Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
1896 serge 1
/* adler32.c -- compute the Adler-32 checksum of a data stream
2
 * Copyright (C) 1995-2007 Mark Adler
3
 * For conditions of distribution and use, see copyright notice in zlib.h
4
 */
5
 
6
/* @(#) $Id$ */
7
 
8
#include "zutil.h"
9
 
10
#define local static
11
 
12
local uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2);
13
 
14
#define BASE 65521UL    /* largest prime smaller than 65536 */
15
#define NMAX 5552
16
/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
17
 
18
#define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
19
#define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
20
#define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
21
#define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
22
#define DO16(buf)   DO8(buf,0); DO8(buf,8);
23
 
24
/* use NO_DIVIDE if your processor does not do division in hardware */
25
#ifdef NO_DIVIDE
26
#  define MOD(a) \
27
    do { \
28
        if (a >= (BASE << 16)) a -= (BASE << 16); \
29
        if (a >= (BASE << 15)) a -= (BASE << 15); \
30
        if (a >= (BASE << 14)) a -= (BASE << 14); \
31
        if (a >= (BASE << 13)) a -= (BASE << 13); \
32
        if (a >= (BASE << 12)) a -= (BASE << 12); \
33
        if (a >= (BASE << 11)) a -= (BASE << 11); \
34
        if (a >= (BASE << 10)) a -= (BASE << 10); \
35
        if (a >= (BASE << 9)) a -= (BASE << 9); \
36
        if (a >= (BASE << 8)) a -= (BASE << 8); \
37
        if (a >= (BASE << 7)) a -= (BASE << 7); \
38
        if (a >= (BASE << 6)) a -= (BASE << 6); \
39
        if (a >= (BASE << 5)) a -= (BASE << 5); \
40
        if (a >= (BASE << 4)) a -= (BASE << 4); \
41
        if (a >= (BASE << 3)) a -= (BASE << 3); \
42
        if (a >= (BASE << 2)) a -= (BASE << 2); \
43
        if (a >= (BASE << 1)) a -= (BASE << 1); \
44
        if (a >= BASE) a -= BASE; \
45
    } while (0)
46
#  define MOD4(a) \
47
    do { \
48
        if (a >= (BASE << 4)) a -= (BASE << 4); \
49
        if (a >= (BASE << 3)) a -= (BASE << 3); \
50
        if (a >= (BASE << 2)) a -= (BASE << 2); \
51
        if (a >= (BASE << 1)) a -= (BASE << 1); \
52
        if (a >= BASE) a -= BASE; \
53
    } while (0)
54
#else
55
#  define MOD(a) a %= BASE
56
#  define MOD4(a) a %= BASE
57
#endif
58
 
59
/* ========================================================================= */
60
uLong ZEXPORT adler32(adler, buf, len)
61
    uLong adler;
62
    const Bytef *buf;
63
    uInt len;
64
{
65
    unsigned long sum2;
66
    unsigned n;
67
 
68
    /* split Adler-32 into component sums */
69
    sum2 = (adler >> 16) & 0xffff;
70
    adler &= 0xffff;
71
 
72
    /* in case user likes doing a byte at a time, keep it fast */
73
    if (len == 1) {
74
        adler += buf[0];
75
        if (adler >= BASE)
76
            adler -= BASE;
77
        sum2 += adler;
78
        if (sum2 >= BASE)
79
            sum2 -= BASE;
80
        return adler | (sum2 << 16);
81
    }
82
 
83
    /* initial Adler-32 value (deferred check for len == 1 speed) */
84
    if (buf == Z_NULL)
85
        return 1L;
86
 
87
    /* in case short lengths are provided, keep it somewhat fast */
88
    if (len < 16) {
89
        while (len--) {
90
            adler += *buf++;
91
            sum2 += adler;
92
        }
93
        if (adler >= BASE)
94
            adler -= BASE;
95
        MOD4(sum2);             /* only added so many BASE's */
96
        return adler | (sum2 << 16);
97
    }
98
 
99
    /* do length NMAX blocks -- requires just one modulo operation */
100
    while (len >= NMAX) {
101
        len -= NMAX;
102
        n = NMAX / 16;          /* NMAX is divisible by 16 */
103
        do {
104
            DO16(buf);          /* 16 sums unrolled */
105
            buf += 16;
106
        } while (--n);
107
        MOD(adler);
108
        MOD(sum2);
109
    }
110
 
111
    /* do remaining bytes (less than NMAX, still just one modulo) */
112
    if (len) {                  /* avoid modulos if none remaining */
113
        while (len >= 16) {
114
            len -= 16;
115
            DO16(buf);
116
            buf += 16;
117
        }
118
        while (len--) {
119
            adler += *buf++;
120
            sum2 += adler;
121
        }
122
        MOD(adler);
123
        MOD(sum2);
124
    }
125
 
126
    /* return recombined sums */
127
    return adler | (sum2 << 16);
128
}
129
 
130
/* ========================================================================= */
131
local uLong adler32_combine_(adler1, adler2, len2)
132
    uLong adler1;
133
    uLong adler2;
134
    z_off64_t len2;
135
{
136
    unsigned long sum1;
137
    unsigned long sum2;
138
    unsigned rem;
139
 
140
    /* the derivation of this formula is left as an exercise for the reader */
141
    rem = (unsigned)(len2 % BASE);
142
    sum1 = adler1 & 0xffff;
143
    sum2 = rem * sum1;
144
    MOD(sum2);
145
    sum1 += (adler2 & 0xffff) + BASE - 1;
146
    sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
147
    if (sum1 >= BASE) sum1 -= BASE;
148
    if (sum1 >= BASE) sum1 -= BASE;
149
    if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1);
150
    if (sum2 >= BASE) sum2 -= BASE;
151
    return sum1 | (sum2 << 16);
152
}
153
 
154
/* ========================================================================= */
155
uLong ZEXPORT adler32_combine(adler1, adler2, len2)
156
    uLong adler1;
157
    uLong adler2;
158
    z_off_t len2;
159
{
160
    return adler32_combine_(adler1, adler2, len2);
161
}
162
 
163
uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
164
    uLong adler1;
165
    uLong adler2;
166
    z_off64_t len2;
167
{
168
    return adler32_combine_(adler1, adler2, len2);
169
}