Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
1901 serge 1
/*
2
 * Mesa 3-D graphics library
3
 * Version:  7.5
4
 *
5
 * Copyright (C) 1999-2008  Brian Paul   All Rights Reserved.
6
 *
7
 * Permission is hereby granted, free of charge, to any person obtaining a
8
 * copy of this software and associated documentation files (the "Software"),
9
 * to deal in the Software without restriction, including without limitation
10
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11
 * and/or sell copies of the Software, and to permit persons to whom the
12
 * Software is furnished to do so, subject to the following conditions:
13
 *
14
 * The above copyright notice and this permission notice shall be included
15
 * in all copies or substantial portions of the Software.
16
 *
17
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20
 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21
 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23
 */
24
 
25
 
26
/**
27
 * \file imports.h
28
 * Standard C library function wrappers.
29
 *
30
 * This file provides wrappers for all the standard C library functions
31
 * like malloc(), free(), printf(), getenv(), etc.
32
 */
33
 
34
 
35
#ifndef IMPORTS_H
36
#define IMPORTS_H
37
 
38
 
39
#include "compiler.h"
40
#include "glheader.h"
41
 
42
 
43
#ifdef __cplusplus
44
extern "C" {
45
#endif
46
 
47
 
48
/**********************************************************************/
49
/** Memory macros */
50
/*@{*/
51
 
52
/** Allocate \p BYTES bytes */
53
#define MALLOC(BYTES)      malloc(BYTES)
54
/** Allocate and zero \p BYTES bytes */
55
#define CALLOC(BYTES)      calloc(1, BYTES)
56
/** Allocate a structure of type \p T */
57
#define MALLOC_STRUCT(T)   (struct T *) malloc(sizeof(struct T))
58
/** Allocate and zero a structure of type \p T */
59
#define CALLOC_STRUCT(T)   (struct T *) calloc(1, sizeof(struct T))
60
/** Free memory */
61
#define FREE(PTR)          free(PTR)
62
 
63
/*@}*/
64
 
65
 
66
/*
67
 * For GL_ARB_vertex_buffer_object we need to treat vertex array pointers
68
 * as offsets into buffer stores.  Since the vertex array pointer and
69
 * buffer store pointer are both pointers and we need to add them, we use
70
 * this macro.
71
 * Both pointers/offsets are expressed in bytes.
72
 */
73
#define ADD_POINTERS(A, B)  ( (GLubyte *) (A) + (uintptr_t) (B) )
74
 
75
 
76
/**
77
 * Sometimes we treat GLfloats as GLints.  On x86 systems, moving a float
78
 * as a int (thereby using integer registers instead of FP registers) is
79
 * a performance win.  Typically, this can be done with ordinary casts.
80
 * But with gcc's -fstrict-aliasing flag (which defaults to on in gcc 3.0)
81
 * these casts generate warnings.
82
 * The following union typedef is used to solve that.
83
 */
84
typedef union { GLfloat f; GLint i; } fi_type;
85
 
86
 
87
 
88
/**********************************************************************
89
 * Math macros
90
 */
91
 
92
#define MAX_GLUSHORT	0xffff
93
#define MAX_GLUINT	0xffffffff
94
 
95
/* Degrees to radians conversion: */
96
#define DEG2RAD (M_PI/180.0)
97
 
98
 
99
/***
100
 *** SQRTF: single-precision square root
101
 ***/
102
#if 0 /* _mesa_sqrtf() not accurate enough - temporarily disabled */
103
#  define SQRTF(X)  _mesa_sqrtf(X)
104
#else
105
#  define SQRTF(X)  (float) sqrt((float) (X))
106
#endif
107
 
108
 
109
/***
110
 *** INV_SQRTF: single-precision inverse square root
111
 ***/
112
#if 0
113
#define INV_SQRTF(X) _mesa_inv_sqrt(X)
114
#else
115
#define INV_SQRTF(X) (1.0F / SQRTF(X))  /* this is faster on a P4 */
116
#endif
117
 
118
 
119
/**
120
 * \name Work-arounds for platforms that lack C99 math functions
121
 */
122
/*@{*/
123
#if (!defined(_XOPEN_SOURCE) || (_XOPEN_SOURCE < 600)) && !defined(_ISOC99_SOURCE) \
124
   && (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L)) \
125
   && (!defined(_MSC_VER) || (_MSC_VER < 1400))
126
#define acosf(f) ((float) acos(f))
127
#define asinf(f) ((float) asin(f))
128
#define atan2f(x,y) ((float) atan2(x,y))
129
#define atanf(f) ((float) atan(f))
130
#define cielf(f) ((float) ciel(f))
131
#define cosf(f) ((float) cos(f))
132
#define coshf(f) ((float) cosh(f))
133
#define expf(f) ((float) exp(f))
134
#define exp2f(f) ((float) exp2(f))
135
#define floorf(f) ((float) floor(f))
136
#define logf(f) ((float) log(f))
137
#define log2f(f) ((float) log2(f))
138
#define powf(x,y) ((float) pow(x,y))
139
#define sinf(f) ((float) sin(f))
140
#define sinhf(f) ((float) sinh(f))
141
#define sqrtf(f) ((float) sqrt(f))
142
#define tanf(f) ((float) tan(f))
143
#define tanhf(f) ((float) tanh(f))
144
#define acoshf(f) ((float) acosh(f))
145
#define asinhf(f) ((float) asinh(f))
146
#define atanhf(f) ((float) atanh(f))
147
#endif
148
 
149
#if defined(_MSC_VER)
150
static INLINE float truncf(float x) { return x < 0.0f ? ceilf(x) : floorf(x); }
151
static INLINE float exp2f(float x) { return powf(2.0f, x); }
152
static INLINE float log2f(float x) { return logf(x) * 1.442695041f; }
153
static INLINE float asinhf(float x) { return logf(x + sqrtf(x * x + 1.0f)); }
154
static INLINE float acoshf(float x) { return logf(x + sqrtf(x * x - 1.0f)); }
155
static INLINE float atanhf(float x) { return (logf(1.0f + x) - logf(1.0f - x)) / 2.0f; }
156
static INLINE int isblank(int ch) { return ch == ' ' || ch == '\t'; }
157
#define strtoll(p, e, b) _strtoi64(p, e, b)
158
#endif
159
/*@}*/
160
 
161
/***
162
 *** LOG2: Log base 2 of float
163
 ***/
164
#ifdef USE_IEEE
165
#if 0
166
/* This is pretty fast, but not accurate enough (only 2 fractional bits).
167
 * Based on code from http://www.stereopsis.com/log2.html
168
 */
169
static INLINE GLfloat LOG2(GLfloat x)
170
{
171
   const GLfloat y = x * x * x * x;
172
   const GLuint ix = *((GLuint *) &y);
173
   const GLuint exp = (ix >> 23) & 0xFF;
174
   const GLint log2 = ((GLint) exp) - 127;
175
   return (GLfloat) log2 * (1.0 / 4.0);  /* 4, because of x^4 above */
176
}
177
#endif
178
/* Pretty fast, and accurate.
179
 * Based on code from http://www.flipcode.com/totd/
180
 */
181
static INLINE GLfloat LOG2(GLfloat val)
182
{
183
   fi_type num;
184
   GLint log_2;
185
   num.f = val;
186
   log_2 = ((num.i >> 23) & 255) - 128;
187
   num.i &= ~(255 << 23);
188
   num.i += 127 << 23;
189
   num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3;
190
   return num.f + log_2;
191
}
192
#else
193
/*
194
 * NOTE: log_base_2(x) = log(x) / log(2)
195
 * NOTE: 1.442695 = 1/log(2).
196
 */
197
#define LOG2(x)  ((GLfloat) (log(x) * 1.442695F))
198
#endif
199
 
200
 
201
/***
202
 *** IS_INF_OR_NAN: test if float is infinite or NaN
203
 ***/
204
#ifdef USE_IEEE
205
static INLINE int IS_INF_OR_NAN( float x )
206
{
207
   fi_type tmp;
208
   tmp.f = x;
209
   return !(int)((unsigned int)((tmp.i & 0x7fffffff)-0x7f800000) >> 31);
210
}
211
#elif defined(isfinite)
212
#define IS_INF_OR_NAN(x)        (!isfinite(x))
213
#elif defined(finite)
214
#define IS_INF_OR_NAN(x)        (!finite(x))
215
#elif defined(__VMS)
216
#define IS_INF_OR_NAN(x)        (!finite(x))
217
#elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
218
#define IS_INF_OR_NAN(x)        (!isfinite(x))
219
#else
220
#define IS_INF_OR_NAN(x)        (!finite(x))
221
#endif
222
 
223
 
224
/***
225
 *** IS_NEGATIVE: test if float is negative
226
 ***/
227
#if defined(USE_IEEE)
228
static INLINE int GET_FLOAT_BITS( float x )
229
{
230
   fi_type fi;
231
   fi.f = x;
232
   return fi.i;
233
}
234
#define IS_NEGATIVE(x) (GET_FLOAT_BITS(x) < 0)
235
#else
236
#define IS_NEGATIVE(x) (x < 0.0F)
237
#endif
238
 
239
 
240
/***
241
 *** DIFFERENT_SIGNS: test if two floats have opposite signs
242
 ***/
243
#if defined(USE_IEEE)
244
#define DIFFERENT_SIGNS(x,y) ((GET_FLOAT_BITS(x) ^ GET_FLOAT_BITS(y)) & (1<<31))
245
#else
246
/* Could just use (x*y<0) except for the flatshading requirements.
247
 * Maybe there's a better way?
248
 */
249
#define DIFFERENT_SIGNS(x,y) ((x) * (y) <= 0.0F && (x) - (y) != 0.0F)
250
#endif
251
 
252
 
253
/***
254
 *** CEILF: ceiling of float
255
 *** FLOORF: floor of float
256
 *** FABSF: absolute value of float
257
 *** LOGF: the natural logarithm (base e) of the value
258
 *** EXPF: raise e to the value
259
 *** LDEXPF: multiply value by an integral power of two
260
 *** FREXPF: extract mantissa and exponent from value
261
 ***/
262
#if defined(__gnu_linux__)
263
/* C99 functions */
264
#define CEILF(x)   ceilf(x)
265
#define FLOORF(x)  floorf(x)
266
#define FABSF(x)   fabsf(x)
267
#define LOGF(x)    logf(x)
268
#define EXPF(x)    expf(x)
269
#define LDEXPF(x,y)  ldexpf(x,y)
270
#define FREXPF(x,y)  frexpf(x,y)
271
#else
272
#define CEILF(x)   ((GLfloat) ceil(x))
273
#define FLOORF(x)  ((GLfloat) floor(x))
274
#define FABSF(x)   ((GLfloat) fabs(x))
275
#define LOGF(x)    ((GLfloat) log(x))
276
#define EXPF(x)    ((GLfloat) exp(x))
277
#define LDEXPF(x,y)  ((GLfloat) ldexp(x,y))
278
#define FREXPF(x,y)  ((GLfloat) frexp(x,y))
279
#endif
280
 
281
 
282
/***
283
 *** IROUND: return (as an integer) float rounded to nearest integer
284
 ***/
285
#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
286
static INLINE int iround(float f)
287
{
288
   int r;
289
   __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
290
   return r;
291
}
292
#define IROUND(x)  iround(x)
293
#elif defined(USE_X86_ASM) && defined(_MSC_VER)
294
static INLINE int iround(float f)
295
{
296
   int r;
297
   _asm {
298
	 fld f
299
	 fistp r
300
	}
301
   return r;
302
}
303
#define IROUND(x)  iround(x)
304
#elif defined(__WATCOMC__) && defined(__386__)
305
long iround(float f);
306
#pragma aux iround =                    \
307
	"push   eax"                        \
308
	"fistp  dword ptr [esp]"            \
309
	"pop    eax"                        \
310
	parm [8087]                         \
311
	value [eax]                         \
312
	modify exact [eax];
313
#define IROUND(x)  iround(x)
314
#else
315
#define IROUND(f)  ((int) (((f) >= 0.0F) ? ((f) + 0.5F) : ((f) - 0.5F)))
316
#endif
317
 
318
#define IROUND64(f)  ((GLint64) (((f) >= 0.0F) ? ((f) + 0.5F) : ((f) - 0.5F)))
319
 
320
/***
321
 *** IROUND_POS: return (as an integer) positive float rounded to nearest int
322
 ***/
323
#ifdef DEBUG
324
#define IROUND_POS(f) (assert((f) >= 0.0F), IROUND(f))
325
#else
326
#define IROUND_POS(f) (IROUND(f))
327
#endif
328
 
329
 
330
/***
331
 *** IFLOOR: return (as an integer) floor of float
332
 ***/
333
#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
334
/*
335
 * IEEE floor for computers that round to nearest or even.
336
 * 'f' must be between -4194304 and 4194303.
337
 * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1",
338
 * but uses some IEEE specific tricks for better speed.
339
 * Contributed by Josh Vanderhoof
340
 */
341
static INLINE int ifloor(float f)
342
{
343
   int ai, bi;
344
   double af, bf;
345
   af = (3 << 22) + 0.5 + (double)f;
346
   bf = (3 << 22) + 0.5 - (double)f;
347
   /* GCC generates an extra fstp/fld without this. */
348
   __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
349
   __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
350
   return (ai - bi) >> 1;
351
}
352
#define IFLOOR(x)  ifloor(x)
353
#elif defined(USE_IEEE)
354
static INLINE int ifloor(float f)
355
{
356
   int ai, bi;
357
   double af, bf;
358
   fi_type u;
359
 
360
   af = (3 << 22) + 0.5 + (double)f;
361
   bf = (3 << 22) + 0.5 - (double)f;
362
   u.f = (float) af;  ai = u.i;
363
   u.f = (float) bf;  bi = u.i;
364
   return (ai - bi) >> 1;
365
}
366
#define IFLOOR(x)  ifloor(x)
367
#else
368
static INLINE int ifloor(float f)
369
{
370
   int i = IROUND(f);
371
   return (i > f) ? i - 1 : i;
372
}
373
#define IFLOOR(x)  ifloor(x)
374
#endif
375
 
376
 
377
/***
378
 *** ICEIL: return (as an integer) ceiling of float
379
 ***/
380
#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
381
/*
382
 * IEEE ceil for computers that round to nearest or even.
383
 * 'f' must be between -4194304 and 4194303.
384
 * This ceil operation is done by "(iround(f + .5) + iround(f - .5) + 1) >> 1",
385
 * but uses some IEEE specific tricks for better speed.
386
 * Contributed by Josh Vanderhoof
387
 */
388
static INLINE int iceil(float f)
389
{
390
   int ai, bi;
391
   double af, bf;
392
   af = (3 << 22) + 0.5 + (double)f;
393
   bf = (3 << 22) + 0.5 - (double)f;
394
   /* GCC generates an extra fstp/fld without this. */
395
   __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
396
   __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
397
   return (ai - bi + 1) >> 1;
398
}
399
#define ICEIL(x)  iceil(x)
400
#elif defined(USE_IEEE)
401
static INLINE int iceil(float f)
402
{
403
   int ai, bi;
404
   double af, bf;
405
   fi_type u;
406
   af = (3 << 22) + 0.5 + (double)f;
407
   bf = (3 << 22) + 0.5 - (double)f;
408
   u.f = (float) af; ai = u.i;
409
   u.f = (float) bf; bi = u.i;
410
   return (ai - bi + 1) >> 1;
411
}
412
#define ICEIL(x)  iceil(x)
413
#else
414
static INLINE int iceil(float f)
415
{
416
   int i = IROUND(f);
417
   return (i < f) ? i + 1 : i;
418
}
419
#define ICEIL(x)  iceil(x)
420
#endif
421
 
422
 
423
/**
424
 * Is x a power of two?
425
 */
426
static INLINE int
427
_mesa_is_pow_two(int x)
428
{
429
   return !(x & (x - 1));
430
}
431
 
432
/**
433
 * Round given integer to next higer power of two
434
 * If X is zero result is undefined.
435
 *
436
 * Source for the fallback implementation is
437
 * Sean Eron Anderson's webpage "Bit Twiddling Hacks"
438
 * http://graphics.stanford.edu/~seander/bithacks.html
439
 *
440
 * When using builtin function have to do some work
441
 * for case when passed values 1 to prevent hiting
442
 * undefined result from __builtin_clz. Undefined
443
 * results would be different depending on optimization
444
 * level used for build.
445
 */
446
static INLINE int32_t
447
_mesa_next_pow_two_32(uint32_t x)
448
{
449
#if defined(__GNUC__) && \
450
	((__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || __GNUC__ >= 4)
451
	uint32_t y = (x != 1);
452
	return (1 + y) << ((__builtin_clz(x - y) ^ 31) );
453
#else
454
	x--;
455
	x |= x >> 1;
456
	x |= x >> 2;
457
	x |= x >> 4;
458
	x |= x >> 8;
459
	x |= x >> 16;
460
	x++;
461
	return x;
462
#endif
463
}
464
 
465
static INLINE int64_t
466
_mesa_next_pow_two_64(uint64_t x)
467
{
468
#if defined(__GNUC__) && \
469
	((__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || __GNUC__ >= 4)
470
	uint64_t y = (x != 1);
471
	if (sizeof(x) == sizeof(long))
472
		return (1 + y) << ((__builtin_clzl(x - y) ^ 63));
473
	else
474
		return (1 + y) << ((__builtin_clzll(x - y) ^ 63));
475
#else
476
	x--;
477
	x |= x >> 1;
478
	x |= x >> 2;
479
	x |= x >> 4;
480
	x |= x >> 8;
481
	x |= x >> 16;
482
	x |= x >> 32;
483
	x++;
484
	return x;
485
#endif
486
}
487
 
488
 
489
/**
490
 * Return 1 if this is a little endian machine, 0 if big endian.
491
 */
492
static INLINE GLboolean
493
_mesa_little_endian(void)
494
{
495
   const GLuint ui = 1; /* intentionally not static */
496
   return *((const GLubyte *) &ui);
497
}
498
 
499
 
500
 
501
/**********************************************************************
502
 * Functions
503
 */
504
 
505
extern void *
506
_mesa_align_malloc( size_t bytes, unsigned long alignment );
507
 
508
extern void *
509
_mesa_align_calloc( size_t bytes, unsigned long alignment );
510
 
511
extern void
512
_mesa_align_free( void *ptr );
513
 
514
extern void *
515
_mesa_align_realloc(void *oldBuffer, size_t oldSize, size_t newSize,
516
                    unsigned long alignment);
517
 
518
extern void *
519
_mesa_exec_malloc( GLuint size );
520
 
521
extern void
522
_mesa_exec_free( void *addr );
523
 
524
extern void *
525
_mesa_realloc( void *oldBuffer, size_t oldSize, size_t newSize );
526
 
527
extern void
528
_mesa_memset16( unsigned short *dst, unsigned short val, size_t n );
529
 
530
extern double
531
_mesa_sqrtd(double x);
532
 
533
extern float
534
_mesa_sqrtf(float x);
535
 
536
extern float
537
_mesa_inv_sqrtf(float x);
538
 
539
extern void
540
_mesa_init_sqrt_table(void);
541
 
542
extern int
543
_mesa_ffs(int32_t i);
544
 
545
extern int
546
_mesa_ffsll(int64_t i);
547
 
548
extern unsigned int
549
_mesa_bitcount(unsigned int n);
550
 
551
extern GLhalfARB
552
_mesa_float_to_half(float f);
553
 
554
extern float
555
_mesa_half_to_float(GLhalfARB h);
556
 
557
 
558
extern void *
559
_mesa_bsearch( const void *key, const void *base, size_t nmemb, size_t size,
560
               int (*compar)(const void *, const void *) );
561
 
562
extern char *
563
_mesa_getenv( const char *var );
564
 
565
extern char *
566
_mesa_strdup( const char *s );
567
 
568
extern float
569
_mesa_strtof( const char *s, char **end );
570
 
571
extern unsigned int
572
_mesa_str_checksum(const char *str);
573
 
574
extern int
575
_mesa_snprintf( char *str, size_t size, const char *fmt, ... ) PRINTFLIKE(3, 4);
576
 
577
struct gl_context;
578
 
579
extern void
580
_mesa_warning( struct gl_context *gc, const char *fmtString, ... ) PRINTFLIKE(2, 3);
581
 
582
extern void
583
_mesa_problem( const struct gl_context *ctx, const char *fmtString, ... ) PRINTFLIKE(2, 3);
584
 
585
extern void
586
_mesa_error( struct gl_context *ctx, GLenum error, const char *fmtString, ... ) PRINTFLIKE(3, 4);
587
 
588
extern void
589
_mesa_debug( const struct gl_context *ctx, const char *fmtString, ... ) PRINTFLIKE(2, 3);
590
 
591
 
592
#if defined(_MSC_VER) && !defined(snprintf)
593
#define snprintf _snprintf
594
#endif
595
 
596
 
597
#ifdef __cplusplus
598
}
599
#endif
600
 
601
 
602
#endif /* IMPORTS_H */