Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
1901 serge 1
/*
2
 * Mesa 3-D graphics library
3
 * Version:  7.5
4
 *
5
 * Copyright (C) 1999-2008  Brian Paul   All Rights Reserved.
6
 * Copyright (C) 2009  VMware, Inc.  All Rights Reserved.
7
 *
8
 * Permission is hereby granted, free of charge, to any person obtaining a
9
 * copy of this software and associated documentation files (the "Software"),
10
 * to deal in the Software without restriction, including without limitation
11
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12
 * and/or sell copies of the Software, and to permit persons to whom the
13
 * Software is furnished to do so, subject to the following conditions:
14
 *
15
 * The above copyright notice and this permission notice shall be included
16
 * in all copies or substantial portions of the Software.
17
 *
18
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21
 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
22
 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24
 */
25
 
26
 
27
/**
28
 * \file swrast/s_span.c
29
 * \brief Span processing functions used by all rasterization functions.
30
 * This is where all the per-fragment tests are performed
31
 * \author Brian Paul
32
 */
33
 
34
#include "main/glheader.h"
35
#include "main/colormac.h"
36
#include "main/macros.h"
37
#include "main/imports.h"
38
#include "main/image.h"
39
 
40
#include "s_atifragshader.h"
41
#include "s_alpha.h"
42
#include "s_blend.h"
43
#include "s_context.h"
44
#include "s_depth.h"
45
#include "s_fog.h"
46
#include "s_logic.h"
47
#include "s_masking.h"
48
#include "s_fragprog.h"
49
#include "s_span.h"
50
#include "s_stencil.h"
51
#include "s_texcombine.h"
52
 
53
 
54
/**
55
 * Set default fragment attributes for the span using the
56
 * current raster values.  Used prior to glDraw/CopyPixels
57
 * and glBitmap.
58
 */
59
void
60
_swrast_span_default_attribs(struct gl_context *ctx, SWspan *span)
61
{
62
   GLchan r, g, b, a;
63
   /* Z*/
64
   {
65
      const GLfloat depthMax = ctx->DrawBuffer->_DepthMaxF;
66
      if (ctx->DrawBuffer->Visual.depthBits <= 16)
67
         span->z = FloatToFixed(ctx->Current.RasterPos[2] * depthMax + 0.5F);
68
      else {
69
         GLfloat tmpf = ctx->Current.RasterPos[2] * depthMax;
70
         tmpf = MIN2(tmpf, depthMax);
71
         span->z = (GLint)tmpf;
72
      }
73
      span->zStep = 0;
74
      span->interpMask |= SPAN_Z;
75
   }
76
 
77
   /* W (for perspective correction) */
78
   span->attrStart[FRAG_ATTRIB_WPOS][3] = 1.0;
79
   span->attrStepX[FRAG_ATTRIB_WPOS][3] = 0.0;
80
   span->attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0;
81
 
82
   /* primary color, or color index */
83
   UNCLAMPED_FLOAT_TO_CHAN(r, ctx->Current.RasterColor[0]);
84
   UNCLAMPED_FLOAT_TO_CHAN(g, ctx->Current.RasterColor[1]);
85
   UNCLAMPED_FLOAT_TO_CHAN(b, ctx->Current.RasterColor[2]);
86
   UNCLAMPED_FLOAT_TO_CHAN(a, ctx->Current.RasterColor[3]);
87
#if CHAN_TYPE == GL_FLOAT
88
   span->red = r;
89
   span->green = g;
90
   span->blue = b;
91
   span->alpha = a;
92
#else
93
   span->red   = IntToFixed(r);
94
   span->green = IntToFixed(g);
95
   span->blue  = IntToFixed(b);
96
   span->alpha = IntToFixed(a);
97
#endif
98
   span->redStep = 0;
99
   span->greenStep = 0;
100
   span->blueStep = 0;
101
   span->alphaStep = 0;
102
   span->interpMask |= SPAN_RGBA;
103
 
104
   COPY_4V(span->attrStart[FRAG_ATTRIB_COL0], ctx->Current.RasterColor);
105
   ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
106
   ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
107
 
108
   /* Secondary color */
109
   if (ctx->Light.Enabled || ctx->Fog.ColorSumEnabled)
110
   {
111
      COPY_4V(span->attrStart[FRAG_ATTRIB_COL1], ctx->Current.RasterSecondaryColor);
112
      ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
113
      ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
114
   }
115
 
116
   /* fog */
117
   {
118
      const SWcontext *swrast = SWRAST_CONTEXT(ctx);
119
      GLfloat fogVal; /* a coord or a blend factor */
120
      if (swrast->_PreferPixelFog) {
121
         /* fog blend factors will be computed from fog coordinates per pixel */
122
         fogVal = ctx->Current.RasterDistance;
123
      }
124
      else {
125
         /* fog blend factor should be computed from fogcoord now */
126
         fogVal = _swrast_z_to_fogfactor(ctx, ctx->Current.RasterDistance);
127
      }
128
      span->attrStart[FRAG_ATTRIB_FOGC][0] = fogVal;
129
      span->attrStepX[FRAG_ATTRIB_FOGC][0] = 0.0;
130
      span->attrStepY[FRAG_ATTRIB_FOGC][0] = 0.0;
131
   }
132
 
133
   /* texcoords */
134
   {
135
      GLuint i;
136
      for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) {
137
         const GLuint attr = FRAG_ATTRIB_TEX0 + i;
138
         const GLfloat *tc = ctx->Current.RasterTexCoords[i];
139
         if (ctx->FragmentProgram._Current || ctx->ATIFragmentShader._Enabled) {
140
            COPY_4V(span->attrStart[attr], tc);
141
         }
142
         else if (tc[3] > 0.0F) {
143
            /* use (s/q, t/q, r/q, 1) */
144
            span->attrStart[attr][0] = tc[0] / tc[3];
145
            span->attrStart[attr][1] = tc[1] / tc[3];
146
            span->attrStart[attr][2] = tc[2] / tc[3];
147
            span->attrStart[attr][3] = 1.0;
148
         }
149
         else {
150
            ASSIGN_4V(span->attrStart[attr], 0.0F, 0.0F, 0.0F, 1.0F);
151
         }
152
         ASSIGN_4V(span->attrStepX[attr], 0.0F, 0.0F, 0.0F, 0.0F);
153
         ASSIGN_4V(span->attrStepY[attr], 0.0F, 0.0F, 0.0F, 0.0F);
154
      }
155
   }
156
}
157
 
158
 
159
/**
160
 * Interpolate the active attributes (and'd with attrMask) to
161
 * fill in span->array->attribs[].
162
 * Perspective correction will be done.  The point/line/triangle function
163
 * should have computed attrStart/Step values for FRAG_ATTRIB_WPOS[3]!
164
 */
165
static INLINE void
166
interpolate_active_attribs(struct gl_context *ctx, SWspan *span, GLbitfield attrMask)
167
{
168
   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
169
 
170
   /*
171
    * Don't overwrite existing array values, such as colors that may have
172
    * been produced by glDraw/CopyPixels.
173
    */
174
   attrMask &= ~span->arrayAttribs;
175
 
176
   ATTRIB_LOOP_BEGIN
177
      if (attrMask & (1 << attr)) {
178
         const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
179
         GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3];
180
         const GLfloat dv0dx = span->attrStepX[attr][0];
181
         const GLfloat dv1dx = span->attrStepX[attr][1];
182
         const GLfloat dv2dx = span->attrStepX[attr][2];
183
         const GLfloat dv3dx = span->attrStepX[attr][3];
184
         GLfloat v0 = span->attrStart[attr][0] + span->leftClip * dv0dx;
185
         GLfloat v1 = span->attrStart[attr][1] + span->leftClip * dv1dx;
186
         GLfloat v2 = span->attrStart[attr][2] + span->leftClip * dv2dx;
187
         GLfloat v3 = span->attrStart[attr][3] + span->leftClip * dv3dx;
188
         GLuint k;
189
         for (k = 0; k < span->end; k++) {
190
            const GLfloat invW = 1.0f / w;
191
            span->array->attribs[attr][k][0] = v0 * invW;
192
            span->array->attribs[attr][k][1] = v1 * invW;
193
            span->array->attribs[attr][k][2] = v2 * invW;
194
            span->array->attribs[attr][k][3] = v3 * invW;
195
            v0 += dv0dx;
196
            v1 += dv1dx;
197
            v2 += dv2dx;
198
            v3 += dv3dx;
199
            w += dwdx;
200
         }
201
         ASSERT((span->arrayAttribs & (1 << attr)) == 0);
202
         span->arrayAttribs |= (1 << attr);
203
      }
204
   ATTRIB_LOOP_END
205
}
206
 
207
 
208
/**
209
 * Interpolate primary colors to fill in the span->array->rgba8 (or rgb16)
210
 * color array.
211
 */
212
static INLINE void
213
interpolate_int_colors(struct gl_context *ctx, SWspan *span)
214
{
215
   const GLuint n = span->end;
216
   GLuint i;
217
 
218
#if CHAN_BITS != 32
219
   ASSERT(!(span->arrayMask & SPAN_RGBA));
220
#endif
221
 
222
   switch (span->array->ChanType) {
223
#if CHAN_BITS != 32
224
   case GL_UNSIGNED_BYTE:
225
      {
226
         GLubyte (*rgba)[4] = span->array->rgba8;
227
         if (span->interpMask & SPAN_FLAT) {
228
            GLubyte color[4];
229
            color[RCOMP] = FixedToInt(span->red);
230
            color[GCOMP] = FixedToInt(span->green);
231
            color[BCOMP] = FixedToInt(span->blue);
232
            color[ACOMP] = FixedToInt(span->alpha);
233
            for (i = 0; i < n; i++) {
234
               COPY_4UBV(rgba[i], color);
235
            }
236
         }
237
         else {
238
            GLfixed r = span->red;
239
            GLfixed g = span->green;
240
            GLfixed b = span->blue;
241
            GLfixed a = span->alpha;
242
            GLint dr = span->redStep;
243
            GLint dg = span->greenStep;
244
            GLint db = span->blueStep;
245
            GLint da = span->alphaStep;
246
            for (i = 0; i < n; i++) {
247
               rgba[i][RCOMP] = FixedToChan(r);
248
               rgba[i][GCOMP] = FixedToChan(g);
249
               rgba[i][BCOMP] = FixedToChan(b);
250
               rgba[i][ACOMP] = FixedToChan(a);
251
               r += dr;
252
               g += dg;
253
               b += db;
254
               a += da;
255
            }
256
         }
257
      }
258
      break;
259
   case GL_UNSIGNED_SHORT:
260
      {
261
         GLushort (*rgba)[4] = span->array->rgba16;
262
         if (span->interpMask & SPAN_FLAT) {
263
            GLushort color[4];
264
            color[RCOMP] = FixedToInt(span->red);
265
            color[GCOMP] = FixedToInt(span->green);
266
            color[BCOMP] = FixedToInt(span->blue);
267
            color[ACOMP] = FixedToInt(span->alpha);
268
            for (i = 0; i < n; i++) {
269
               COPY_4V(rgba[i], color);
270
            }
271
         }
272
         else {
273
            GLushort (*rgba)[4] = span->array->rgba16;
274
            GLfixed r, g, b, a;
275
            GLint dr, dg, db, da;
276
            r = span->red;
277
            g = span->green;
278
            b = span->blue;
279
            a = span->alpha;
280
            dr = span->redStep;
281
            dg = span->greenStep;
282
            db = span->blueStep;
283
            da = span->alphaStep;
284
            for (i = 0; i < n; i++) {
285
               rgba[i][RCOMP] = FixedToChan(r);
286
               rgba[i][GCOMP] = FixedToChan(g);
287
               rgba[i][BCOMP] = FixedToChan(b);
288
               rgba[i][ACOMP] = FixedToChan(a);
289
               r += dr;
290
               g += dg;
291
               b += db;
292
               a += da;
293
            }
294
         }
295
      }
296
      break;
297
#endif
298
   case GL_FLOAT:
299
      interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
300
      break;
301
   default:
302
      _mesa_problem(NULL, "bad datatype in interpolate_int_colors");
303
   }
304
   span->arrayMask |= SPAN_RGBA;
305
}
306
 
307
 
308
/**
309
 * Populate the FRAG_ATTRIB_COL0 array.
310
 */
311
static INLINE void
312
interpolate_float_colors(SWspan *span)
313
{
314
   GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
315
   const GLuint n = span->end;
316
   GLuint i;
317
 
318
   assert(!(span->arrayAttribs & FRAG_BIT_COL0));
319
 
320
   if (span->arrayMask & SPAN_RGBA) {
321
      /* convert array of int colors */
322
      for (i = 0; i < n; i++) {
323
         col0[i][0] = UBYTE_TO_FLOAT(span->array->rgba8[i][0]);
324
         col0[i][1] = UBYTE_TO_FLOAT(span->array->rgba8[i][1]);
325
         col0[i][2] = UBYTE_TO_FLOAT(span->array->rgba8[i][2]);
326
         col0[i][3] = UBYTE_TO_FLOAT(span->array->rgba8[i][3]);
327
      }
328
   }
329
   else {
330
      /* interpolate red/green/blue/alpha to get float colors */
331
      ASSERT(span->interpMask & SPAN_RGBA);
332
      if (span->interpMask & SPAN_FLAT) {
333
         GLfloat r = FixedToFloat(span->red);
334
         GLfloat g = FixedToFloat(span->green);
335
         GLfloat b = FixedToFloat(span->blue);
336
         GLfloat a = FixedToFloat(span->alpha);
337
         for (i = 0; i < n; i++) {
338
            ASSIGN_4V(col0[i], r, g, b, a);
339
         }
340
      }
341
      else {
342
         GLfloat r = FixedToFloat(span->red);
343
         GLfloat g = FixedToFloat(span->green);
344
         GLfloat b = FixedToFloat(span->blue);
345
         GLfloat a = FixedToFloat(span->alpha);
346
         GLfloat dr = FixedToFloat(span->redStep);
347
         GLfloat dg = FixedToFloat(span->greenStep);
348
         GLfloat db = FixedToFloat(span->blueStep);
349
         GLfloat da = FixedToFloat(span->alphaStep);
350
         for (i = 0; i < n; i++) {
351
            col0[i][0] = r;
352
            col0[i][1] = g;
353
            col0[i][2] = b;
354
            col0[i][3] = a;
355
            r += dr;
356
            g += dg;
357
            b += db;
358
            a += da;
359
         }
360
      }
361
   }
362
 
363
   span->arrayAttribs |= FRAG_BIT_COL0;
364
   span->array->ChanType = GL_FLOAT;
365
}
366
 
367
 
368
 
369
/**
370
 * Fill in the span.zArray array from the span->z, zStep values.
371
 */
372
void
373
_swrast_span_interpolate_z( const struct gl_context *ctx, SWspan *span )
374
{
375
   const GLuint n = span->end;
376
   GLuint i;
377
 
378
   ASSERT(!(span->arrayMask & SPAN_Z));
379
 
380
   if (ctx->DrawBuffer->Visual.depthBits <= 16) {
381
      GLfixed zval = span->z;
382
      GLuint *z = span->array->z;
383
      for (i = 0; i < n; i++) {
384
         z[i] = FixedToInt(zval);
385
         zval += span->zStep;
386
      }
387
   }
388
   else {
389
      /* Deep Z buffer, no fixed->int shift */
390
      GLuint zval = span->z;
391
      GLuint *z = span->array->z;
392
      for (i = 0; i < n; i++) {
393
         z[i] = zval;
394
         zval += span->zStep;
395
      }
396
   }
397
   span->interpMask &= ~SPAN_Z;
398
   span->arrayMask |= SPAN_Z;
399
}
400
 
401
 
402
/**
403
 * Compute mipmap LOD from partial derivatives.
404
 * This the ideal solution, as given in the OpenGL spec.
405
 */
406
GLfloat
407
_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
408
                       GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
409
                       GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
410
{
411
   GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ);
412
   GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ);
413
   GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ);
414
   GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ);
415
   GLfloat x = SQRTF(dudx * dudx + dvdx * dvdx);
416
   GLfloat y = SQRTF(dudy * dudy + dvdy * dvdy);
417
   GLfloat rho = MAX2(x, y);
418
   GLfloat lambda = LOG2(rho);
419
   return lambda;
420
}
421
 
422
 
423
/**
424
 * Compute mipmap LOD from partial derivatives.
425
 * This is a faster approximation than above function.
426
 */
427
#if 0
428
GLfloat
429
_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
430
                     GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
431
                     GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
432
{
433
   GLfloat dsdx2 = (s + dsdx) / (q + dqdx) - s * invQ;
434
   GLfloat dtdx2 = (t + dtdx) / (q + dqdx) - t * invQ;
435
   GLfloat dsdy2 = (s + dsdy) / (q + dqdy) - s * invQ;
436
   GLfloat dtdy2 = (t + dtdy) / (q + dqdy) - t * invQ;
437
   GLfloat maxU, maxV, rho, lambda;
438
   dsdx2 = FABSF(dsdx2);
439
   dsdy2 = FABSF(dsdy2);
440
   dtdx2 = FABSF(dtdx2);
441
   dtdy2 = FABSF(dtdy2);
442
   maxU = MAX2(dsdx2, dsdy2) * texW;
443
   maxV = MAX2(dtdx2, dtdy2) * texH;
444
   rho = MAX2(maxU, maxV);
445
   lambda = LOG2(rho);
446
   return lambda;
447
}
448
#endif
449
 
450
 
451
/**
452
 * Fill in the span.array->attrib[FRAG_ATTRIB_TEXn] arrays from the
453
 * using the attrStart/Step values.
454
 *
455
 * This function only used during fixed-function fragment processing.
456
 *
457
 * Note: in the places where we divide by Q (or mult by invQ) we're
458
 * really doing two things: perspective correction and texcoord
459
 * projection.  Remember, for texcoord (s,t,r,q) we need to index
460
 * texels with (s/q, t/q, r/q).
461
 */
462
static void
463
interpolate_texcoords(struct gl_context *ctx, SWspan *span)
464
{
465
   const GLuint maxUnit
466
      = (ctx->Texture._EnabledCoordUnits > 1) ? ctx->Const.MaxTextureUnits : 1;
467
   GLuint u;
468
 
469
   /* XXX CoordUnits vs. ImageUnits */
470
   for (u = 0; u < maxUnit; u++) {
471
      if (ctx->Texture._EnabledCoordUnits & (1 << u)) {
472
         const GLuint attr = FRAG_ATTRIB_TEX0 + u;
473
         const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
474
         GLfloat texW, texH;
475
         GLboolean needLambda;
476
         GLfloat (*texcoord)[4] = span->array->attribs[attr];
477
         GLfloat *lambda = span->array->lambda[u];
478
         const GLfloat dsdx = span->attrStepX[attr][0];
479
         const GLfloat dsdy = span->attrStepY[attr][0];
480
         const GLfloat dtdx = span->attrStepX[attr][1];
481
         const GLfloat dtdy = span->attrStepY[attr][1];
482
         const GLfloat drdx = span->attrStepX[attr][2];
483
         const GLfloat dqdx = span->attrStepX[attr][3];
484
         const GLfloat dqdy = span->attrStepY[attr][3];
485
         GLfloat s = span->attrStart[attr][0] + span->leftClip * dsdx;
486
         GLfloat t = span->attrStart[attr][1] + span->leftClip * dtdx;
487
         GLfloat r = span->attrStart[attr][2] + span->leftClip * drdx;
488
         GLfloat q = span->attrStart[attr][3] + span->leftClip * dqdx;
489
 
490
         if (obj) {
491
            const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel];
492
            needLambda = (obj->MinFilter != obj->MagFilter)
493
               || ctx->FragmentProgram._Current;
494
            texW = img->WidthScale;
495
            texH = img->HeightScale;
496
         }
497
         else {
498
            /* using a fragment program */
499
            texW = 1.0;
500
            texH = 1.0;
501
            needLambda = GL_FALSE;
502
         }
503
 
504
         if (needLambda) {
505
            GLuint i;
506
            if (ctx->FragmentProgram._Current
507
                || ctx->ATIFragmentShader._Enabled) {
508
               /* do perspective correction but don't divide s, t, r by q */
509
               const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
510
               GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx;
511
               for (i = 0; i < span->end; i++) {
512
                  const GLfloat invW = 1.0F / w;
513
                  texcoord[i][0] = s * invW;
514
                  texcoord[i][1] = t * invW;
515
                  texcoord[i][2] = r * invW;
516
                  texcoord[i][3] = q * invW;
517
                  lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
518
                                                     dqdx, dqdy, texW, texH,
519
                                                     s, t, q, invW);
520
                  s += dsdx;
521
                  t += dtdx;
522
                  r += drdx;
523
                  q += dqdx;
524
                  w += dwdx;
525
               }
526
            }
527
            else {
528
               for (i = 0; i < span->end; i++) {
529
                  const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
530
                  texcoord[i][0] = s * invQ;
531
                  texcoord[i][1] = t * invQ;
532
                  texcoord[i][2] = r * invQ;
533
                  texcoord[i][3] = q;
534
                  lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
535
                                                     dqdx, dqdy, texW, texH,
536
                                                     s, t, q, invQ);
537
                  s += dsdx;
538
                  t += dtdx;
539
                  r += drdx;
540
                  q += dqdx;
541
               }
542
            }
543
            span->arrayMask |= SPAN_LAMBDA;
544
         }
545
         else {
546
            GLuint i;
547
            if (ctx->FragmentProgram._Current ||
548
                ctx->ATIFragmentShader._Enabled) {
549
               /* do perspective correction but don't divide s, t, r by q */
550
               const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
551
               GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx;
552
               for (i = 0; i < span->end; i++) {
553
                  const GLfloat invW = 1.0F / w;
554
                  texcoord[i][0] = s * invW;
555
                  texcoord[i][1] = t * invW;
556
                  texcoord[i][2] = r * invW;
557
                  texcoord[i][3] = q * invW;
558
                  lambda[i] = 0.0;
559
                  s += dsdx;
560
                  t += dtdx;
561
                  r += drdx;
562
                  q += dqdx;
563
                  w += dwdx;
564
               }
565
            }
566
            else if (dqdx == 0.0F) {
567
               /* Ortho projection or polygon's parallel to window X axis */
568
               const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
569
               for (i = 0; i < span->end; i++) {
570
                  texcoord[i][0] = s * invQ;
571
                  texcoord[i][1] = t * invQ;
572
                  texcoord[i][2] = r * invQ;
573
                  texcoord[i][3] = q;
574
                  lambda[i] = 0.0;
575
                  s += dsdx;
576
                  t += dtdx;
577
                  r += drdx;
578
               }
579
            }
580
            else {
581
               for (i = 0; i < span->end; i++) {
582
                  const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
583
                  texcoord[i][0] = s * invQ;
584
                  texcoord[i][1] = t * invQ;
585
                  texcoord[i][2] = r * invQ;
586
                  texcoord[i][3] = q;
587
                  lambda[i] = 0.0;
588
                  s += dsdx;
589
                  t += dtdx;
590
                  r += drdx;
591
                  q += dqdx;
592
               }
593
            }
594
         } /* lambda */
595
      } /* if */
596
   } /* for */
597
}
598
 
599
 
600
/**
601
 * Fill in the arrays->attribs[FRAG_ATTRIB_WPOS] array.
602
 */
603
static INLINE void
604
interpolate_wpos(struct gl_context *ctx, SWspan *span)
605
{
606
   GLfloat (*wpos)[4] = span->array->attribs[FRAG_ATTRIB_WPOS];
607
   GLuint i;
608
   const GLfloat zScale = 1.0F / ctx->DrawBuffer->_DepthMaxF;
609
   GLfloat w, dw;
610
 
611
   if (span->arrayMask & SPAN_XY) {
612
      for (i = 0; i < span->end; i++) {
613
         wpos[i][0] = (GLfloat) span->array->x[i];
614
         wpos[i][1] = (GLfloat) span->array->y[i];
615
      }
616
   }
617
   else {
618
      for (i = 0; i < span->end; i++) {
619
         wpos[i][0] = (GLfloat) span->x + i;
620
         wpos[i][1] = (GLfloat) span->y;
621
      }
622
   }
623
 
624
   dw = span->attrStepX[FRAG_ATTRIB_WPOS][3];
625
   w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dw;
626
   for (i = 0; i < span->end; i++) {
627
      wpos[i][2] = (GLfloat) span->array->z[i] * zScale;
628
      wpos[i][3] = w;
629
      w += dw;
630
   }
631
}
632
 
633
 
634
/**
635
 * Apply the current polygon stipple pattern to a span of pixels.
636
 */
637
static INLINE void
638
stipple_polygon_span(struct gl_context *ctx, SWspan *span)
639
{
640
   GLubyte *mask = span->array->mask;
641
 
642
   ASSERT(ctx->Polygon.StippleFlag);
643
 
644
   if (span->arrayMask & SPAN_XY) {
645
      /* arrays of x/y pixel coords */
646
      GLuint i;
647
      for (i = 0; i < span->end; i++) {
648
         const GLint col = span->array->x[i] % 32;
649
         const GLint row = span->array->y[i] % 32;
650
         const GLuint stipple = ctx->PolygonStipple[row];
651
         if (((1 << col) & stipple) == 0) {
652
            mask[i] = 0;
653
         }
654
      }
655
   }
656
   else {
657
      /* horizontal span of pixels */
658
      const GLuint highBit = 1 << 31;
659
      const GLuint stipple = ctx->PolygonStipple[span->y % 32];
660
      GLuint i, m = highBit >> (GLuint) (span->x % 32);
661
      for (i = 0; i < span->end; i++) {
662
         if ((m & stipple) == 0) {
663
            mask[i] = 0;
664
         }
665
         m = m >> 1;
666
         if (m == 0) {
667
            m = highBit;
668
         }
669
      }
670
   }
671
   span->writeAll = GL_FALSE;
672
}
673
 
674
 
675
/**
676
 * Clip a pixel span to the current buffer/window boundaries:
677
 * DrawBuffer->_Xmin, _Xmax, _Ymin, _Ymax.  This will accomplish
678
 * window clipping and scissoring.
679
 * Return:   GL_TRUE   some pixels still visible
680
 *           GL_FALSE  nothing visible
681
 */
682
static INLINE GLuint
683
clip_span( struct gl_context *ctx, SWspan *span )
684
{
685
   const GLint xmin = ctx->DrawBuffer->_Xmin;
686
   const GLint xmax = ctx->DrawBuffer->_Xmax;
687
   const GLint ymin = ctx->DrawBuffer->_Ymin;
688
   const GLint ymax = ctx->DrawBuffer->_Ymax;
689
 
690
   span->leftClip = 0;
691
 
692
   if (span->arrayMask & SPAN_XY) {
693
      /* arrays of x/y pixel coords */
694
      const GLint *x = span->array->x;
695
      const GLint *y = span->array->y;
696
      const GLint n = span->end;
697
      GLubyte *mask = span->array->mask;
698
      GLint i;
699
      if (span->arrayMask & SPAN_MASK) {
700
         /* note: using & intead of && to reduce branches */
701
         for (i = 0; i < n; i++) {
702
            mask[i] &= (x[i] >= xmin) & (x[i] < xmax)
703
                     & (y[i] >= ymin) & (y[i] < ymax);
704
         }
705
      }
706
      else {
707
         /* note: using & intead of && to reduce branches */
708
         for (i = 0; i < n; i++) {
709
            mask[i] = (x[i] >= xmin) & (x[i] < xmax)
710
                    & (y[i] >= ymin) & (y[i] < ymax);
711
         }
712
      }
713
      return GL_TRUE;  /* some pixels visible */
714
   }
715
   else {
716
      /* horizontal span of pixels */
717
      const GLint x = span->x;
718
      const GLint y = span->y;
719
      GLint n = span->end;
720
 
721
      /* Trivial rejection tests */
722
      if (y < ymin || y >= ymax || x + n <= xmin || x >= xmax) {
723
         span->end = 0;
724
         return GL_FALSE;  /* all pixels clipped */
725
      }
726
 
727
      /* Clip to right */
728
      if (x + n > xmax) {
729
         ASSERT(x < xmax);
730
         n = span->end = xmax - x;
731
      }
732
 
733
      /* Clip to the left */
734
      if (x < xmin) {
735
         const GLint leftClip = xmin - x;
736
         GLuint i;
737
 
738
         ASSERT(leftClip > 0);
739
         ASSERT(x + n > xmin);
740
 
741
         /* Clip 'leftClip' pixels from the left side.
742
          * The span->leftClip field will be applied when we interpolate
743
          * fragment attributes.
744
          * For arrays of values, shift them left.
745
          */
746
         for (i = 0; i < FRAG_ATTRIB_MAX; i++) {
747
            if (span->interpMask & (1 << i)) {
748
               GLuint j;
749
               for (j = 0; j < 4; j++) {
750
                  span->attrStart[i][j] += leftClip * span->attrStepX[i][j];
751
               }
752
            }
753
         }
754
 
755
         span->red += leftClip * span->redStep;
756
         span->green += leftClip * span->greenStep;
757
         span->blue += leftClip * span->blueStep;
758
         span->alpha += leftClip * span->alphaStep;
759
         span->index += leftClip * span->indexStep;
760
         span->z += leftClip * span->zStep;
761
         span->intTex[0] += leftClip * span->intTexStep[0];
762
         span->intTex[1] += leftClip * span->intTexStep[1];
763
 
764
#define SHIFT_ARRAY(ARRAY, SHIFT, LEN) \
765
         memcpy(ARRAY, ARRAY + (SHIFT), (LEN) * sizeof(ARRAY[0]))
766
 
767
         for (i = 0; i < FRAG_ATTRIB_MAX; i++) {
768
            if (span->arrayAttribs & (1 << i)) {
769
               /* shift array elements left by 'leftClip' */
770
               SHIFT_ARRAY(span->array->attribs[i], leftClip, n - leftClip);
771
            }
772
         }
773
 
774
         SHIFT_ARRAY(span->array->mask, leftClip, n - leftClip);
775
         SHIFT_ARRAY(span->array->rgba8, leftClip, n - leftClip);
776
         SHIFT_ARRAY(span->array->rgba16, leftClip, n - leftClip);
777
         SHIFT_ARRAY(span->array->x, leftClip, n - leftClip);
778
         SHIFT_ARRAY(span->array->y, leftClip, n - leftClip);
779
         SHIFT_ARRAY(span->array->z, leftClip, n - leftClip);
780
         SHIFT_ARRAY(span->array->index, leftClip, n - leftClip);
781
         for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
782
            SHIFT_ARRAY(span->array->lambda[i], leftClip, n - leftClip);
783
         }
784
         SHIFT_ARRAY(span->array->coverage, leftClip, n - leftClip);
785
 
786
#undef SHIFT_ARRAY
787
 
788
         span->leftClip = leftClip;
789
         span->x = xmin;
790
         span->end -= leftClip;
791
         span->writeAll = GL_FALSE;
792
      }
793
 
794
      ASSERT(span->x >= xmin);
795
      ASSERT(span->x + span->end <= xmax);
796
      ASSERT(span->y >= ymin);
797
      ASSERT(span->y < ymax);
798
 
799
      return GL_TRUE;  /* some pixels visible */
800
   }
801
}
802
 
803
 
804
/**
805
 * Add specular colors to primary colors.
806
 * Only called during fixed-function operation.
807
 * Result is float color array (FRAG_ATTRIB_COL0).
808
 */
809
static INLINE void
810
add_specular(struct gl_context *ctx, SWspan *span)
811
{
812
   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
813
   const GLubyte *mask = span->array->mask;
814
   GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
815
   GLfloat (*col1)[4] = span->array->attribs[FRAG_ATTRIB_COL1];
816
   GLuint i;
817
 
818
   ASSERT(!ctx->FragmentProgram._Current);
819
   ASSERT(span->arrayMask & SPAN_RGBA);
820
   ASSERT(swrast->_ActiveAttribMask & FRAG_BIT_COL1);
821
   (void) swrast; /* silence warning */
822
 
823
   if (span->array->ChanType == GL_FLOAT) {
824
      if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
825
         interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
826
      }
827
   }
828
   else {
829
      /* need float colors */
830
      if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
831
         interpolate_float_colors(span);
832
      }
833
   }
834
 
835
   if ((span->arrayAttribs & FRAG_BIT_COL1) == 0) {
836
      /* XXX could avoid this and interpolate COL1 in the loop below */
837
      interpolate_active_attribs(ctx, span, FRAG_BIT_COL1);
838
   }
839
 
840
   ASSERT(span->arrayAttribs & FRAG_BIT_COL0);
841
   ASSERT(span->arrayAttribs & FRAG_BIT_COL1);
842
 
843
   for (i = 0; i < span->end; i++) {
844
      if (mask[i]) {
845
         col0[i][0] += col1[i][0];
846
         col0[i][1] += col1[i][1];
847
         col0[i][2] += col1[i][2];
848
      }
849
   }
850
 
851
   span->array->ChanType = GL_FLOAT;
852
}
853
 
854
 
855
/**
856
 * Apply antialiasing coverage value to alpha values.
857
 */
858
static INLINE void
859
apply_aa_coverage(SWspan *span)
860
{
861
   const GLfloat *coverage = span->array->coverage;
862
   GLuint i;
863
   if (span->array->ChanType == GL_UNSIGNED_BYTE) {
864
      GLubyte (*rgba)[4] = span->array->rgba8;
865
      for (i = 0; i < span->end; i++) {
866
         const GLfloat a = rgba[i][ACOMP] * coverage[i];
867
         rgba[i][ACOMP] = (GLubyte) CLAMP(a, 0.0, 255.0);
868
         ASSERT(coverage[i] >= 0.0);
869
         ASSERT(coverage[i] <= 1.0);
870
      }
871
   }
872
   else if (span->array->ChanType == GL_UNSIGNED_SHORT) {
873
      GLushort (*rgba)[4] = span->array->rgba16;
874
      for (i = 0; i < span->end; i++) {
875
         const GLfloat a = rgba[i][ACOMP] * coverage[i];
876
         rgba[i][ACOMP] = (GLushort) CLAMP(a, 0.0, 65535.0);
877
      }
878
   }
879
   else {
880
      GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
881
      for (i = 0; i < span->end; i++) {
882
         rgba[i][ACOMP] = rgba[i][ACOMP] * coverage[i];
883
         /* clamp later */
884
      }
885
   }
886
}
887
 
888
 
889
/**
890
 * Clamp span's float colors to [0,1]
891
 */
892
static INLINE void
893
clamp_colors(SWspan *span)
894
{
895
   GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
896
   GLuint i;
897
   ASSERT(span->array->ChanType == GL_FLOAT);
898
   for (i = 0; i < span->end; i++) {
899
      rgba[i][RCOMP] = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F);
900
      rgba[i][GCOMP] = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F);
901
      rgba[i][BCOMP] = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F);
902
      rgba[i][ACOMP] = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F);
903
   }
904
}
905
 
906
 
907
/**
908
 * Convert the span's color arrays to the given type.
909
 * The only way 'output' can be greater than zero is when we have a fragment
910
 * program that writes to gl_FragData[1] or higher.
911
 * \param output  which fragment program color output is being processed
912
 */
913
static INLINE void
914
convert_color_type(SWspan *span, GLenum newType, GLuint output)
915
{
916
   GLvoid *src, *dst;
917
 
918
   if (output > 0 || span->array->ChanType == GL_FLOAT) {
919
      src = span->array->attribs[FRAG_ATTRIB_COL0 + output];
920
      span->array->ChanType = GL_FLOAT;
921
   }
922
   else if (span->array->ChanType == GL_UNSIGNED_BYTE) {
923
      src = span->array->rgba8;
924
   }
925
   else {
926
      ASSERT(span->array->ChanType == GL_UNSIGNED_SHORT);
927
      src = span->array->rgba16;
928
   }
929
 
930
   if (newType == GL_UNSIGNED_BYTE) {
931
      dst = span->array->rgba8;
932
   }
933
   else if (newType == GL_UNSIGNED_SHORT) {
934
      dst = span->array->rgba16;
935
   }
936
   else {
937
      dst = span->array->attribs[FRAG_ATTRIB_COL0];
938
   }
939
 
940
   _mesa_convert_colors(span->array->ChanType, src,
941
                        newType, dst,
942
                        span->end, span->array->mask);
943
 
944
   span->array->ChanType = newType;
945
   span->array->rgba = dst;
946
}
947
 
948
 
949
 
950
/**
951
 * Apply fragment shader, fragment program or normal texturing to span.
952
 */
953
static INLINE void
954
shade_texture_span(struct gl_context *ctx, SWspan *span)
955
{
956
   GLbitfield inputsRead;
957
 
958
   /* Determine which fragment attributes are actually needed */
959
   if (ctx->FragmentProgram._Current) {
960
      inputsRead = ctx->FragmentProgram._Current->Base.InputsRead;
961
   }
962
   else {
963
      /* XXX we could be a bit smarter about this */
964
      inputsRead = ~0;
965
   }
966
 
967
   if (ctx->FragmentProgram._Current ||
968
       ctx->ATIFragmentShader._Enabled) {
969
      /* programmable shading */
970
      if (span->primitive == GL_BITMAP && span->array->ChanType != GL_FLOAT) {
971
         convert_color_type(span, GL_FLOAT, 0);
972
      }
973
      else {
974
         span->array->rgba = (void *) span->array->attribs[FRAG_ATTRIB_COL0];
975
      }
976
 
977
      if (span->primitive != GL_POINT ||
978
	  (span->interpMask & SPAN_RGBA) ||
979
	  ctx->Point.PointSprite) {
980
         /* for single-pixel points, we populated the arrays already */
981
         interpolate_active_attribs(ctx, span, ~0);
982
      }
983
      span->array->ChanType = GL_FLOAT;
984
 
985
      if (!(span->arrayMask & SPAN_Z))
986
         _swrast_span_interpolate_z (ctx, span);
987
 
988
#if 0
989
      if (inputsRead & FRAG_BIT_WPOS)
990
#else
991
      /* XXX always interpolate wpos so that DDX/DDY work */
992
#endif
993
         interpolate_wpos(ctx, span);
994
 
995
      /* Run fragment program/shader now */
996
      if (ctx->FragmentProgram._Current) {
997
         _swrast_exec_fragment_program(ctx, span);
998
      }
999
      else {
1000
         ASSERT(ctx->ATIFragmentShader._Enabled);
1001
         _swrast_exec_fragment_shader(ctx, span);
1002
      }
1003
   }
1004
   else if (ctx->Texture._EnabledCoordUnits) {
1005
      /* conventional texturing */
1006
 
1007
#if CHAN_BITS == 32
1008
      if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1009
         interpolate_int_colors(ctx, span);
1010
      }
1011
#else
1012
      if (!(span->arrayMask & SPAN_RGBA))
1013
         interpolate_int_colors(ctx, span);
1014
#endif
1015
      if ((span->arrayAttribs & FRAG_BITS_TEX_ANY) == 0x0)
1016
         interpolate_texcoords(ctx, span);
1017
 
1018
      _swrast_texture_span(ctx, span);
1019
   }
1020
}
1021
 
1022
 
1023
 
1024
/**
1025
 * Apply all the per-fragment operations to a span.
1026
 * This now includes texturing (_swrast_write_texture_span() is history).
1027
 * This function may modify any of the array values in the span.
1028
 * span->interpMask and span->arrayMask may be changed but will be restored
1029
 * to their original values before returning.
1030
 */
1031
void
1032
_swrast_write_rgba_span( struct gl_context *ctx, SWspan *span)
1033
{
1034
   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
1035
   const GLuint *colorMask = (GLuint *) ctx->Color.ColorMask;
1036
   const GLbitfield origInterpMask = span->interpMask;
1037
   const GLbitfield origArrayMask = span->arrayMask;
1038
   const GLbitfield origArrayAttribs = span->arrayAttribs;
1039
   const GLenum origChanType = span->array->ChanType;
1040
   void * const origRgba = span->array->rgba;
1041
   const GLboolean shader = (ctx->FragmentProgram._Current
1042
                             || ctx->ATIFragmentShader._Enabled);
1043
   const GLboolean shaderOrTexture = shader || ctx->Texture._EnabledCoordUnits;
1044
   struct gl_framebuffer *fb = ctx->DrawBuffer;
1045
 
1046
   /*
1047
   printf("%s()  interp 0x%x  array 0x%x\n", __FUNCTION__,
1048
          span->interpMask, span->arrayMask);
1049
   */
1050
 
1051
   ASSERT(span->primitive == GL_POINT ||
1052
          span->primitive == GL_LINE ||
1053
	  span->primitive == GL_POLYGON ||
1054
          span->primitive == GL_BITMAP);
1055
 
1056
   /* Fragment write masks */
1057
   if (span->arrayMask & SPAN_MASK) {
1058
      /* mask was initialized by caller, probably glBitmap */
1059
      span->writeAll = GL_FALSE;
1060
   }
1061
   else {
1062
      memset(span->array->mask, 1, span->end);
1063
      span->writeAll = GL_TRUE;
1064
   }
1065
 
1066
   /* Clip to window/scissor box */
1067
   if (!clip_span(ctx, span)) {
1068
      return;
1069
   }
1070
 
1071
   ASSERT(span->end <= MAX_WIDTH);
1072
 
1073
   /* Depth bounds test */
1074
   if (ctx->Depth.BoundsTest && fb->Visual.depthBits > 0) {
1075
      if (!_swrast_depth_bounds_test(ctx, span)) {
1076
         return;
1077
      }
1078
   }
1079
 
1080
#ifdef DEBUG
1081
   /* Make sure all fragments are within window bounds */
1082
   if (span->arrayMask & SPAN_XY) {
1083
      /* array of pixel locations */
1084
      GLuint i;
1085
      for (i = 0; i < span->end; i++) {
1086
         if (span->array->mask[i]) {
1087
            assert(span->array->x[i] >= fb->_Xmin);
1088
            assert(span->array->x[i] < fb->_Xmax);
1089
            assert(span->array->y[i] >= fb->_Ymin);
1090
            assert(span->array->y[i] < fb->_Ymax);
1091
         }
1092
      }
1093
   }
1094
#endif
1095
 
1096
   /* Polygon Stippling */
1097
   if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) {
1098
      stipple_polygon_span(ctx, span);
1099
   }
1100
 
1101
   /* This is the normal place to compute the fragment color/Z
1102
    * from texturing or shading.
1103
    */
1104
   if (shaderOrTexture && !swrast->_DeferredTexture) {
1105
      shade_texture_span(ctx, span);
1106
   }
1107
 
1108
   /* Do the alpha test */
1109
   if (ctx->Color.AlphaEnabled) {
1110
      if (!_swrast_alpha_test(ctx, span)) {
1111
         /* all fragments failed test */
1112
         goto end;
1113
      }
1114
   }
1115
 
1116
   /* Stencil and Z testing */
1117
   if (ctx->Stencil._Enabled || ctx->Depth.Test) {
1118
      if (!(span->arrayMask & SPAN_Z))
1119
         _swrast_span_interpolate_z(ctx, span);
1120
 
1121
      if (ctx->Transform.DepthClamp)
1122
	 _swrast_depth_clamp_span(ctx, span);
1123
 
1124
      if (ctx->Stencil._Enabled) {
1125
         /* Combined Z/stencil tests */
1126
         if (!_swrast_stencil_and_ztest_span(ctx, span)) {
1127
            /* all fragments failed test */
1128
            goto end;
1129
         }
1130
      }
1131
      else if (fb->Visual.depthBits > 0) {
1132
         /* Just regular depth testing */
1133
         ASSERT(ctx->Depth.Test);
1134
         ASSERT(span->arrayMask & SPAN_Z);
1135
         if (!_swrast_depth_test_span(ctx, span)) {
1136
            /* all fragments failed test */
1137
            goto end;
1138
         }
1139
      }
1140
   }
1141
 
1142
   if (ctx->Query.CurrentOcclusionObject) {
1143
      /* update count of 'passed' fragments */
1144
      struct gl_query_object *q = ctx->Query.CurrentOcclusionObject;
1145
      GLuint i;
1146
      for (i = 0; i < span->end; i++)
1147
         q->Result += span->array->mask[i];
1148
   }
1149
 
1150
   /* We had to wait until now to check for glColorMask(0,0,0,0) because of
1151
    * the occlusion test.
1152
    */
1153
   if (fb->_NumColorDrawBuffers == 1 && colorMask[0] == 0x0) {
1154
      /* no colors to write */
1155
      goto end;
1156
   }
1157
 
1158
   /* If we were able to defer fragment color computation to now, there's
1159
    * a good chance that many fragments will have already been killed by
1160
    * Z/stencil testing.
1161
    */
1162
   if (shaderOrTexture && swrast->_DeferredTexture) {
1163
      shade_texture_span(ctx, span);
1164
   }
1165
 
1166
#if CHAN_BITS == 32
1167
   if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1168
      interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
1169
   }
1170
#else
1171
   if ((span->arrayMask & SPAN_RGBA) == 0) {
1172
      interpolate_int_colors(ctx, span);
1173
   }
1174
#endif
1175
 
1176
   ASSERT(span->arrayMask & SPAN_RGBA);
1177
 
1178
   if (span->primitive == GL_BITMAP || !swrast->SpecularVertexAdd) {
1179
      /* Add primary and specular (diffuse + specular) colors */
1180
      if (!shader) {
1181
         if (ctx->Fog.ColorSumEnabled ||
1182
             (ctx->Light.Enabled &&
1183
              ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) {
1184
            add_specular(ctx, span);
1185
         }
1186
      }
1187
   }
1188
 
1189
   /* Fog */
1190
   if (swrast->_FogEnabled) {
1191
      _swrast_fog_rgba_span(ctx, span);
1192
   }
1193
 
1194
   /* Antialias coverage application */
1195
   if (span->arrayMask & SPAN_COVERAGE) {
1196
      apply_aa_coverage(span);
1197
   }
1198
 
1199
   /* Clamp color/alpha values over the range [0.0, 1.0] before storage */
1200
   if (ctx->Color.ClampFragmentColor == GL_TRUE &&
1201
       span->array->ChanType == GL_FLOAT) {
1202
      clamp_colors(span);
1203
   }
1204
 
1205
   /*
1206
    * Write to renderbuffers.
1207
    * Depending on glDrawBuffer() state and the which color outputs are
1208
    * written by the fragment shader, we may either replicate one color to
1209
    * all renderbuffers or write a different color to each renderbuffer.
1210
    * multiFragOutputs=TRUE for the later case.
1211
    */
1212
   {
1213
      const GLuint numBuffers = fb->_NumColorDrawBuffers;
1214
      const struct gl_fragment_program *fp = ctx->FragmentProgram._Current;
1215
      const GLboolean multiFragOutputs =
1216
         (fp && fp->Base.OutputsWritten >= (1 << FRAG_RESULT_DATA0));
1217
      GLuint buf;
1218
 
1219
      for (buf = 0; buf < numBuffers; buf++) {
1220
         struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
1221
 
1222
         /* color[fragOutput] will be written to buffer[buf] */
1223
 
1224
         if (rb) {
1225
            GLchan rgbaSave[MAX_WIDTH][4];
1226
            const GLuint fragOutput = multiFragOutputs ? buf : 0;
1227
 
1228
            /* set span->array->rgba to colors for render buffer's datatype */
1229
            if (rb->DataType != span->array->ChanType || fragOutput > 0) {
1230
               convert_color_type(span, rb->DataType, fragOutput);
1231
            }
1232
            else {
1233
               if (rb->DataType == GL_UNSIGNED_BYTE) {
1234
                  span->array->rgba = span->array->rgba8;
1235
               }
1236
               else if (rb->DataType == GL_UNSIGNED_SHORT) {
1237
                  span->array->rgba = (void *) span->array->rgba16;
1238
               }
1239
               else {
1240
                  span->array->rgba = (void *)
1241
                     span->array->attribs[FRAG_ATTRIB_COL0];
1242
               }
1243
            }
1244
 
1245
            if (!multiFragOutputs && numBuffers > 1) {
1246
               /* save colors for second, third renderbuffer writes */
1247
               memcpy(rgbaSave, span->array->rgba,
1248
                      4 * span->end * sizeof(GLchan));
1249
            }
1250
 
1251
            ASSERT(rb->_BaseFormat == GL_RGBA || rb->_BaseFormat == GL_RGB ||
1252
		   rb->_BaseFormat == GL_ALPHA);
1253
 
1254
            if (ctx->Color._LogicOpEnabled) {
1255
               _swrast_logicop_rgba_span(ctx, rb, span);
1256
            }
1257
            else if ((ctx->Color.BlendEnabled >> buf) & 1) {
1258
               _swrast_blend_span(ctx, rb, span);
1259
            }
1260
 
1261
            if (colorMask[buf] != 0xffffffff) {
1262
               _swrast_mask_rgba_span(ctx, rb, span, buf);
1263
            }
1264
 
1265
            if (span->arrayMask & SPAN_XY) {
1266
               /* array of pixel coords */
1267
               ASSERT(rb->PutValues);
1268
               rb->PutValues(ctx, rb, span->end,
1269
                             span->array->x, span->array->y,
1270
                             span->array->rgba, span->array->mask);
1271
            }
1272
            else {
1273
               /* horizontal run of pixels */
1274
               ASSERT(rb->PutRow);
1275
               rb->PutRow(ctx, rb, span->end, span->x, span->y,
1276
                          span->array->rgba,
1277
                          span->writeAll ? NULL: span->array->mask);
1278
            }
1279
 
1280
            if (!multiFragOutputs && numBuffers > 1) {
1281
               /* restore original span values */
1282
               memcpy(span->array->rgba, rgbaSave,
1283
                      4 * span->end * sizeof(GLchan));
1284
            }
1285
 
1286
         } /* if rb */
1287
      } /* for buf */
1288
   }
1289
 
1290
end:
1291
   /* restore these values before returning */
1292
   span->interpMask = origInterpMask;
1293
   span->arrayMask = origArrayMask;
1294
   span->arrayAttribs = origArrayAttribs;
1295
   span->array->ChanType = origChanType;
1296
   span->array->rgba = origRgba;
1297
}
1298
 
1299
 
1300
/**
1301
 * Read RGBA pixels from a renderbuffer.  Clipping will be done to prevent
1302
 * reading ouside the buffer's boundaries.
1303
 * \param dstType  datatype for returned colors
1304
 * \param rgba  the returned colors
1305
 */
1306
void
1307
_swrast_read_rgba_span( struct gl_context *ctx, struct gl_renderbuffer *rb,
1308
                        GLuint n, GLint x, GLint y, GLenum dstType,
1309
                        GLvoid *rgba)
1310
{
1311
   const GLint bufWidth = (GLint) rb->Width;
1312
   const GLint bufHeight = (GLint) rb->Height;
1313
 
1314
   if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) {
1315
      /* completely above, below, or right */
1316
      /* XXX maybe leave rgba values undefined? */
1317
      memset(rgba, 0, 4 * n * sizeof(GLchan));
1318
   }
1319
   else {
1320
      GLint skip, length;
1321
      if (x < 0) {
1322
         /* left edge clipping */
1323
         skip = -x;
1324
         length = (GLint) n - skip;
1325
         if (length < 0) {
1326
            /* completely left of window */
1327
            return;
1328
         }
1329
         if (length > bufWidth) {
1330
            length = bufWidth;
1331
         }
1332
      }
1333
      else if ((GLint) (x + n) > bufWidth) {
1334
         /* right edge clipping */
1335
         skip = 0;
1336
         length = bufWidth - x;
1337
         if (length < 0) {
1338
            /* completely to right of window */
1339
            return;
1340
         }
1341
      }
1342
      else {
1343
         /* no clipping */
1344
         skip = 0;
1345
         length = (GLint) n;
1346
      }
1347
 
1348
      ASSERT(rb);
1349
      ASSERT(rb->GetRow);
1350
      ASSERT(rb->_BaseFormat == GL_RGB || rb->_BaseFormat == GL_RGBA ||
1351
	     rb->_BaseFormat == GL_ALPHA);
1352
 
1353
      if (rb->DataType == dstType) {
1354
         rb->GetRow(ctx, rb, length, x + skip, y,
1355
                    (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(rb->DataType));
1356
      }
1357
      else {
1358
         GLuint temp[MAX_WIDTH * 4];
1359
         rb->GetRow(ctx, rb, length, x + skip, y, temp);
1360
         _mesa_convert_colors(rb->DataType, temp,
1361
                   dstType, (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(dstType),
1362
                   length, NULL);
1363
      }
1364
   }
1365
}
1366
 
1367
 
1368
/**
1369
 * Wrapper for gl_renderbuffer::GetValues() which does clipping to avoid
1370
 * reading values outside the buffer bounds.
1371
 * We can use this for reading any format/type of renderbuffer.
1372
 * \param valueSize is the size in bytes of each value (pixel) put into the
1373
 *                  values array.
1374
 */
1375
void
1376
_swrast_get_values(struct gl_context *ctx, struct gl_renderbuffer *rb,
1377
                   GLuint count, const GLint x[], const GLint y[],
1378
                   void *values, GLuint valueSize)
1379
{
1380
   GLuint i, inCount = 0, inStart = 0;
1381
 
1382
   for (i = 0; i < count; i++) {
1383
      if (x[i] >= 0 && y[i] >= 0 &&
1384
	  x[i] < (GLint) rb->Width && y[i] < (GLint) rb->Height) {
1385
         /* inside */
1386
         if (inCount == 0)
1387
            inStart = i;
1388
         inCount++;
1389
      }
1390
      else {
1391
         if (inCount > 0) {
1392
            /* read [inStart, inStart + inCount) */
1393
            rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
1394
                          (GLubyte *) values + inStart * valueSize);
1395
            inCount = 0;
1396
         }
1397
      }
1398
   }
1399
   if (inCount > 0) {
1400
      /* read last values */
1401
      rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
1402
                    (GLubyte *) values + inStart * valueSize);
1403
   }
1404
}
1405
 
1406
 
1407
/**
1408
 * Wrapper for gl_renderbuffer::PutRow() which does clipping.
1409
 * \param valueSize  size of each value (pixel) in bytes
1410
 */
1411
void
1412
_swrast_put_row(struct gl_context *ctx, struct gl_renderbuffer *rb,
1413
                GLuint count, GLint x, GLint y,
1414
                const GLvoid *values, GLuint valueSize)
1415
{
1416
   GLint skip = 0;
1417
 
1418
   if (y < 0 || y >= (GLint) rb->Height)
1419
      return; /* above or below */
1420
 
1421
   if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
1422
      return; /* entirely left or right */
1423
 
1424
   if ((GLint) (x + count) > (GLint) rb->Width) {
1425
      /* right clip */
1426
      GLint clip = x + count - rb->Width;
1427
      count -= clip;
1428
   }
1429
 
1430
   if (x < 0) {
1431
      /* left clip */
1432
      skip = -x;
1433
      x = 0;
1434
      count -= skip;
1435
   }
1436
 
1437
   rb->PutRow(ctx, rb, count, x, y,
1438
              (const GLubyte *) values + skip * valueSize, NULL);
1439
}
1440
 
1441
 
1442
/**
1443
 * Wrapper for gl_renderbuffer::GetRow() which does clipping.
1444
 * \param valueSize  size of each value (pixel) in bytes
1445
 */
1446
void
1447
_swrast_get_row(struct gl_context *ctx, struct gl_renderbuffer *rb,
1448
                GLuint count, GLint x, GLint y,
1449
                GLvoid *values, GLuint valueSize)
1450
{
1451
   GLint skip = 0;
1452
 
1453
   if (y < 0 || y >= (GLint) rb->Height)
1454
      return; /* above or below */
1455
 
1456
   if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
1457
      return; /* entirely left or right */
1458
 
1459
   if (x + count > rb->Width) {
1460
      /* right clip */
1461
      GLint clip = x + count - rb->Width;
1462
      count -= clip;
1463
   }
1464
 
1465
   if (x < 0) {
1466
      /* left clip */
1467
      skip = -x;
1468
      x = 0;
1469
      count -= skip;
1470
   }
1471
 
1472
   rb->GetRow(ctx, rb, count, x, y, (GLubyte *) values + skip * valueSize);
1473
}
1474
 
1475
 
1476
/**
1477
 * Get RGBA pixels from the given renderbuffer.
1478
 * Used by blending, logicop and masking functions.
1479
 * \return pointer to the colors we read.
1480
 */
1481
void *
1482
_swrast_get_dest_rgba(struct gl_context *ctx, struct gl_renderbuffer *rb,
1483
                      SWspan *span)
1484
{
1485
   const GLuint pixelSize = RGBA_PIXEL_SIZE(span->array->ChanType);
1486
   void *rbPixels;
1487
 
1488
   /* Point rbPixels to a temporary space */
1489
   rbPixels = span->array->attribs[FRAG_ATTRIB_MAX - 1];
1490
 
1491
   /* Get destination values from renderbuffer */
1492
   if (span->arrayMask & SPAN_XY) {
1493
      _swrast_get_values(ctx, rb, span->end, span->array->x, span->array->y,
1494
                         rbPixels, pixelSize);
1495
   }
1496
   else {
1497
      _swrast_get_row(ctx, rb, span->end, span->x, span->y,
1498
                      rbPixels, pixelSize);
1499
   }
1500
 
1501
   return rbPixels;
1502
}