarg(i, v, POS_B, SIZE_B)
102
 
103
#define GETARG_C(i)	getarg(i, POS_C, SIZE_C)
104
#define SETARG_C(i,v)	setarg(i, v, POS_C, SIZE_C)
105
 
106
#define GETARG_Bx(i)	getarg(i, POS_Bx, SIZE_Bx)
107
#define SETARG_Bx(i,v)	setarg(i, v, POS_Bx, SIZE_Bx)
108
 
109
#define GETARG_Ax(i)	getarg(i, POS_Ax, SIZE_Ax)
110
#define SETARG_Ax(i,v)	setarg(i, v, POS_Ax, SIZE_Ax)
111
 
112
#define GETARG_sBx(i)	(GETARG_Bx(i)-MAXARG_sBx)
113
#define SETARG_sBx(i,b)	SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
114
 
115
 
116
#define CREATE_ABC(o,a,b,c)	((cast(Instruction, o)<
117
			| (cast(Instruction, a)<
118
			| (cast(Instruction, b)<
119
			| (cast(Instruction, c)<
120
 
121
#define CREATE_ABx(o,a,bc)	((cast(Instruction, o)<
122
			| (cast(Instruction, a)<
123
			| (cast(Instruction, bc)<
124
 
125
#define CREATE_Ax(o,a)		((cast(Instruction, o)<
126
			| (cast(Instruction, a)<
127
 
128
 
129
/*
130
** Macros to operate RK indices
131
*/
132
 
133
/* this bit 1 means constant (0 means register) */
134
#define BITRK		(1 << (SIZE_B - 1))
135
 
136
/* test whether value is a constant */
137
#define ISK(x)		((x) & BITRK)
138
 
139
/* gets the index of the constant */
140
#define INDEXK(r)	((int)(r) & ~BITRK)
141
 
142
#define MAXINDEXRK	(BITRK - 1)
143
 
144
/* code a constant index as a RK value */
145
#define RKASK(x)	((x) | BITRK)
146
 
147
 
148
/*
149
** invalid register that fits in 8 bits
150
*/
151
#define NO_REG		MAXARG_A
152
 
153
 
154
/*
155
** R(x) - register
156
** Kst(x) - constant (in constant table)
157
** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
158
*/
159
 
160
 
161
/*
162
** grep "ORDER OP" if you change these enums
163
*/
164
 
165
typedef enum {
166
/*----------------------------------------------------------------------
167
name		args	description
168
------------------------------------------------------------------------*/
169
OP_MOVE,/*	A B	R(A) := R(B)					*/
170
OP_LOADK,/*	A Bx	R(A) := Kst(Bx)					*/
171
OP_LOADKX,/*	A 	R(A) := Kst(extra arg)				*/
172
OP_LOADBOOL,/*	A B C	R(A) := (Bool)B; if (C) pc++			*/
173
OP_LOADNIL,/*	A B	R(A), R(A+1), ..., R(A+B) := nil		*/
174
OP_GETUPVAL,/*	A B	R(A) := UpValue[B]				*/
175
 
176
OP_GETTABUP,/*	A B C	R(A) := UpValue[B][RK(C)]			*/
177
OP_GETTABLE,/*	A B C	R(A) := R(B)[RK(C)]				*/
178
 
179
OP_SETTABUP,/*	A B C	UpValue[A][RK(B)] := RK(C)			*/
180
OP_SETUPVAL,/*	A B	UpValue[B] := R(A)				*/
181
OP_SETTABLE,/*	A B C	R(A)[RK(B)] := RK(C)				*/
182
 
183
OP_NEWTABLE,/*	A B C	R(A) := {} (size = B,C)				*/
184
 
185
OP_SELF,/*	A B C	R(A+1) := R(B); R(A) := R(B)[RK(C)]		*/
186
 
187
OP_ADD,/*	A B C	R(A) := RK(B) + RK(C)				*/
188
OP_SUB,/*	A B C	R(A) := RK(B) - RK(C)				*/
189
OP_MUL,/*	A B C	R(A) := RK(B) * RK(C)				*/
190
OP_DIV,/*	A B C	R(A) := RK(B) / RK(C)				*/
191
OP_MOD,/*	A B C	R(A) := RK(B) % RK(C)				*/
192
OP_POW,/*	A B C	R(A) := RK(B) ^ RK(C)				*/
193
OP_UNM,/*	A B	R(A) := -R(B)					*/
194
OP_NOT,/*	A B	R(A) := not R(B)				*/
195
OP_LEN,/*	A B	R(A) := length of R(B)				*/
196
 
197
OP_CONCAT,/*	A B C	R(A) := R(B).. ... ..R(C)			*/
198
 
199
OP_JMP,/*	A sBx	pc+=sBx; if (A) close all upvalues >= R(A) + 1	*/
200
OP_EQ,/*	A B C	if ((RK(B) == RK(C)) ~= A) then pc++		*/
201
OP_LT,/*	A B C	if ((RK(B) <  RK(C)) ~= A) then pc++		*/
202
OP_LE,/*	A B C	if ((RK(B) <= RK(C)) ~= A) then pc++		*/
203
 
204
OP_TEST,/*	A C	if not (R(A) <=> C) then pc++			*/
205
OP_TESTSET,/*	A B C	if (R(B) <=> C) then R(A) := R(B) else pc++	*/
206
 
207
OP_CALL,/*	A B C	R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
208
OP_TAILCALL,/*	A B C	return R(A)(R(A+1), ... ,R(A+B-1))		*/
209
OP_RETURN,/*	A B	return R(A), ... ,R(A+B-2)	(see note)	*/
210
 
211
OP_FORLOOP,/*	A sBx	R(A)+=R(A+2);
212
			if R(A) 
213
OP_FORPREP,/*	A sBx	R(A)-=R(A+2); pc+=sBx				*/
214
 
215
OP_TFORCALL,/*	A C	R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));	*/
216
OP_TFORLOOP,/*	A sBx	if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/
217
 
218
OP_SETLIST,/*	A B C	R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B	*/
219
 
220
OP_CLOSURE,/*	A Bx	R(A) := closure(KPROTO[Bx])			*/
221
 
222
OP_VARARG,/*	A B	R(A), R(A+1), ..., R(A+B-2) = vararg		*/
223
 
224
OP_EXTRAARG/*	Ax	extra (larger) argument for previous opcode	*/
225
} OpCode;
226
 
227
 
228
#define NUM_OPCODES	(cast(int, OP_EXTRAARG) + 1)
229
 
230
 
231
 
232
/*===========================================================================
233
  Notes:
234
  (*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then `top' is
235
  set to last_result+1, so next open instruction (OP_CALL, OP_RETURN,
236
  OP_SETLIST) may use `top'.
237
 
238
  (*) In OP_VARARG, if (B == 0) then use actual number of varargs and
239
  set top (like in OP_CALL with C == 0).
240
 
241
  (*) In OP_RETURN, if (B == 0) then return up to `top'.
242
 
243
  (*) In OP_SETLIST, if (B == 0) then B = `top'; if (C == 0) then next
244
  'instruction' is EXTRAARG(real C).
245
 
246
  (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG.
247
 
248
  (*) For comparisons, A specifies what condition the test should accept
249
  (true or false).
250
 
251
  (*) All `skips' (pc++) assume that next instruction is a jump.
252
 
253
===========================================================================*/
254
 
255
 
256
/*
257
** masks for instruction properties. The format is:
258
** bits 0-1: op mode
259
** bits 2-3: C arg mode
260
** bits 4-5: B arg mode
261
** bit 6: instruction set register A
262
** bit 7: operator is a test (next instruction must be a jump)
263
*/
264
 
265
enum OpArgMask {
266
  OpArgN,  /* argument is not used */
267
  OpArgU,  /* argument is used */
268
  OpArgR,  /* argument is a register or a jump offset */
269
  OpArgK   /* argument is a constant or register/constant */
270
};
271
 
272
LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES];
273
 
274
#define getOpMode(m)	(cast(enum OpMode, luaP_opmodes[m] & 3))
275
#define getBMode(m)	(cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
276
#define getCMode(m)	(cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
277
#define testAMode(m)	(luaP_opmodes[m] & (1 << 6))
278
#define testTMode(m)	(luaP_opmodes[m] & (1 << 7))
279
 
280
 
281
LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1];  /* opcode names */
282
 
283
 
284
/* number of list items to accumulate before a SETLIST instruction */
285
#define LFIELDS_PER_FLUSH	50
286
 
287
 
288
#endif