Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5197 serge 1
/* linker.c -- BFD linker routines
2
   Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3
   2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4
   Free Software Foundation, Inc.
5
   Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
6
 
7
   This file is part of BFD, the Binary File Descriptor library.
8
 
9
   This program is free software; you can redistribute it and/or modify
10
   it under the terms of the GNU General Public License as published by
11
   the Free Software Foundation; either version 3 of the License, or
12
   (at your option) any later version.
13
 
14
   This program is distributed in the hope that it will be useful,
15
   but WITHOUT ANY WARRANTY; without even the implied warranty of
16
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
   GNU General Public License for more details.
18
 
19
   You should have received a copy of the GNU General Public License
20
   along with this program; if not, write to the Free Software
21
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22
   MA 02110-1301, USA.  */
23
 
24
#include "sysdep.h"
25
#include "bfd.h"
26
#include "libbfd.h"
27
#include "bfdlink.h"
28
#include "genlink.h"
29
 
30
/*
31
SECTION
32
	Linker Functions
33
 
34
@cindex Linker
35
	The linker uses three special entry points in the BFD target
36
	vector.  It is not necessary to write special routines for
37
	these entry points when creating a new BFD back end, since
38
	generic versions are provided.  However, writing them can
39
	speed up linking and make it use significantly less runtime
40
	memory.
41
 
42
	The first routine creates a hash table used by the other
43
	routines.  The second routine adds the symbols from an object
44
	file to the hash table.  The third routine takes all the
45
	object files and links them together to create the output
46
	file.  These routines are designed so that the linker proper
47
	does not need to know anything about the symbols in the object
48
	files that it is linking.  The linker merely arranges the
49
	sections as directed by the linker script and lets BFD handle
50
	the details of symbols and relocs.
51
 
52
	The second routine and third routines are passed a pointer to
53
	a <> structure (defined in
54
	<>) which holds information relevant to the link,
55
	including the linker hash table (which was created by the
56
	first routine) and a set of callback functions to the linker
57
	proper.
58
 
59
	The generic linker routines are in <>, and use the
60
	header file <>.  As of this writing, the only back
61
	ends which have implemented versions of these routines are
62
	a.out (in <>) and ECOFF (in <>).  The a.out
63
	routines are used as examples throughout this section.
64
 
65
@menu
66
@* Creating a Linker Hash Table::
67
@* Adding Symbols to the Hash Table::
68
@* Performing the Final Link::
69
@end menu
70
 
71
INODE
72
Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
73
SUBSECTION
74
	Creating a linker hash table
75
 
76
@cindex _bfd_link_hash_table_create in target vector
77
@cindex target vector (_bfd_link_hash_table_create)
78
	The linker routines must create a hash table, which must be
79
	derived from <> described in
80
	<>.  @xref{Hash Tables}, for information on how to
81
	create a derived hash table.  This entry point is called using
82
	the target vector of the linker output file.
83
 
84
	The <<_bfd_link_hash_table_create>> entry point must allocate
85
	and initialize an instance of the desired hash table.  If the
86
	back end does not require any additional information to be
87
	stored with the entries in the hash table, the entry point may
88
	simply create a <>.  Most likely,
89
	however, some additional information will be needed.
90
 
91
	For example, with each entry in the hash table the a.out
92
	linker keeps the index the symbol has in the final output file
93
	(this index number is used so that when doing a relocatable
94
	link the symbol index used in the output file can be quickly
95
	filled in when copying over a reloc).  The a.out linker code
96
	defines the required structures and functions for a hash table
97
	derived from <>.  The a.out linker
98
	hash table is created by the function
99
	<>; it simply allocates
100
	space for the hash table, initializes it, and returns a
101
	pointer to it.
102
 
103
	When writing the linker routines for a new back end, you will
104
	generally not know exactly which fields will be required until
105
	you have finished.  You should simply create a new hash table
106
	which defines no additional fields, and then simply add fields
107
	as they become necessary.
108
 
109
INODE
110
Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
111
SUBSECTION
112
	Adding symbols to the hash table
113
 
114
@cindex _bfd_link_add_symbols in target vector
115
@cindex target vector (_bfd_link_add_symbols)
116
	The linker proper will call the <<_bfd_link_add_symbols>>
117
	entry point for each object file or archive which is to be
118
	linked (typically these are the files named on the command
119
	line, but some may also come from the linker script).  The
120
	entry point is responsible for examining the file.  For an
121
	object file, BFD must add any relevant symbol information to
122
	the hash table.  For an archive, BFD must determine which
123
	elements of the archive should be used and adding them to the
124
	link.
125
 
126
	The a.out version of this entry point is
127
	<>.
128
 
129
@menu
130
@* Differing file formats::
131
@* Adding symbols from an object file::
132
@* Adding symbols from an archive::
133
@end menu
134
 
135
INODE
136
Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
137
SUBSUBSECTION
138
	Differing file formats
139
 
140
	Normally all the files involved in a link will be of the same
141
	format, but it is also possible to link together different
142
	format object files, and the back end must support that.  The
143
	<<_bfd_link_add_symbols>> entry point is called via the target
144
	vector of the file to be added.  This has an important
145
	consequence: the function may not assume that the hash table
146
	is the type created by the corresponding
147
	<<_bfd_link_hash_table_create>> vector.  All the
148
	<<_bfd_link_add_symbols>> function can assume about the hash
149
	table is that it is derived from <
150
	bfd_link_hash_table>>.
151
 
152
	Sometimes the <<_bfd_link_add_symbols>> function must store
153
	some information in the hash table entry to be used by the
154
	<<_bfd_final_link>> function.  In such a case the output bfd
155
	xvec must be checked to make sure that the hash table was
156
	created by an object file of the same format.
157
 
158
	The <<_bfd_final_link>> routine must be prepared to handle a
159
	hash entry without any extra information added by the
160
	<<_bfd_link_add_symbols>> function.  A hash entry without
161
	extra information will also occur when the linker script
162
	directs the linker to create a symbol.  Note that, regardless
163
	of how a hash table entry is added, all the fields will be
164
	initialized to some sort of null value by the hash table entry
165
	initialization function.
166
 
167
	See <> for an example of how to
168
	check the output bfd before saving information (in this
169
	case, the ECOFF external symbol debugging information) in a
170
	hash table entry.
171
 
172
INODE
173
Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
174
SUBSUBSECTION
175
	Adding symbols from an object file
176
 
177
	When the <<_bfd_link_add_symbols>> routine is passed an object
178
	file, it must add all externally visible symbols in that
179
	object file to the hash table.  The actual work of adding the
180
	symbol to the hash table is normally handled by the function
181
	<<_bfd_generic_link_add_one_symbol>>.  The
182
	<<_bfd_link_add_symbols>> routine is responsible for reading
183
	all the symbols from the object file and passing the correct
184
	information to <<_bfd_generic_link_add_one_symbol>>.
185
 
186
	The <<_bfd_link_add_symbols>> routine should not use
187
	<> to read the symbols.  The point of
188
	providing this routine is to avoid the overhead of converting
189
	the symbols into generic <> structures.
190
 
191
@findex _bfd_generic_link_add_one_symbol
192
	<<_bfd_generic_link_add_one_symbol>> handles the details of
193
	combining common symbols, warning about multiple definitions,
194
	and so forth.  It takes arguments which describe the symbol to
195
	add, notably symbol flags, a section, and an offset.  The
196
	symbol flags include such things as <> or
197
	<>.  The section is a section in the object
198
	file, or something like <> for an undefined
199
	symbol or <> for a common symbol.
200
 
201
	If the <<_bfd_final_link>> routine is also going to need to
202
	read the symbol information, the <<_bfd_link_add_symbols>>
203
	routine should save it somewhere attached to the object file
204
	BFD.  However, the information should only be saved if the
205
	<> field of the <> argument is TRUE, so
206
	that the <<-no-keep-memory>> linker switch is effective.
207
 
208
	The a.out function which adds symbols from an object file is
209
	<>, and most of the interesting
210
	work is in <>.  The latter saves
211
	pointers to the hash tables entries created by
212
	<<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
213
	so that the <<_bfd_final_link>> routine does not have to call
214
	the hash table lookup routine to locate the entry.
215
 
216
INODE
217
Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
218
SUBSUBSECTION
219
	Adding symbols from an archive
220
 
221
	When the <<_bfd_link_add_symbols>> routine is passed an
222
	archive, it must look through the symbols defined by the
223
	archive and decide which elements of the archive should be
224
	included in the link.  For each such element it must call the
225
	<> linker callback, and it must add the
226
	symbols from the object file to the linker hash table.  (The
227
	callback may in fact indicate that a replacement BFD should be
228
	used, in which case the symbols from that BFD should be added
229
	to the linker hash table instead.)
230
 
231
@findex _bfd_generic_link_add_archive_symbols
232
	In most cases the work of looking through the symbols in the
233
	archive should be done by the
234
	<<_bfd_generic_link_add_archive_symbols>> function.  This
235
	function builds a hash table from the archive symbol table and
236
	looks through the list of undefined symbols to see which
237
	elements should be included.
238
	<<_bfd_generic_link_add_archive_symbols>> is passed a function
239
	to call to make the final decision about adding an archive
240
	element to the link and to do the actual work of adding the
241
	symbols to the linker hash table.
242
 
243
	The function passed to
244
	<<_bfd_generic_link_add_archive_symbols>> must read the
245
	symbols of the archive element and decide whether the archive
246
	element should be included in the link.  If the element is to
247
	be included, the <> linker callback
248
	routine must be called with the element as an argument, and
249
	the element's symbols must be added to the linker hash table
250
	just as though the element had itself been passed to the
251
	<<_bfd_link_add_symbols>> function.  The <>
252
	callback has the option to indicate that it would like to
253
	replace the element archive with a substitute BFD, in which
254
	case it is the symbols of that substitute BFD that must be
255
	added to the linker hash table instead.
256
 
257
	When the a.out <<_bfd_link_add_symbols>> function receives an
258
	archive, it calls <<_bfd_generic_link_add_archive_symbols>>
259
	passing <> as the function
260
	argument. <> calls
261
	<>.  If the latter decides to add
262
	the element (an element is only added if it provides a real,
263
	non-common, definition for a previously undefined or common
264
	symbol) it calls the <> callback and then
265
	<> calls
266
	<> to actually add the symbols to the
267
	linker hash table - possibly those of a substitute BFD, if the
268
	<> callback avails itself of that option.
269
 
270
	The ECOFF back end is unusual in that it does not normally
271
	call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
272
	archives already contain a hash table of symbols.  The ECOFF
273
	back end searches the archive itself to avoid the overhead of
274
	creating a new hash table.
275
 
276
INODE
277
Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
278
SUBSECTION
279
	Performing the final link
280
 
281
@cindex _bfd_link_final_link in target vector
282
@cindex target vector (_bfd_final_link)
283
	When all the input files have been processed, the linker calls
284
	the <<_bfd_final_link>> entry point of the output BFD.  This
285
	routine is responsible for producing the final output file,
286
	which has several aspects.  It must relocate the contents of
287
	the input sections and copy the data into the output sections.
288
	It must build an output symbol table including any local
289
	symbols from the input files and the global symbols from the
290
	hash table.  When producing relocatable output, it must
291
	modify the input relocs and write them into the output file.
292
	There may also be object format dependent work to be done.
293
 
294
	The linker will also call the <> entry
295
	point when the BFD is closed.  The two entry points must work
296
	together in order to produce the correct output file.
297
 
298
	The details of how this works are inevitably dependent upon
299
	the specific object file format.  The a.out
300
	<<_bfd_final_link>> routine is <>.
301
 
302
@menu
303
@* Information provided by the linker::
304
@* Relocating the section contents::
305
@* Writing the symbol table::
306
@end menu
307
 
308
INODE
309
Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
310
SUBSUBSECTION
311
	Information provided by the linker
312
 
313
	Before the linker calls the <<_bfd_final_link>> entry point,
314
	it sets up some data structures for the function to use.
315
 
316
	The <> field of the <> structure
317
	will point to a list of all the input files included in the
318
	link.  These files are linked through the <> field
319
	of the <> structure.
320
 
321
	Each section in the output file will have a list of
322
	<> structures attached to the <>
323
	field (the <> structure is defined in
324
	<>).  These structures describe how to create the
325
	contents of the output section in terms of the contents of
326
	various input sections, fill constants, and, eventually, other
327
	types of information.  They also describe relocs that must be
328
	created by the BFD backend, but do not correspond to any input
329
	file; this is used to support -Ur, which builds constructors
330
	while generating a relocatable object file.
331
 
332
INODE
333
Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
334
SUBSUBSECTION
335
	Relocating the section contents
336
 
337
	The <<_bfd_final_link>> function should look through the
338
	<> structures attached to each section of the
339
	output file.  Each <> structure should either be
340
	handled specially, or it should be passed to the function
341
	<<_bfd_default_link_order>> which will do the right thing
342
	(<<_bfd_default_link_order>> is defined in <>).
343
 
344
	For efficiency, a <> of type
345
	<> whose associated section belongs
346
	to a BFD of the same format as the output BFD must be handled
347
	specially.  This type of <> describes part of an
348
	output section in terms of a section belonging to one of the
349
	input files.  The <<_bfd_final_link>> function should read the
350
	contents of the section and any associated relocs, apply the
351
	relocs to the section contents, and write out the modified
352
	section contents.  If performing a relocatable link, the
353
	relocs themselves must also be modified and written out.
354
 
355
@findex _bfd_relocate_contents
356
@findex _bfd_final_link_relocate
357
	The functions <<_bfd_relocate_contents>> and
358
	<<_bfd_final_link_relocate>> provide some general support for
359
	performing the actual relocations, notably overflow checking.
360
	Their arguments include information about the symbol the
361
	relocation is against and a <> argument
362
	which describes the relocation to perform.  These functions
363
	are defined in <>.
364
 
365
	The a.out function which handles reading, relocating, and
366
	writing section contents is <>.  The
367
	actual relocation is done in <>
368
	and <>.
369
 
370
INODE
371
Writing the symbol table, , Relocating the section contents, Performing the Final Link
372
SUBSUBSECTION
373
	Writing the symbol table
374
 
375
	The <<_bfd_final_link>> function must gather all the symbols
376
	in the input files and write them out.  It must also write out
377
	all the symbols in the global hash table.  This must be
378
	controlled by the <> and <> fields of the
379
	<> structure.
380
 
381
	The local symbols of the input files will not have been
382
	entered into the linker hash table.  The <<_bfd_final_link>>
383
	routine must consider each input file and include the symbols
384
	in the output file.  It may be convenient to do this when
385
	looking through the <> structures, or it may be
386
	done by stepping through the <> list.
387
 
388
	The <<_bfd_final_link>> routine must also traverse the global
389
	hash table to gather all the externally visible symbols.  It
390
	is possible that most of the externally visible symbols may be
391
	written out when considering the symbols of each input file,
392
	but it is still necessary to traverse the hash table since the
393
	linker script may have defined some symbols that are not in
394
	any of the input files.
395
 
396
	The <> field of the <> structure
397
	controls which symbols are written out.  The possible values
398
	are listed in <>.  If the value is <>,
399
	then the <> field of the <>
400
	structure is a hash table of symbols to keep; each symbol
401
	should be looked up in this hash table, and only symbols which
402
	are present should be included in the output file.
403
 
404
	If the <> field of the <> structure
405
	permits local symbols to be written out, the <> field
406
	is used to further controls which local symbols are included
407
	in the output file.  If the value is <>, then all
408
	local symbols which begin with a certain prefix are discarded;
409
	this is controlled by the <> entry point.
410
 
411
	The a.out backend handles symbols by calling
412
	<> on each input BFD and then
413
	traversing the global hash table with the function
414
	<>.  It builds a string table
415
	while writing out the symbols, which is written to the output
416
	file at the end of <>.
417
*/
418
 
419
static bfd_boolean generic_link_add_object_symbols
420
  (bfd *, struct bfd_link_info *, bfd_boolean collect);
421
static bfd_boolean generic_link_add_symbols
422
  (bfd *, struct bfd_link_info *, bfd_boolean);
423
static bfd_boolean generic_link_check_archive_element_no_collect
424
  (bfd *, struct bfd_link_info *, bfd_boolean *);
425
static bfd_boolean generic_link_check_archive_element_collect
426
  (bfd *, struct bfd_link_info *, bfd_boolean *);
427
static bfd_boolean generic_link_check_archive_element
428
  (bfd *, struct bfd_link_info *, bfd_boolean *, bfd_boolean);
429
static bfd_boolean generic_link_add_symbol_list
430
  (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
431
   bfd_boolean);
432
static bfd_boolean generic_add_output_symbol
433
  (bfd *, size_t *psymalloc, asymbol *);
434
static bfd_boolean default_data_link_order
435
  (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
436
static bfd_boolean default_indirect_link_order
437
  (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
438
   bfd_boolean);
439
 
440
/* The link hash table structure is defined in bfdlink.h.  It provides
441
   a base hash table which the backend specific hash tables are built
442
   upon.  */
443
 
444
/* Routine to create an entry in the link hash table.  */
445
 
446
struct bfd_hash_entry *
447
_bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
448
			struct bfd_hash_table *table,
449
			const char *string)
450
{
451
  /* Allocate the structure if it has not already been allocated by a
452
     subclass.  */
453
  if (entry == NULL)
454
    {
455
      entry = (struct bfd_hash_entry *)
456
          bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
457
      if (entry == NULL)
458
	return entry;
459
    }
460
 
461
  /* Call the allocation method of the superclass.  */
462
  entry = bfd_hash_newfunc (entry, table, string);
463
  if (entry)
464
    {
465
      struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
466
 
467
      /* Initialize the local fields.  */
468
      memset ((char *) &h->root + sizeof (h->root), 0,
469
	      sizeof (*h) - sizeof (h->root));
470
    }
471
 
472
  return entry;
473
}
474
 
475
/* Initialize a link hash table.  The BFD argument is the one
476
   responsible for creating this table.  */
477
 
478
bfd_boolean
479
_bfd_link_hash_table_init
480
  (struct bfd_link_hash_table *table,
481
   bfd *abfd ATTRIBUTE_UNUSED,
482
   struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
483
				      struct bfd_hash_table *,
484
				      const char *),
485
   unsigned int entsize)
486
{
487
  table->undefs = NULL;
488
  table->undefs_tail = NULL;
489
  table->type = bfd_link_generic_hash_table;
490
 
491
  return bfd_hash_table_init (&table->table, newfunc, entsize);
492
}
493
 
494
/* Look up a symbol in a link hash table.  If follow is TRUE, we
495
   follow bfd_link_hash_indirect and bfd_link_hash_warning links to
496
   the real symbol.  */
497
 
498
struct bfd_link_hash_entry *
499
bfd_link_hash_lookup (struct bfd_link_hash_table *table,
500
		      const char *string,
501
		      bfd_boolean create,
502
		      bfd_boolean copy,
503
		      bfd_boolean follow)
504
{
505
  struct bfd_link_hash_entry *ret;
506
 
507
  ret = ((struct bfd_link_hash_entry *)
508
	 bfd_hash_lookup (&table->table, string, create, copy));
509
 
510
  if (follow && ret != NULL)
511
    {
512
      while (ret->type == bfd_link_hash_indirect
513
	     || ret->type == bfd_link_hash_warning)
514
	ret = ret->u.i.link;
515
    }
516
 
517
  return ret;
518
}
519
 
520
/* Look up a symbol in the main linker hash table if the symbol might
521
   be wrapped.  This should only be used for references to an
522
   undefined symbol, not for definitions of a symbol.  */
523
 
524
struct bfd_link_hash_entry *
525
bfd_wrapped_link_hash_lookup (bfd *abfd,
526
			      struct bfd_link_info *info,
527
			      const char *string,
528
			      bfd_boolean create,
529
			      bfd_boolean copy,
530
			      bfd_boolean follow)
531
{
532
  bfd_size_type amt;
533
 
534
  if (info->wrap_hash != NULL)
535
    {
536
      const char *l;
537
      char prefix = '\0';
538
 
539
      l = string;
540
      if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
541
	{
542
	  prefix = *l;
543
	  ++l;
544
	}
545
 
546
#undef WRAP
547
#define WRAP "__wrap_"
548
 
549
      if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
550
	{
551
	  char *n;
552
	  struct bfd_link_hash_entry *h;
553
 
554
	  /* This symbol is being wrapped.  We want to replace all
555
             references to SYM with references to __wrap_SYM.  */
556
 
557
	  amt = strlen (l) + sizeof WRAP + 1;
558
	  n = (char *) bfd_malloc (amt);
559
	  if (n == NULL)
560
	    return NULL;
561
 
562
	  n[0] = prefix;
563
	  n[1] = '\0';
564
	  strcat (n, WRAP);
565
	  strcat (n, l);
566
	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
567
	  free (n);
568
	  return h;
569
	}
570
 
571
#undef WRAP
572
 
573
#undef  REAL
574
#define REAL "__real_"
575
 
576
      if (*l == '_'
577
	  && CONST_STRNEQ (l, REAL)
578
	  && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
579
			      FALSE, FALSE) != NULL)
580
	{
581
	  char *n;
582
	  struct bfd_link_hash_entry *h;
583
 
584
	  /* This is a reference to __real_SYM, where SYM is being
585
             wrapped.  We want to replace all references to __real_SYM
586
             with references to SYM.  */
587
 
588
	  amt = strlen (l + sizeof REAL - 1) + 2;
589
	  n = (char *) bfd_malloc (amt);
590
	  if (n == NULL)
591
	    return NULL;
592
 
593
	  n[0] = prefix;
594
	  n[1] = '\0';
595
	  strcat (n, l + sizeof REAL - 1);
596
	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
597
	  free (n);
598
	  return h;
599
	}
600
 
601
#undef REAL
602
    }
603
 
604
  return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
605
}
606
 
607
/* Traverse a generic link hash table.  Differs from bfd_hash_traverse
608
   in the treatment of warning symbols.  When warning symbols are
609
   created they replace the real symbol, so you don't get to see the
610
   real symbol in a bfd_hash_travere.  This traversal calls func with
611
   the real symbol.  */
612
 
613
void
614
bfd_link_hash_traverse
615
  (struct bfd_link_hash_table *htab,
616
   bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
617
   void *info)
618
{
619
  unsigned int i;
620
 
621
  htab->table.frozen = 1;
622
  for (i = 0; i < htab->table.size; i++)
623
    {
624
      struct bfd_link_hash_entry *p;
625
 
626
      p = (struct bfd_link_hash_entry *) htab->table.table[i];
627
      for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
628
	if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
629
	  goto out;
630
    }
631
 out:
632
  htab->table.frozen = 0;
633
}
634
 
635
/* Add a symbol to the linker hash table undefs list.  */
636
 
637
void
638
bfd_link_add_undef (struct bfd_link_hash_table *table,
639
		    struct bfd_link_hash_entry *h)
640
{
641
  BFD_ASSERT (h->u.undef.next == NULL);
642
  if (table->undefs_tail != NULL)
643
    table->undefs_tail->u.undef.next = h;
644
  if (table->undefs == NULL)
645
    table->undefs = h;
646
  table->undefs_tail = h;
647
}
648
 
649
/* The undefs list was designed so that in normal use we don't need to
650
   remove entries.  However, if symbols on the list are changed from
651
   bfd_link_hash_undefined to either bfd_link_hash_undefweak or
652
   bfd_link_hash_new for some reason, then they must be removed from the
653
   list.  Failure to do so might result in the linker attempting to add
654
   the symbol to the list again at a later stage.  */
655
 
656
void
657
bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
658
{
659
  struct bfd_link_hash_entry **pun;
660
 
661
  pun = &table->undefs;
662
  while (*pun != NULL)
663
    {
664
      struct bfd_link_hash_entry *h = *pun;
665
 
666
      if (h->type == bfd_link_hash_new
667
	  || h->type == bfd_link_hash_undefweak)
668
	{
669
	  *pun = h->u.undef.next;
670
	  h->u.undef.next = NULL;
671
	  if (h == table->undefs_tail)
672
	    {
673
	      if (pun == &table->undefs)
674
		table->undefs_tail = NULL;
675
	      else
676
		/* pun points at an u.undef.next field.  Go back to
677
		   the start of the link_hash_entry.  */
678
		table->undefs_tail = (struct bfd_link_hash_entry *)
679
		  ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
680
	      break;
681
	    }
682
	}
683
      else
684
	pun = &h->u.undef.next;
685
    }
686
}
687
 
688
/* Routine to create an entry in a generic link hash table.  */
689
 
690
struct bfd_hash_entry *
691
_bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
692
				struct bfd_hash_table *table,
693
				const char *string)
694
{
695
  /* Allocate the structure if it has not already been allocated by a
696
     subclass.  */
697
  if (entry == NULL)
698
    {
699
      entry = (struct bfd_hash_entry *)
700
	bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
701
      if (entry == NULL)
702
	return entry;
703
    }
704
 
705
  /* Call the allocation method of the superclass.  */
706
  entry = _bfd_link_hash_newfunc (entry, table, string);
707
  if (entry)
708
    {
709
      struct generic_link_hash_entry *ret;
710
 
711
      /* Set local fields.  */
712
      ret = (struct generic_link_hash_entry *) entry;
713
      ret->written = FALSE;
714
      ret->sym = NULL;
715
    }
716
 
717
  return entry;
718
}
719
 
720
/* Create a generic link hash table.  */
721
 
722
struct bfd_link_hash_table *
723
_bfd_generic_link_hash_table_create (bfd *abfd)
724
{
725
  struct generic_link_hash_table *ret;
726
  bfd_size_type amt = sizeof (struct generic_link_hash_table);
727
 
728
  ret = (struct generic_link_hash_table *) bfd_malloc (amt);
729
  if (ret == NULL)
730
    return NULL;
731
  if (! _bfd_link_hash_table_init (&ret->root, abfd,
732
				   _bfd_generic_link_hash_newfunc,
733
				   sizeof (struct generic_link_hash_entry)))
734
    {
735
      free (ret);
736
      return NULL;
737
    }
738
  return &ret->root;
739
}
740
 
741
void
742
_bfd_generic_link_hash_table_free (struct bfd_link_hash_table *hash)
743
{
744
  struct generic_link_hash_table *ret
745
    = (struct generic_link_hash_table *) hash;
746
 
747
  bfd_hash_table_free (&ret->root.table);
748
  free (ret);
749
}
750
 
751
/* Grab the symbols for an object file when doing a generic link.  We
752
   store the symbols in the outsymbols field.  We need to keep them
753
   around for the entire link to ensure that we only read them once.
754
   If we read them multiple times, we might wind up with relocs and
755
   the hash table pointing to different instances of the symbol
756
   structure.  */
757
 
758
bfd_boolean
759
bfd_generic_link_read_symbols (bfd *abfd)
760
{
761
  if (bfd_get_outsymbols (abfd) == NULL)
762
    {
763
      long symsize;
764
      long symcount;
765
 
766
      symsize = bfd_get_symtab_upper_bound (abfd);
767
      if (symsize < 0)
768
	return FALSE;
769
      bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
770
                                                                    symsize);
771
      if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
772
	return FALSE;
773
      symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
774
      if (symcount < 0)
775
	return FALSE;
776
      bfd_get_symcount (abfd) = symcount;
777
    }
778
 
779
  return TRUE;
780
}
781
 
782
/* Generic function to add symbols to from an object file to the
783
   global hash table.  This version does not automatically collect
784
   constructors by name.  */
785
 
786
bfd_boolean
787
_bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
788
{
789
  return generic_link_add_symbols (abfd, info, FALSE);
790
}
791
 
792
/* Generic function to add symbols from an object file to the global
793
   hash table.  This version automatically collects constructors by
794
   name, as the collect2 program does.  It should be used for any
795
   target which does not provide some other mechanism for setting up
796
   constructors and destructors; these are approximately those targets
797
   for which gcc uses collect2 and do not support stabs.  */
798
 
799
bfd_boolean
800
_bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
801
{
802
  return generic_link_add_symbols (abfd, info, TRUE);
803
}
804
 
805
/* Indicate that we are only retrieving symbol values from this
806
   section.  We want the symbols to act as though the values in the
807
   file are absolute.  */
808
 
809
void
810
_bfd_generic_link_just_syms (asection *sec,
811
			     struct bfd_link_info *info ATTRIBUTE_UNUSED)
812
{
813
  sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
814
  sec->output_section = bfd_abs_section_ptr;
815
  sec->output_offset = sec->vma;
816
}
817
 
818
/* Copy the type of a symbol assiciated with a linker hast table entry.
819
   Override this so that symbols created in linker scripts get their
820
   type from the RHS of the assignment.
821
   The default implementation does nothing.  */
822
void
823
_bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
824
    struct bfd_link_hash_entry * hdest ATTRIBUTE_UNUSED,
825
    struct bfd_link_hash_entry * hsrc ATTRIBUTE_UNUSED)
826
{
827
}
828
 
829
/* Add symbols from an object file to the global hash table.  */
830
 
831
static bfd_boolean
832
generic_link_add_symbols (bfd *abfd,
833
			  struct bfd_link_info *info,
834
			  bfd_boolean collect)
835
{
836
  bfd_boolean ret;
837
 
838
  switch (bfd_get_format (abfd))
839
    {
840
    case bfd_object:
841
      ret = generic_link_add_object_symbols (abfd, info, collect);
842
      break;
843
    case bfd_archive:
844
      ret = (_bfd_generic_link_add_archive_symbols
845
	     (abfd, info,
846
	      (collect
847
	       ? generic_link_check_archive_element_collect
848
	       : generic_link_check_archive_element_no_collect)));
849
      break;
850
    default:
851
      bfd_set_error (bfd_error_wrong_format);
852
      ret = FALSE;
853
    }
854
 
855
  return ret;
856
}
857
 
858
/* Add symbols from an object file to the global hash table.  */
859
 
860
static bfd_boolean
861
generic_link_add_object_symbols (bfd *abfd,
862
				 struct bfd_link_info *info,
863
				 bfd_boolean collect)
864
{
865
  bfd_size_type symcount;
866
  struct bfd_symbol **outsyms;
867
 
868
  if (!bfd_generic_link_read_symbols (abfd))
869
    return FALSE;
870
  symcount = _bfd_generic_link_get_symcount (abfd);
871
  outsyms = _bfd_generic_link_get_symbols (abfd);
872
  return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
873
}
874
 
875
/* We build a hash table of all symbols defined in an archive.  */
876
 
877
/* An archive symbol may be defined by multiple archive elements.
878
   This linked list is used to hold the elements.  */
879
 
880
struct archive_list
881
{
882
  struct archive_list *next;
883
  unsigned int indx;
884
};
885
 
886
/* An entry in an archive hash table.  */
887
 
888
struct archive_hash_entry
889
{
890
  struct bfd_hash_entry root;
891
  /* Where the symbol is defined.  */
892
  struct archive_list *defs;
893
};
894
 
895
/* An archive hash table itself.  */
896
 
897
struct archive_hash_table
898
{
899
  struct bfd_hash_table table;
900
};
901
 
902
/* Create a new entry for an archive hash table.  */
903
 
904
static struct bfd_hash_entry *
905
archive_hash_newfunc (struct bfd_hash_entry *entry,
906
		      struct bfd_hash_table *table,
907
		      const char *string)
908
{
909
  struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
910
 
911
  /* Allocate the structure if it has not already been allocated by a
912
     subclass.  */
913
  if (ret == NULL)
914
    ret = (struct archive_hash_entry *)
915
        bfd_hash_allocate (table, sizeof (struct archive_hash_entry));
916
  if (ret == NULL)
917
    return NULL;
918
 
919
  /* Call the allocation method of the superclass.  */
920
  ret = ((struct archive_hash_entry *)
921
	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
922
 
923
  if (ret)
924
    {
925
      /* Initialize the local fields.  */
926
      ret->defs = NULL;
927
    }
928
 
929
  return &ret->root;
930
}
931
 
932
/* Initialize an archive hash table.  */
933
 
934
static bfd_boolean
935
archive_hash_table_init
936
  (struct archive_hash_table *table,
937
   struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
938
				      struct bfd_hash_table *,
939
				      const char *),
940
   unsigned int entsize)
941
{
942
  return bfd_hash_table_init (&table->table, newfunc, entsize);
943
}
944
 
945
/* Look up an entry in an archive hash table.  */
946
 
947
#define archive_hash_lookup(t, string, create, copy) \
948
  ((struct archive_hash_entry *) \
949
   bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
950
 
951
/* Allocate space in an archive hash table.  */
952
 
953
#define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
954
 
955
/* Free an archive hash table.  */
956
 
957
#define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
958
 
959
/* Generic function to add symbols from an archive file to the global
960
   hash file.  This function presumes that the archive symbol table
961
   has already been read in (this is normally done by the
962
   bfd_check_format entry point).  It looks through the undefined and
963
   common symbols and searches the archive symbol table for them.  If
964
   it finds an entry, it includes the associated object file in the
965
   link.
966
 
967
   The old linker looked through the archive symbol table for
968
   undefined symbols.  We do it the other way around, looking through
969
   undefined symbols for symbols defined in the archive.  The
970
   advantage of the newer scheme is that we only have to look through
971
   the list of undefined symbols once, whereas the old method had to
972
   re-search the symbol table each time a new object file was added.
973
 
974
   The CHECKFN argument is used to see if an object file should be
975
   included.  CHECKFN should set *PNEEDED to TRUE if the object file
976
   should be included, and must also call the bfd_link_info
977
   add_archive_element callback function and handle adding the symbols
978
   to the global hash table.  CHECKFN must notice if the callback
979
   indicates a substitute BFD, and arrange to add those symbols instead
980
   if it does so.  CHECKFN should only return FALSE if some sort of
981
   error occurs.
982
 
983
   For some formats, such as a.out, it is possible to look through an
984
   object file but not actually include it in the link.  The
985
   archive_pass field in a BFD is used to avoid checking the symbols
986
   of an object files too many times.  When an object is included in
987
   the link, archive_pass is set to -1.  If an object is scanned but
988
   not included, archive_pass is set to the pass number.  The pass
989
   number is incremented each time a new object file is included.  The
990
   pass number is used because when a new object file is included it
991
   may create new undefined symbols which cause a previously examined
992
   object file to be included.  */
993
 
994
bfd_boolean
995
_bfd_generic_link_add_archive_symbols
996
  (bfd *abfd,
997
   struct bfd_link_info *info,
998
   bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, bfd_boolean *))
999
{
1000
  carsym *arsyms;
1001
  carsym *arsym_end;
1002
  register carsym *arsym;
1003
  int pass;
1004
  struct archive_hash_table arsym_hash;
1005
  unsigned int indx;
1006
  struct bfd_link_hash_entry **pundef;
1007
 
1008
  if (! bfd_has_map (abfd))
1009
    {
1010
      /* An empty archive is a special case.  */
1011
      if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
1012
	return TRUE;
1013
      bfd_set_error (bfd_error_no_armap);
1014
      return FALSE;
1015
    }
1016
 
1017
  arsyms = bfd_ardata (abfd)->symdefs;
1018
  arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
1019
 
1020
  /* In order to quickly determine whether an symbol is defined in
1021
     this archive, we build a hash table of the symbols.  */
1022
  if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc,
1023
				 sizeof (struct archive_hash_entry)))
1024
    return FALSE;
1025
  for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
1026
    {
1027
      struct archive_hash_entry *arh;
1028
      struct archive_list *l, **pp;
1029
 
1030
      arh = archive_hash_lookup (&arsym_hash, arsym->name, TRUE, FALSE);
1031
      if (arh == NULL)
1032
	goto error_return;
1033
      l = ((struct archive_list *)
1034
	   archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
1035
      if (l == NULL)
1036
	goto error_return;
1037
      l->indx = indx;
1038
      for (pp = &arh->defs; *pp != NULL; pp = &(*pp)->next)
1039
	;
1040
      *pp = l;
1041
      l->next = NULL;
1042
    }
1043
 
1044
  /* The archive_pass field in the archive itself is used to
1045
     initialize PASS, sine we may search the same archive multiple
1046
     times.  */
1047
  pass = abfd->archive_pass + 1;
1048
 
1049
  /* New undefined symbols are added to the end of the list, so we
1050
     only need to look through it once.  */
1051
  pundef = &info->hash->undefs;
1052
  while (*pundef != NULL)
1053
    {
1054
      struct bfd_link_hash_entry *h;
1055
      struct archive_hash_entry *arh;
1056
      struct archive_list *l;
1057
 
1058
      h = *pundef;
1059
 
1060
      /* When a symbol is defined, it is not necessarily removed from
1061
	 the list.  */
1062
      if (h->type != bfd_link_hash_undefined
1063
	  && h->type != bfd_link_hash_common)
1064
	{
1065
	  /* Remove this entry from the list, for general cleanliness
1066
	     and because we are going to look through the list again
1067
	     if we search any more libraries.  We can't remove the
1068
	     entry if it is the tail, because that would lose any
1069
	     entries we add to the list later on (it would also cause
1070
	     us to lose track of whether the symbol has been
1071
	     referenced).  */
1072
	  if (*pundef != info->hash->undefs_tail)
1073
	    *pundef = (*pundef)->u.undef.next;
1074
	  else
1075
	    pundef = &(*pundef)->u.undef.next;
1076
	  continue;
1077
	}
1078
 
1079
      /* Look for this symbol in the archive symbol map.  */
1080
      arh = archive_hash_lookup (&arsym_hash, h->root.string, FALSE, FALSE);
1081
      if (arh == NULL)
1082
	{
1083
	  /* If we haven't found the exact symbol we're looking for,
1084
	     let's look for its import thunk */
1085
	  if (info->pei386_auto_import)
1086
	    {
1087
	      bfd_size_type amt = strlen (h->root.string) + 10;
1088
	      char *buf = (char *) bfd_malloc (amt);
1089
	      if (buf == NULL)
1090
		return FALSE;
1091
 
1092
	      sprintf (buf, "__imp_%s", h->root.string);
1093
	      arh = archive_hash_lookup (&arsym_hash, buf, FALSE, FALSE);
1094
	      free(buf);
1095
	    }
1096
	  if (arh == NULL)
1097
	    {
1098
	      pundef = &(*pundef)->u.undef.next;
1099
	      continue;
1100
	    }
1101
	}
1102
      /* Look at all the objects which define this symbol.  */
1103
      for (l = arh->defs; l != NULL; l = l->next)
1104
	{
1105
	  bfd *element;
1106
	  bfd_boolean needed;
1107
 
1108
	  /* If the symbol has gotten defined along the way, quit.  */
1109
	  if (h->type != bfd_link_hash_undefined
1110
	      && h->type != bfd_link_hash_common)
1111
	    break;
1112
 
1113
	  element = bfd_get_elt_at_index (abfd, l->indx);
1114
	  if (element == NULL)
1115
	    goto error_return;
1116
 
1117
	  /* If we've already included this element, or if we've
1118
	     already checked it on this pass, continue.  */
1119
	  if (element->archive_pass == -1
1120
	      || element->archive_pass == pass)
1121
	    continue;
1122
 
1123
	  /* If we can't figure this element out, just ignore it.  */
1124
	  if (! bfd_check_format (element, bfd_object))
1125
	    {
1126
	      element->archive_pass = -1;
1127
	      continue;
1128
	    }
1129
 
1130
	  /* CHECKFN will see if this element should be included, and
1131
	     go ahead and include it if appropriate.  */
1132
	  if (! (*checkfn) (element, info, &needed))
1133
	    goto error_return;
1134
 
1135
	  if (! needed)
1136
	    element->archive_pass = pass;
1137
	  else
1138
	    {
1139
	      element->archive_pass = -1;
1140
 
1141
	      /* Increment the pass count to show that we may need to
1142
		 recheck object files which were already checked.  */
1143
	      ++pass;
1144
	    }
1145
	}
1146
 
1147
      pundef = &(*pundef)->u.undef.next;
1148
    }
1149
 
1150
  archive_hash_table_free (&arsym_hash);
1151
 
1152
  /* Save PASS in case we are called again.  */
1153
  abfd->archive_pass = pass;
1154
 
1155
  return TRUE;
1156
 
1157
 error_return:
1158
  archive_hash_table_free (&arsym_hash);
1159
  return FALSE;
1160
}
1161
 
1162
/* See if we should include an archive element.  This version is used
1163
   when we do not want to automatically collect constructors based on
1164
   the symbol name, presumably because we have some other mechanism
1165
   for finding them.  */
1166
 
1167
static bfd_boolean
1168
generic_link_check_archive_element_no_collect (
1169
					       bfd *abfd,
1170
					       struct bfd_link_info *info,
1171
					       bfd_boolean *pneeded)
1172
{
1173
  return generic_link_check_archive_element (abfd, info, pneeded, FALSE);
1174
}
1175
 
1176
/* See if we should include an archive element.  This version is used
1177
   when we want to automatically collect constructors based on the
1178
   symbol name, as collect2 does.  */
1179
 
1180
static bfd_boolean
1181
generic_link_check_archive_element_collect (bfd *abfd,
1182
					    struct bfd_link_info *info,
1183
					    bfd_boolean *pneeded)
1184
{
1185
  return generic_link_check_archive_element (abfd, info, pneeded, TRUE);
1186
}
1187
 
1188
/* See if we should include an archive element.  Optionally collect
1189
   constructors.  */
1190
 
1191
static bfd_boolean
1192
generic_link_check_archive_element (bfd *abfd,
1193
				    struct bfd_link_info *info,
1194
				    bfd_boolean *pneeded,
1195
				    bfd_boolean collect)
1196
{
1197
  asymbol **pp, **ppend;
1198
 
1199
  *pneeded = FALSE;
1200
 
1201
  if (!bfd_generic_link_read_symbols (abfd))
1202
    return FALSE;
1203
 
1204
  pp = _bfd_generic_link_get_symbols (abfd);
1205
  ppend = pp + _bfd_generic_link_get_symcount (abfd);
1206
  for (; pp < ppend; pp++)
1207
    {
1208
      asymbol *p;
1209
      struct bfd_link_hash_entry *h;
1210
 
1211
      p = *pp;
1212
 
1213
      /* We are only interested in globally visible symbols.  */
1214
      if (! bfd_is_com_section (p->section)
1215
	  && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1216
	continue;
1217
 
1218
      /* We are only interested if we know something about this
1219
	 symbol, and it is undefined or common.  An undefined weak
1220
	 symbol (type bfd_link_hash_undefweak) is not considered to be
1221
	 a reference when pulling files out of an archive.  See the
1222
	 SVR4 ABI, p. 4-27.  */
1223
      h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1224
				FALSE, TRUE);
1225
      if (h == NULL
1226
	  || (h->type != bfd_link_hash_undefined
1227
	      && h->type != bfd_link_hash_common))
1228
	continue;
1229
 
1230
      /* P is a symbol we are looking for.  */
1231
 
1232
      if (! bfd_is_com_section (p->section))
1233
	{
1234
	  bfd_size_type symcount;
1235
	  asymbol **symbols;
1236
	  bfd *oldbfd = abfd;
1237
 
1238
	  /* This object file defines this symbol, so pull it in.  */
1239
	  if (!(*info->callbacks
1240
		->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1241
					&abfd))
1242
	    return FALSE;
1243
	  /* Potentially, the add_archive_element hook may have set a
1244
	     substitute BFD for us.  */
1245
	  if (abfd != oldbfd
1246
	      && !bfd_generic_link_read_symbols (abfd))
1247
	    return FALSE;
1248
	  symcount = _bfd_generic_link_get_symcount (abfd);
1249
	  symbols = _bfd_generic_link_get_symbols (abfd);
1250
	  if (! generic_link_add_symbol_list (abfd, info, symcount,
1251
					      symbols, collect))
1252
	    return FALSE;
1253
	  *pneeded = TRUE;
1254
	  return TRUE;
1255
	}
1256
 
1257
      /* P is a common symbol.  */
1258
 
1259
      if (h->type == bfd_link_hash_undefined)
1260
	{
1261
	  bfd *symbfd;
1262
	  bfd_vma size;
1263
	  unsigned int power;
1264
 
1265
	  symbfd = h->u.undef.abfd;
1266
	  if (symbfd == NULL)
1267
	    {
1268
	      /* This symbol was created as undefined from outside
1269
		 BFD.  We assume that we should link in the object
1270
		 file.  This is for the -u option in the linker.  */
1271
	      if (!(*info->callbacks
1272
		    ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1273
					    &abfd))
1274
		return FALSE;
1275
	      /* Potentially, the add_archive_element hook may have set a
1276
		 substitute BFD for us.  But no symbols are going to get
1277
		 registered by anything we're returning to from here.  */
1278
	      *pneeded = TRUE;
1279
	      return TRUE;
1280
	    }
1281
 
1282
	  /* Turn the symbol into a common symbol but do not link in
1283
	     the object file.  This is how a.out works.  Object
1284
	     formats that require different semantics must implement
1285
	     this function differently.  This symbol is already on the
1286
	     undefs list.  We add the section to a common section
1287
	     attached to symbfd to ensure that it is in a BFD which
1288
	     will be linked in.  */
1289
	  h->type = bfd_link_hash_common;
1290
	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1291
	    bfd_hash_allocate (&info->hash->table,
1292
			       sizeof (struct bfd_link_hash_common_entry));
1293
	  if (h->u.c.p == NULL)
1294
	    return FALSE;
1295
 
1296
	  size = bfd_asymbol_value (p);
1297
	  h->u.c.size = size;
1298
 
1299
	  power = bfd_log2 (size);
1300
	  if (power > 4)
1301
	    power = 4;
1302
	  h->u.c.p->alignment_power = power;
1303
 
1304
	  if (p->section == bfd_com_section_ptr)
1305
	    h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1306
	  else
1307
	    h->u.c.p->section = bfd_make_section_old_way (symbfd,
1308
							  p->section->name);
1309
	  h->u.c.p->section->flags |= SEC_ALLOC;
1310
	}
1311
      else
1312
	{
1313
	  /* Adjust the size of the common symbol if necessary.  This
1314
	     is how a.out works.  Object formats that require
1315
	     different semantics must implement this function
1316
	     differently.  */
1317
	  if (bfd_asymbol_value (p) > h->u.c.size)
1318
	    h->u.c.size = bfd_asymbol_value (p);
1319
	}
1320
    }
1321
 
1322
  /* This archive element is not needed.  */
1323
  return TRUE;
1324
}
1325
 
1326
/* Add the symbols from an object file to the global hash table.  ABFD
1327
   is the object file.  INFO is the linker information.  SYMBOL_COUNT
1328
   is the number of symbols.  SYMBOLS is the list of symbols.  COLLECT
1329
   is TRUE if constructors should be automatically collected by name
1330
   as is done by collect2.  */
1331
 
1332
static bfd_boolean
1333
generic_link_add_symbol_list (bfd *abfd,
1334
			      struct bfd_link_info *info,
1335
			      bfd_size_type symbol_count,
1336
			      asymbol **symbols,
1337
			      bfd_boolean collect)
1338
{
1339
  asymbol **pp, **ppend;
1340
 
1341
  pp = symbols;
1342
  ppend = symbols + symbol_count;
1343
  for (; pp < ppend; pp++)
1344
    {
1345
      asymbol *p;
1346
 
1347
      p = *pp;
1348
 
1349
      if ((p->flags & (BSF_INDIRECT
1350
		       | BSF_WARNING
1351
		       | BSF_GLOBAL
1352
		       | BSF_CONSTRUCTOR
1353
		       | BSF_WEAK)) != 0
1354
	  || bfd_is_und_section (bfd_get_section (p))
1355
	  || bfd_is_com_section (bfd_get_section (p))
1356
	  || bfd_is_ind_section (bfd_get_section (p)))
1357
	{
1358
	  const char *name;
1359
	  const char *string;
1360
	  struct generic_link_hash_entry *h;
1361
	  struct bfd_link_hash_entry *bh;
1362
 
1363
	  string = name = bfd_asymbol_name (p);
1364
	  if (((p->flags & BSF_INDIRECT) != 0
1365
	       || bfd_is_ind_section (p->section))
1366
	      && pp + 1 < ppend)
1367
	    {
1368
	      pp++;
1369
	      string = bfd_asymbol_name (*pp);
1370
	    }
1371
	  else if ((p->flags & BSF_WARNING) != 0
1372
		   && pp + 1 < ppend)
1373
	    {
1374
	      /* The name of P is actually the warning string, and the
1375
		 next symbol is the one to warn about.  */
1376
	      pp++;
1377
	      name = bfd_asymbol_name (*pp);
1378
	    }
1379
 
1380
	  bh = NULL;
1381
	  if (! (_bfd_generic_link_add_one_symbol
1382
		 (info, abfd, name, p->flags, bfd_get_section (p),
1383
		  p->value, string, FALSE, collect, &bh)))
1384
	    return FALSE;
1385
	  h = (struct generic_link_hash_entry *) bh;
1386
 
1387
	  /* If this is a constructor symbol, and the linker didn't do
1388
             anything with it, then we want to just pass the symbol
1389
             through to the output file.  This will happen when
1390
             linking with -r.  */
1391
	  if ((p->flags & BSF_CONSTRUCTOR) != 0
1392
	      && (h == NULL || h->root.type == bfd_link_hash_new))
1393
	    {
1394
	      p->udata.p = NULL;
1395
	      continue;
1396
	    }
1397
 
1398
	  /* Save the BFD symbol so that we don't lose any backend
1399
	     specific information that may be attached to it.  We only
1400
	     want this one if it gives more information than the
1401
	     existing one; we don't want to replace a defined symbol
1402
	     with an undefined one.  This routine may be called with a
1403
	     hash table other than the generic hash table, so we only
1404
	     do this if we are certain that the hash table is a
1405
	     generic one.  */
1406
	  if (info->output_bfd->xvec == abfd->xvec)
1407
	    {
1408
	      if (h->sym == NULL
1409
		  || (! bfd_is_und_section (bfd_get_section (p))
1410
		      && (! bfd_is_com_section (bfd_get_section (p))
1411
			  || bfd_is_und_section (bfd_get_section (h->sym)))))
1412
		{
1413
		  h->sym = p;
1414
		  /* BSF_OLD_COMMON is a hack to support COFF reloc
1415
		     reading, and it should go away when the COFF
1416
		     linker is switched to the new version.  */
1417
		  if (bfd_is_com_section (bfd_get_section (p)))
1418
		    p->flags |= BSF_OLD_COMMON;
1419
		}
1420
	    }
1421
 
1422
	  /* Store a back pointer from the symbol to the hash
1423
	     table entry for the benefit of relaxation code until
1424
	     it gets rewritten to not use asymbol structures.
1425
	     Setting this is also used to check whether these
1426
	     symbols were set up by the generic linker.  */
1427
	  p->udata.p = h;
1428
	}
1429
    }
1430
 
1431
  return TRUE;
1432
}
1433
 
1434
/* We use a state table to deal with adding symbols from an object
1435
   file.  The first index into the state table describes the symbol
1436
   from the object file.  The second index into the state table is the
1437
   type of the symbol in the hash table.  */
1438
 
1439
/* The symbol from the object file is turned into one of these row
1440
   values.  */
1441
 
1442
enum link_row
1443
{
1444
  UNDEF_ROW,		/* Undefined.  */
1445
  UNDEFW_ROW,		/* Weak undefined.  */
1446
  DEF_ROW,		/* Defined.  */
1447
  DEFW_ROW,		/* Weak defined.  */
1448
  COMMON_ROW,		/* Common.  */
1449
  INDR_ROW,		/* Indirect.  */
1450
  WARN_ROW,		/* Warning.  */
1451
  SET_ROW		/* Member of set.  */
1452
};
1453
 
1454
/* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1455
#undef FAIL
1456
 
1457
/* The actions to take in the state table.  */
1458
 
1459
enum link_action
1460
{
1461
  FAIL,		/* Abort.  */
1462
  UND,		/* Mark symbol undefined.  */
1463
  WEAK,		/* Mark symbol weak undefined.  */
1464
  DEF,		/* Mark symbol defined.  */
1465
  DEFW,		/* Mark symbol weak defined.  */
1466
  COM,		/* Mark symbol common.  */
1467
  REF,		/* Mark defined symbol referenced.  */
1468
  CREF,		/* Possibly warn about common reference to defined symbol.  */
1469
  CDEF,		/* Define existing common symbol.  */
1470
  NOACT,	/* No action.  */
1471
  BIG,		/* Mark symbol common using largest size.  */
1472
  MDEF,		/* Multiple definition error.  */
1473
  MIND,		/* Multiple indirect symbols.  */
1474
  IND,		/* Make indirect symbol.  */
1475
  CIND,		/* Make indirect symbol from existing common symbol.  */
1476
  SET,		/* Add value to set.  */
1477
  MWARN,	/* Make warning symbol.  */
1478
  WARN,		/* Issue warning.  */
1479
  CWARN,	/* Warn if referenced, else MWARN.  */
1480
  CYCLE,	/* Repeat with symbol pointed to.  */
1481
  REFC,		/* Mark indirect symbol referenced and then CYCLE.  */
1482
  WARNC		/* Issue warning and then CYCLE.  */
1483
};
1484
 
1485
/* The state table itself.  The first index is a link_row and the
1486
   second index is a bfd_link_hash_type.  */
1487
 
1488
static const enum link_action link_action[8][8] =
1489
{
1490
  /* current\prev    new    undef  undefw def    defw   com    indr   warn  */
1491
  /* UNDEF_ROW 	*/  {UND,   NOACT, UND,   REF,   REF,   NOACT, REFC,  WARNC },
1492
  /* UNDEFW_ROW	*/  {WEAK,  NOACT, NOACT, REF,   REF,   NOACT, REFC,  WARNC },
1493
  /* DEF_ROW 	*/  {DEF,   DEF,   DEF,   MDEF,  DEF,   CDEF,  MDEF,  CYCLE },
1494
  /* DEFW_ROW 	*/  {DEFW,  DEFW,  DEFW,  NOACT, NOACT, NOACT, NOACT, CYCLE },
1495
  /* COMMON_ROW	*/  {COM,   COM,   COM,   CREF,  COM,   BIG,   REFC,  WARNC },
1496
  /* INDR_ROW	*/  {IND,   IND,   IND,   MDEF,  IND,   CIND,  MIND,  CYCLE },
1497
  /* WARN_ROW   */  {MWARN, WARN,  WARN,  CWARN, CWARN, WARN,  CWARN, NOACT },
1498
  /* SET_ROW	*/  {SET,   SET,   SET,   SET,   SET,   SET,   CYCLE, CYCLE }
1499
};
1500
 
1501
/* Most of the entries in the LINK_ACTION table are straightforward,
1502
   but a few are somewhat subtle.
1503
 
1504
   A reference to an indirect symbol (UNDEF_ROW/indr or
1505
   UNDEFW_ROW/indr) is counted as a reference both to the indirect
1506
   symbol and to the symbol the indirect symbol points to.
1507
 
1508
   A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1509
   causes the warning to be issued.
1510
 
1511
   A common definition of an indirect symbol (COMMON_ROW/indr) is
1512
   treated as a multiple definition error.  Likewise for an indirect
1513
   definition of a common symbol (INDR_ROW/com).
1514
 
1515
   An indirect definition of a warning (INDR_ROW/warn) does not cause
1516
   the warning to be issued.
1517
 
1518
   If a warning is created for an indirect symbol (WARN_ROW/indr) no
1519
   warning is created for the symbol the indirect symbol points to.
1520
 
1521
   Adding an entry to a set does not count as a reference to a set,
1522
   and no warning is issued (SET_ROW/warn).  */
1523
 
1524
/* Return the BFD in which a hash entry has been defined, if known.  */
1525
 
1526
static bfd *
1527
hash_entry_bfd (struct bfd_link_hash_entry *h)
1528
{
1529
  while (h->type == bfd_link_hash_warning)
1530
    h = h->u.i.link;
1531
  switch (h->type)
1532
    {
1533
    default:
1534
      return NULL;
1535
    case bfd_link_hash_undefined:
1536
    case bfd_link_hash_undefweak:
1537
      return h->u.undef.abfd;
1538
    case bfd_link_hash_defined:
1539
    case bfd_link_hash_defweak:
1540
      return h->u.def.section->owner;
1541
    case bfd_link_hash_common:
1542
      return h->u.c.p->section->owner;
1543
    }
1544
  /*NOTREACHED*/
1545
}
1546
 
1547
/* Add a symbol to the global hash table.
1548
   ABFD is the BFD the symbol comes from.
1549
   NAME is the name of the symbol.
1550
   FLAGS is the BSF_* bits associated with the symbol.
1551
   SECTION is the section in which the symbol is defined; this may be
1552
     bfd_und_section_ptr or bfd_com_section_ptr.
1553
   VALUE is the value of the symbol, relative to the section.
1554
   STRING is used for either an indirect symbol, in which case it is
1555
     the name of the symbol to indirect to, or a warning symbol, in
1556
     which case it is the warning string.
1557
   COPY is TRUE if NAME or STRING must be copied into locally
1558
     allocated memory if they need to be saved.
1559
   COLLECT is TRUE if we should automatically collect gcc constructor
1560
     or destructor names as collect2 does.
1561
   HASHP, if not NULL, is a place to store the created hash table
1562
     entry; if *HASHP is not NULL, the caller has already looked up
1563
     the hash table entry, and stored it in *HASHP.  */
1564
 
1565
bfd_boolean
1566
_bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1567
				  bfd *abfd,
1568
				  const char *name,
1569
				  flagword flags,
1570
				  asection *section,
1571
				  bfd_vma value,
1572
				  const char *string,
1573
				  bfd_boolean copy,
1574
				  bfd_boolean collect,
1575
				  struct bfd_link_hash_entry **hashp)
1576
{
1577
  enum link_row row;
1578
  struct bfd_link_hash_entry *h;
1579
  bfd_boolean cycle;
1580
 
1581
  BFD_ASSERT (section != NULL);
1582
 
1583
  if (bfd_is_ind_section (section)
1584
      || (flags & BSF_INDIRECT) != 0)
1585
    row = INDR_ROW;
1586
  else if ((flags & BSF_WARNING) != 0)
1587
    row = WARN_ROW;
1588
  else if ((flags & BSF_CONSTRUCTOR) != 0)
1589
    row = SET_ROW;
1590
  else if (bfd_is_und_section (section))
1591
    {
1592
      if ((flags & BSF_WEAK) != 0)
1593
	row = UNDEFW_ROW;
1594
      else
1595
	row = UNDEF_ROW;
1596
    }
1597
  else if ((flags & BSF_WEAK) != 0)
1598
    row = DEFW_ROW;
1599
  else if (bfd_is_com_section (section))
1600
    row = COMMON_ROW;
1601
  else
1602
    row = DEF_ROW;
1603
 
1604
  if (hashp != NULL && *hashp != NULL)
1605
    h = *hashp;
1606
  else
1607
    {
1608
      if (row == UNDEF_ROW || row == UNDEFW_ROW)
1609
	h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1610
      else
1611
	h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1612
      if (h == NULL)
1613
	{
1614
	  if (hashp != NULL)
1615
	    *hashp = NULL;
1616
	  return FALSE;
1617
	}
1618
    }
1619
 
1620
  if (info->notice_all
1621
      || (info->notice_hash != NULL
1622
	  && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1623
    {
1624
      if (! (*info->callbacks->notice) (info, h,
1625
					abfd, section, value, flags, string))
1626
	return FALSE;
1627
    }
1628
 
1629
  if (hashp != NULL)
1630
    *hashp = h;
1631
 
1632
  do
1633
    {
1634
      enum link_action action;
1635
 
1636
      cycle = FALSE;
1637
      action = link_action[(int) row][(int) h->type];
1638
      switch (action)
1639
	{
1640
	case FAIL:
1641
	  abort ();
1642
 
1643
	case NOACT:
1644
	  /* Do nothing.  */
1645
	  break;
1646
 
1647
	case UND:
1648
	  /* Make a new undefined symbol.  */
1649
	  h->type = bfd_link_hash_undefined;
1650
	  h->u.undef.abfd = abfd;
1651
	  bfd_link_add_undef (info->hash, h);
1652
	  break;
1653
 
1654
	case WEAK:
1655
	  /* Make a new weak undefined symbol.  */
1656
	  h->type = bfd_link_hash_undefweak;
1657
	  h->u.undef.abfd = abfd;
1658
	  break;
1659
 
1660
	case CDEF:
1661
	  /* We have found a definition for a symbol which was
1662
	     previously common.  */
1663
	  BFD_ASSERT (h->type == bfd_link_hash_common);
1664
	  if (! ((*info->callbacks->multiple_common)
1665
		 (info, h, abfd, bfd_link_hash_defined, 0)))
1666
	    return FALSE;
1667
	  /* Fall through.  */
1668
	case DEF:
1669
	case DEFW:
1670
	  {
1671
	    enum bfd_link_hash_type oldtype;
1672
 
1673
	    /* Define a symbol.  */
1674
	    oldtype = h->type;
1675
	    if (action == DEFW)
1676
	      h->type = bfd_link_hash_defweak;
1677
	    else
1678
	      h->type = bfd_link_hash_defined;
1679
	    h->u.def.section = section;
1680
	    h->u.def.value = value;
1681
 
1682
	    /* If we have been asked to, we act like collect2 and
1683
	       identify all functions that might be global
1684
	       constructors and destructors and pass them up in a
1685
	       callback.  We only do this for certain object file
1686
	       types, since many object file types can handle this
1687
	       automatically.  */
1688
	    if (collect && name[0] == '_')
1689
	      {
1690
		const char *s;
1691
 
1692
		/* A constructor or destructor name starts like this:
1693
		   _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1694
		   the second are the same character (we accept any
1695
		   character there, in case a new object file format
1696
		   comes along with even worse naming restrictions).  */
1697
 
1698
#define CONS_PREFIX "GLOBAL_"
1699
#define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1700
 
1701
		s = name + 1;
1702
		while (*s == '_')
1703
		  ++s;
1704
		if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1705
		  {
1706
		    char c;
1707
 
1708
		    c = s[CONS_PREFIX_LEN + 1];
1709
		    if ((c == 'I' || c == 'D')
1710
			&& s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1711
		      {
1712
			/* If this is a definition of a symbol which
1713
                           was previously weakly defined, we are in
1714
                           trouble.  We have already added a
1715
                           constructor entry for the weak defined
1716
                           symbol, and now we are trying to add one
1717
                           for the new symbol.  Fortunately, this case
1718
                           should never arise in practice.  */
1719
			if (oldtype == bfd_link_hash_defweak)
1720
			  abort ();
1721
 
1722
			if (! ((*info->callbacks->constructor)
1723
			       (info, c == 'I',
1724
				h->root.string, abfd, section, value)))
1725
			  return FALSE;
1726
		      }
1727
		  }
1728
	      }
1729
	  }
1730
 
1731
	  break;
1732
 
1733
	case COM:
1734
	  /* We have found a common definition for a symbol.  */
1735
	  if (h->type == bfd_link_hash_new)
1736
	    bfd_link_add_undef (info->hash, h);
1737
	  h->type = bfd_link_hash_common;
1738
	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1739
	    bfd_hash_allocate (&info->hash->table,
1740
			       sizeof (struct bfd_link_hash_common_entry));
1741
	  if (h->u.c.p == NULL)
1742
	    return FALSE;
1743
 
1744
	  h->u.c.size = value;
1745
 
1746
	  /* Select a default alignment based on the size.  This may
1747
             be overridden by the caller.  */
1748
	  {
1749
	    unsigned int power;
1750
 
1751
	    power = bfd_log2 (value);
1752
	    if (power > 4)
1753
	      power = 4;
1754
	    h->u.c.p->alignment_power = power;
1755
	  }
1756
 
1757
	  /* The section of a common symbol is only used if the common
1758
             symbol is actually allocated.  It basically provides a
1759
             hook for the linker script to decide which output section
1760
             the common symbols should be put in.  In most cases, the
1761
             section of a common symbol will be bfd_com_section_ptr,
1762
             the code here will choose a common symbol section named
1763
             "COMMON", and the linker script will contain *(COMMON) in
1764
             the appropriate place.  A few targets use separate common
1765
             sections for small symbols, and they require special
1766
             handling.  */
1767
	  if (section == bfd_com_section_ptr)
1768
	    {
1769
	      h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1770
	      h->u.c.p->section->flags |= SEC_ALLOC;
1771
	    }
1772
	  else if (section->owner != abfd)
1773
	    {
1774
	      h->u.c.p->section = bfd_make_section_old_way (abfd,
1775
							    section->name);
1776
	      h->u.c.p->section->flags |= SEC_ALLOC;
1777
	    }
1778
	  else
1779
	    h->u.c.p->section = section;
1780
	  break;
1781
 
1782
	case REF:
1783
	  /* A reference to a defined symbol.  */
1784
	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1785
	    h->u.undef.next = h;
1786
	  break;
1787
 
1788
	case BIG:
1789
	  /* We have found a common definition for a symbol which
1790
	     already had a common definition.  Use the maximum of the
1791
	     two sizes, and use the section required by the larger symbol.  */
1792
	  BFD_ASSERT (h->type == bfd_link_hash_common);
1793
	  if (! ((*info->callbacks->multiple_common)
1794
		 (info, h, abfd, bfd_link_hash_common, value)))
1795
	    return FALSE;
1796
	  if (value > h->u.c.size)
1797
	    {
1798
	      unsigned int power;
1799
 
1800
	      h->u.c.size = value;
1801
 
1802
	      /* Select a default alignment based on the size.  This may
1803
		 be overridden by the caller.  */
1804
	      power = bfd_log2 (value);
1805
	      if (power > 4)
1806
		power = 4;
1807
	      h->u.c.p->alignment_power = power;
1808
 
1809
	      /* Some systems have special treatment for small commons,
1810
		 hence we want to select the section used by the larger
1811
		 symbol.  This makes sure the symbol does not go in a
1812
		 small common section if it is now too large.  */
1813
	      if (section == bfd_com_section_ptr)
1814
		{
1815
		  h->u.c.p->section
1816
		    = bfd_make_section_old_way (abfd, "COMMON");
1817
		  h->u.c.p->section->flags |= SEC_ALLOC;
1818
		}
1819
	      else if (section->owner != abfd)
1820
		{
1821
		  h->u.c.p->section
1822
		    = bfd_make_section_old_way (abfd, section->name);
1823
		  h->u.c.p->section->flags |= SEC_ALLOC;
1824
		}
1825
	      else
1826
		h->u.c.p->section = section;
1827
	    }
1828
	  break;
1829
 
1830
	case CREF:
1831
	  /* We have found a common definition for a symbol which
1832
	     was already defined.  */
1833
	  if (! ((*info->callbacks->multiple_common)
1834
		 (info, h, abfd, bfd_link_hash_common, value)))
1835
	    return FALSE;
1836
	  break;
1837
 
1838
	case MIND:
1839
	  /* Multiple indirect symbols.  This is OK if they both point
1840
	     to the same symbol.  */
1841
	  if (strcmp (h->u.i.link->root.string, string) == 0)
1842
	    break;
1843
	  /* Fall through.  */
1844
	case MDEF:
1845
	  /* Handle a multiple definition.  */
1846
	  if (! ((*info->callbacks->multiple_definition)
1847
		 (info, h, abfd, section, value)))
1848
	    return FALSE;
1849
	  break;
1850
 
1851
	case CIND:
1852
	  /* Create an indirect symbol from an existing common symbol.  */
1853
	  BFD_ASSERT (h->type == bfd_link_hash_common);
1854
	  if (! ((*info->callbacks->multiple_common)
1855
		 (info, h, abfd, bfd_link_hash_indirect, 0)))
1856
	    return FALSE;
1857
	  /* Fall through.  */
1858
	case IND:
1859
	  /* Create an indirect symbol.  */
1860
	  {
1861
	    struct bfd_link_hash_entry *inh;
1862
 
1863
	    /* STRING is the name of the symbol we want to indirect
1864
	       to.  */
1865
	    inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1866
						copy, FALSE);
1867
	    if (inh == NULL)
1868
	      return FALSE;
1869
	    if (inh->type == bfd_link_hash_indirect
1870
		&& inh->u.i.link == h)
1871
	      {
1872
		(*_bfd_error_handler)
1873
		  (_("%B: indirect symbol `%s' to `%s' is a loop"),
1874
		   abfd, name, string);
1875
		bfd_set_error (bfd_error_invalid_operation);
1876
		return FALSE;
1877
	      }
1878
	    if (inh->type == bfd_link_hash_new)
1879
	      {
1880
		inh->type = bfd_link_hash_undefined;
1881
		inh->u.undef.abfd = abfd;
1882
		bfd_link_add_undef (info->hash, inh);
1883
	      }
1884
 
1885
	    /* If the indirect symbol has been referenced, we need to
1886
	       push the reference down to the symbol we are
1887
	       referencing.  */
1888
	    if (h->type != bfd_link_hash_new)
1889
	      {
1890
		row = UNDEF_ROW;
1891
		cycle = TRUE;
1892
	      }
1893
 
1894
	    h->type = bfd_link_hash_indirect;
1895
	    h->u.i.link = inh;
1896
	  }
1897
	  break;
1898
 
1899
	case SET:
1900
	  /* Add an entry to a set.  */
1901
	  if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1902
						abfd, section, value))
1903
	    return FALSE;
1904
	  break;
1905
 
1906
	case WARNC:
1907
	  /* Issue a warning and cycle.  */
1908
	  if (h->u.i.warning != NULL)
1909
	    {
1910
	      if (! (*info->callbacks->warning) (info, h->u.i.warning,
1911
						 h->root.string, abfd,
1912
						 NULL, 0))
1913
		return FALSE;
1914
	      /* Only issue a warning once.  */
1915
	      h->u.i.warning = NULL;
1916
	    }
1917
	  /* Fall through.  */
1918
	case CYCLE:
1919
	  /* Try again with the referenced symbol.  */
1920
	  h = h->u.i.link;
1921
	  cycle = TRUE;
1922
	  break;
1923
 
1924
	case REFC:
1925
	  /* A reference to an indirect symbol.  */
1926
	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1927
	    h->u.undef.next = h;
1928
	  h = h->u.i.link;
1929
	  cycle = TRUE;
1930
	  break;
1931
 
1932
	case WARN:
1933
	  /* Issue a warning.  */
1934
	  if (! (*info->callbacks->warning) (info, string, h->root.string,
1935
					     hash_entry_bfd (h), NULL, 0))
1936
	    return FALSE;
1937
	  break;
1938
 
1939
	case CWARN:
1940
	  /* Warn if this symbol has been referenced already,
1941
	     otherwise add a warning.  A symbol has been referenced if
1942
	     the u.undef.next field is not NULL, or it is the tail of the
1943
	     undefined symbol list.  The REF case above helps to
1944
	     ensure this.  */
1945
	  if (h->u.undef.next != NULL || info->hash->undefs_tail == h)
1946
	    {
1947
	      if (! (*info->callbacks->warning) (info, string, h->root.string,
1948
						 hash_entry_bfd (h), NULL, 0))
1949
		return FALSE;
1950
	      break;
1951
	    }
1952
	  /* Fall through.  */
1953
	case MWARN:
1954
	  /* Make a warning symbol.  */
1955
	  {
1956
	    struct bfd_link_hash_entry *sub;
1957
 
1958
	    /* STRING is the warning to give.  */
1959
	    sub = ((struct bfd_link_hash_entry *)
1960
		   ((*info->hash->table.newfunc)
1961
		    (NULL, &info->hash->table, h->root.string)));
1962
	    if (sub == NULL)
1963
	      return FALSE;
1964
	    *sub = *h;
1965
	    sub->type = bfd_link_hash_warning;
1966
	    sub->u.i.link = h;
1967
	    if (! copy)
1968
	      sub->u.i.warning = string;
1969
	    else
1970
	      {
1971
		char *w;
1972
		size_t len = strlen (string) + 1;
1973
 
1974
		w = (char *) bfd_hash_allocate (&info->hash->table, len);
1975
		if (w == NULL)
1976
		  return FALSE;
1977
		memcpy (w, string, len);
1978
		sub->u.i.warning = w;
1979
	      }
1980
 
1981
	    bfd_hash_replace (&info->hash->table,
1982
			      (struct bfd_hash_entry *) h,
1983
			      (struct bfd_hash_entry *) sub);
1984
	    if (hashp != NULL)
1985
	      *hashp = sub;
1986
	  }
1987
	  break;
1988
	}
1989
    }
1990
  while (cycle);
1991
 
1992
  return TRUE;
1993
}
1994
 
1995
/* Generic final link routine.  */
1996
 
1997
bfd_boolean
1998
_bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1999
{
2000
  bfd *sub;
2001
  asection *o;
2002
  struct bfd_link_order *p;
2003
  size_t outsymalloc;
2004
  struct generic_write_global_symbol_info wginfo;
2005
 
2006
  bfd_get_outsymbols (abfd) = NULL;
2007
  bfd_get_symcount (abfd) = 0;
2008
  outsymalloc = 0;
2009
 
2010
  /* Mark all sections which will be included in the output file.  */
2011
  for (o = abfd->sections; o != NULL; o = o->next)
2012
    for (p = o->map_head.link_order; p != NULL; p = p->next)
2013
      if (p->type == bfd_indirect_link_order)
2014
	p->u.indirect.section->linker_mark = TRUE;
2015
 
2016
  /* Build the output symbol table.  */
2017
  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
2018
    if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
2019
      return FALSE;
2020
 
2021
  /* Accumulate the global symbols.  */
2022
  wginfo.info = info;
2023
  wginfo.output_bfd = abfd;
2024
  wginfo.psymalloc = &outsymalloc;
2025
  _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
2026
				   _bfd_generic_link_write_global_symbol,
2027
				   &wginfo);
2028
 
2029
  /* Make sure we have a trailing NULL pointer on OUTSYMBOLS.  We
2030
     shouldn't really need one, since we have SYMCOUNT, but some old
2031
     code still expects one.  */
2032
  if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
2033
    return FALSE;
2034
 
2035
  if (info->relocatable)
2036
    {
2037
      /* Allocate space for the output relocs for each section.  */
2038
      for (o = abfd->sections; o != NULL; o = o->next)
2039
	{
2040
	  o->reloc_count = 0;
2041
	  for (p = o->map_head.link_order; p != NULL; p = p->next)
2042
	    {
2043
	      if (p->type == bfd_section_reloc_link_order
2044
		  || p->type == bfd_symbol_reloc_link_order)
2045
		++o->reloc_count;
2046
	      else if (p->type == bfd_indirect_link_order)
2047
		{
2048
		  asection *input_section;
2049
		  bfd *input_bfd;
2050
		  long relsize;
2051
		  arelent **relocs;
2052
		  asymbol **symbols;
2053
		  long reloc_count;
2054
 
2055
		  input_section = p->u.indirect.section;
2056
		  input_bfd = input_section->owner;
2057
		  relsize = bfd_get_reloc_upper_bound (input_bfd,
2058
						       input_section);
2059
		  if (relsize < 0)
2060
		    return FALSE;
2061
		  relocs = (arelent **) bfd_malloc (relsize);
2062
		  if (!relocs && relsize != 0)
2063
		    return FALSE;
2064
		  symbols = _bfd_generic_link_get_symbols (input_bfd);
2065
		  reloc_count = bfd_canonicalize_reloc (input_bfd,
2066
							input_section,
2067
							relocs,
2068
							symbols);
2069
		  free (relocs);
2070
		  if (reloc_count < 0)
2071
		    return FALSE;
2072
		  BFD_ASSERT ((unsigned long) reloc_count
2073
			      == input_section->reloc_count);
2074
		  o->reloc_count += reloc_count;
2075
		}
2076
	    }
2077
	  if (o->reloc_count > 0)
2078
	    {
2079
	      bfd_size_type amt;
2080
 
2081
	      amt = o->reloc_count;
2082
	      amt *= sizeof (arelent *);
2083
	      o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
2084
	      if (!o->orelocation)
2085
		return FALSE;
2086
	      o->flags |= SEC_RELOC;
2087
	      /* Reset the count so that it can be used as an index
2088
		 when putting in the output relocs.  */
2089
	      o->reloc_count = 0;
2090
	    }
2091
	}
2092
    }
2093
 
2094
  /* Handle all the link order information for the sections.  */
2095
  for (o = abfd->sections; o != NULL; o = o->next)
2096
    {
2097
      for (p = o->map_head.link_order; p != NULL; p = p->next)
2098
	{
2099
	  switch (p->type)
2100
	    {
2101
	    case bfd_section_reloc_link_order:
2102
	    case bfd_symbol_reloc_link_order:
2103
	      if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2104
		return FALSE;
2105
	      break;
2106
	    case bfd_indirect_link_order:
2107
	      if (! default_indirect_link_order (abfd, info, o, p, TRUE))
2108
		return FALSE;
2109
	      break;
2110
	    default:
2111
	      if (! _bfd_default_link_order (abfd, info, o, p))
2112
		return FALSE;
2113
	      break;
2114
	    }
2115
	}
2116
    }
2117
 
2118
  return TRUE;
2119
}
2120
 
2121
/* Add an output symbol to the output BFD.  */
2122
 
2123
static bfd_boolean
2124
generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
2125
{
2126
  if (bfd_get_symcount (output_bfd) >= *psymalloc)
2127
    {
2128
      asymbol **newsyms;
2129
      bfd_size_type amt;
2130
 
2131
      if (*psymalloc == 0)
2132
	*psymalloc = 124;
2133
      else
2134
	*psymalloc *= 2;
2135
      amt = *psymalloc;
2136
      amt *= sizeof (asymbol *);
2137
      newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2138
      if (newsyms == NULL)
2139
	return FALSE;
2140
      bfd_get_outsymbols (output_bfd) = newsyms;
2141
    }
2142
 
2143
  bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2144
  if (sym != NULL)
2145
    ++ bfd_get_symcount (output_bfd);
2146
 
2147
  return TRUE;
2148
}
2149
 
2150
/* Handle the symbols for an input BFD.  */
2151
 
2152
bfd_boolean
2153
_bfd_generic_link_output_symbols (bfd *output_bfd,
2154
				  bfd *input_bfd,
2155
				  struct bfd_link_info *info,
2156
				  size_t *psymalloc)
2157
{
2158
  asymbol **sym_ptr;
2159
  asymbol **sym_end;
2160
 
2161
  if (!bfd_generic_link_read_symbols (input_bfd))
2162
    return FALSE;
2163
 
2164
  /* Create a filename symbol if we are supposed to.  */
2165
  if (info->create_object_symbols_section != NULL)
2166
    {
2167
      asection *sec;
2168
 
2169
      for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2170
	{
2171
	  if (sec->output_section == info->create_object_symbols_section)
2172
	    {
2173
	      asymbol *newsym;
2174
 
2175
	      newsym = bfd_make_empty_symbol (input_bfd);
2176
	      if (!newsym)
2177
		return FALSE;
2178
	      newsym->name = input_bfd->filename;
2179
	      newsym->value = 0;
2180
	      newsym->flags = BSF_LOCAL | BSF_FILE;
2181
	      newsym->section = sec;
2182
 
2183
	      if (! generic_add_output_symbol (output_bfd, psymalloc,
2184
					       newsym))
2185
		return FALSE;
2186
 
2187
	      break;
2188
	    }
2189
	}
2190
    }
2191
 
2192
  /* Adjust the values of the globally visible symbols, and write out
2193
     local symbols.  */
2194
  sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2195
  sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2196
  for (; sym_ptr < sym_end; sym_ptr++)
2197
    {
2198
      asymbol *sym;
2199
      struct generic_link_hash_entry *h;
2200
      bfd_boolean output;
2201
 
2202
      h = NULL;
2203
      sym = *sym_ptr;
2204
      if ((sym->flags & (BSF_INDIRECT
2205
			 | BSF_WARNING
2206
			 | BSF_GLOBAL
2207
			 | BSF_CONSTRUCTOR
2208
			 | BSF_WEAK)) != 0
2209
	  || bfd_is_und_section (bfd_get_section (sym))
2210
	  || bfd_is_com_section (bfd_get_section (sym))
2211
	  || bfd_is_ind_section (bfd_get_section (sym)))
2212
	{
2213
	  if (sym->udata.p != NULL)
2214
	    h = (struct generic_link_hash_entry *) sym->udata.p;
2215
	  else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2216
	    {
2217
	      /* This case normally means that the main linker code
2218
                 deliberately ignored this constructor symbol.  We
2219
                 should just pass it through.  This will screw up if
2220
                 the constructor symbol is from a different,
2221
                 non-generic, object file format, but the case will
2222
                 only arise when linking with -r, which will probably
2223
                 fail anyhow, since there will be no way to represent
2224
                 the relocs in the output format being used.  */
2225
	      h = NULL;
2226
	    }
2227
	  else if (bfd_is_und_section (bfd_get_section (sym)))
2228
	    h = ((struct generic_link_hash_entry *)
2229
		 bfd_wrapped_link_hash_lookup (output_bfd, info,
2230
					       bfd_asymbol_name (sym),
2231
					       FALSE, FALSE, TRUE));
2232
	  else
2233
	    h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2234
					       bfd_asymbol_name (sym),
2235
					       FALSE, FALSE, TRUE);
2236
 
2237
	  if (h != NULL)
2238
	    {
2239
	      /* Force all references to this symbol to point to
2240
		 the same area in memory.  It is possible that
2241
		 this routine will be called with a hash table
2242
		 other than a generic hash table, so we double
2243
		 check that.  */
2244
	      if (info->output_bfd->xvec == input_bfd->xvec)
2245
		{
2246
		  if (h->sym != NULL)
2247
		    *sym_ptr = sym = h->sym;
2248
		}
2249
 
2250
	      switch (h->root.type)
2251
		{
2252
		default:
2253
		case bfd_link_hash_new:
2254
		  abort ();
2255
		case bfd_link_hash_undefined:
2256
		  break;
2257
		case bfd_link_hash_undefweak:
2258
		  sym->flags |= BSF_WEAK;
2259
		  break;
2260
		case bfd_link_hash_indirect:
2261
		  h = (struct generic_link_hash_entry *) h->root.u.i.link;
2262
		  /* fall through */
2263
		case bfd_link_hash_defined:
2264
		  sym->flags |= BSF_GLOBAL;
2265
		  sym->flags &=~ BSF_CONSTRUCTOR;
2266
		  sym->value = h->root.u.def.value;
2267
		  sym->section = h->root.u.def.section;
2268
		  break;
2269
		case bfd_link_hash_defweak:
2270
		  sym->flags |= BSF_WEAK;
2271
		  sym->flags &=~ BSF_CONSTRUCTOR;
2272
		  sym->value = h->root.u.def.value;
2273
		  sym->section = h->root.u.def.section;
2274
		  break;
2275
		case bfd_link_hash_common:
2276
		  sym->value = h->root.u.c.size;
2277
		  sym->flags |= BSF_GLOBAL;
2278
		  if (! bfd_is_com_section (sym->section))
2279
		    {
2280
		      BFD_ASSERT (bfd_is_und_section (sym->section));
2281
		      sym->section = bfd_com_section_ptr;
2282
		    }
2283
		  /* We do not set the section of the symbol to
2284
		     h->root.u.c.p->section.  That value was saved so
2285
		     that we would know where to allocate the symbol
2286
		     if it was defined.  In this case the type is
2287
		     still bfd_link_hash_common, so we did not define
2288
		     it, so we do not want to use that section.  */
2289
		  break;
2290
		}
2291
	    }
2292
	}
2293
 
2294
      /* This switch is straight from the old code in
2295
	 write_file_locals in ldsym.c.  */
2296
      if (info->strip == strip_all
2297
	  || (info->strip == strip_some
2298
	      && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2299
				  FALSE, FALSE) == NULL))
2300
	output = FALSE;
2301
      else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2302
	{
2303
	  /* If this symbol is marked as occurring now, rather
2304
	     than at the end, output it now.  This is used for
2305
	     COFF C_EXT FCN symbols.  FIXME: There must be a
2306
	     better way.  */
2307
	  if (bfd_asymbol_bfd (sym) == input_bfd
2308
	      && (sym->flags & BSF_NOT_AT_END) != 0)
2309
	    output = TRUE;
2310
	  else
2311
	    output = FALSE;
2312
	}
2313
      else if (bfd_is_ind_section (sym->section))
2314
	output = FALSE;
2315
      else if ((sym->flags & BSF_DEBUGGING) != 0)
2316
	{
2317
	  if (info->strip == strip_none)
2318
	    output = TRUE;
2319
	  else
2320
	    output = FALSE;
2321
	}
2322
      else if (bfd_is_und_section (sym->section)
2323
	       || bfd_is_com_section (sym->section))
2324
	output = FALSE;
2325
      else if ((sym->flags & BSF_LOCAL) != 0)
2326
	{
2327
	  if ((sym->flags & BSF_WARNING) != 0)
2328
	    output = FALSE;
2329
	  else
2330
	    {
2331
	      switch (info->discard)
2332
		{
2333
		default:
2334
		case discard_all:
2335
		  output = FALSE;
2336
		  break;
2337
		case discard_sec_merge:
2338
		  output = TRUE;
2339
		  if (info->relocatable
2340
		      || ! (sym->section->flags & SEC_MERGE))
2341
		    break;
2342
		  /* FALLTHROUGH */
2343
		case discard_l:
2344
		  if (bfd_is_local_label (input_bfd, sym))
2345
		    output = FALSE;
2346
		  else
2347
		    output = TRUE;
2348
		  break;
2349
		case discard_none:
2350
		  output = TRUE;
2351
		  break;
2352
		}
2353
	    }
2354
	}
2355
      else if ((sym->flags & BSF_CONSTRUCTOR))
2356
	{
2357
	  if (info->strip != strip_all)
2358
	    output = TRUE;
2359
	  else
2360
	    output = FALSE;
2361
	}
2362
      else if (sym->flags == 0
2363
	       && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2364
	/* LTO doesn't set symbol information.  We get here with the
2365
	   generic linker for a symbol that was "common" but no longer
2366
	   needs to be global.  */
2367
	output = FALSE;
2368
      else
2369
	abort ();
2370
 
2371
      /* If this symbol is in a section which is not being included
2372
	 in the output file, then we don't want to output the
2373
	 symbol.  */
2374
      if (!bfd_is_abs_section (sym->section)
2375
	  && bfd_section_removed_from_list (output_bfd,
2376
					    sym->section->output_section))
2377
	output = FALSE;
2378
 
2379
      if (output)
2380
	{
2381
	  if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2382
	    return FALSE;
2383
	  if (h != NULL)
2384
	    h->written = TRUE;
2385
	}
2386
    }
2387
 
2388
  return TRUE;
2389
}
2390
 
2391
/* Set the section and value of a generic BFD symbol based on a linker
2392
   hash table entry.  */
2393
 
2394
static void
2395
set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2396
{
2397
  switch (h->type)
2398
    {
2399
    default:
2400
      abort ();
2401
      break;
2402
    case bfd_link_hash_new:
2403
      /* This can happen when a constructor symbol is seen but we are
2404
         not building constructors.  */
2405
      if (sym->section != NULL)
2406
	{
2407
	  BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2408
	}
2409
      else
2410
	{
2411
	  sym->flags |= BSF_CONSTRUCTOR;
2412
	  sym->section = bfd_abs_section_ptr;
2413
	  sym->value = 0;
2414
	}
2415
      break;
2416
    case bfd_link_hash_undefined:
2417
      sym->section = bfd_und_section_ptr;
2418
      sym->value = 0;
2419
      break;
2420
    case bfd_link_hash_undefweak:
2421
      sym->section = bfd_und_section_ptr;
2422
      sym->value = 0;
2423
      sym->flags |= BSF_WEAK;
2424
      break;
2425
    case bfd_link_hash_defined:
2426
      sym->section = h->u.def.section;
2427
      sym->value = h->u.def.value;
2428
      break;
2429
    case bfd_link_hash_defweak:
2430
      sym->flags |= BSF_WEAK;
2431
      sym->section = h->u.def.section;
2432
      sym->value = h->u.def.value;
2433
      break;
2434
    case bfd_link_hash_common:
2435
      sym->value = h->u.c.size;
2436
      if (sym->section == NULL)
2437
	sym->section = bfd_com_section_ptr;
2438
      else if (! bfd_is_com_section (sym->section))
2439
	{
2440
	  BFD_ASSERT (bfd_is_und_section (sym->section));
2441
	  sym->section = bfd_com_section_ptr;
2442
	}
2443
      /* Do not set the section; see _bfd_generic_link_output_symbols.  */
2444
      break;
2445
    case bfd_link_hash_indirect:
2446
    case bfd_link_hash_warning:
2447
      /* FIXME: What should we do here?  */
2448
      break;
2449
    }
2450
}
2451
 
2452
/* Write out a global symbol, if it hasn't already been written out.
2453
   This is called for each symbol in the hash table.  */
2454
 
2455
bfd_boolean
2456
_bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2457
				       void *data)
2458
{
2459
  struct generic_write_global_symbol_info *wginfo =
2460
      (struct generic_write_global_symbol_info *) data;
2461
  asymbol *sym;
2462
 
2463
  if (h->written)
2464
    return TRUE;
2465
 
2466
  h->written = TRUE;
2467
 
2468
  if (wginfo->info->strip == strip_all
2469
      || (wginfo->info->strip == strip_some
2470
	  && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2471
			      FALSE, FALSE) == NULL))
2472
    return TRUE;
2473
 
2474
  if (h->sym != NULL)
2475
    sym = h->sym;
2476
  else
2477
    {
2478
      sym = bfd_make_empty_symbol (wginfo->output_bfd);
2479
      if (!sym)
2480
	return FALSE;
2481
      sym->name = h->root.root.string;
2482
      sym->flags = 0;
2483
    }
2484
 
2485
  set_symbol_from_hash (sym, &h->root);
2486
 
2487
  sym->flags |= BSF_GLOBAL;
2488
 
2489
  if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2490
				   sym))
2491
    {
2492
      /* FIXME: No way to return failure.  */
2493
      abort ();
2494
    }
2495
 
2496
  return TRUE;
2497
}
2498
 
2499
/* Create a relocation.  */
2500
 
2501
bfd_boolean
2502
_bfd_generic_reloc_link_order (bfd *abfd,
2503
			       struct bfd_link_info *info,
2504
			       asection *sec,
2505
			       struct bfd_link_order *link_order)
2506
{
2507
  arelent *r;
2508
 
2509
  if (! info->relocatable)
2510
    abort ();
2511
  if (sec->orelocation == NULL)
2512
    abort ();
2513
 
2514
  r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2515
  if (r == NULL)
2516
    return FALSE;
2517
 
2518
  r->address = link_order->offset;
2519
  r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2520
  if (r->howto == 0)
2521
    {
2522
      bfd_set_error (bfd_error_bad_value);
2523
      return FALSE;
2524
    }
2525
 
2526
  /* Get the symbol to use for the relocation.  */
2527
  if (link_order->type == bfd_section_reloc_link_order)
2528
    r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2529
  else
2530
    {
2531
      struct generic_link_hash_entry *h;
2532
 
2533
      h = ((struct generic_link_hash_entry *)
2534
	   bfd_wrapped_link_hash_lookup (abfd, info,
2535
					 link_order->u.reloc.p->u.name,
2536
					 FALSE, FALSE, TRUE));
2537
      if (h == NULL
2538
	  || ! h->written)
2539
	{
2540
	  if (! ((*info->callbacks->unattached_reloc)
2541
		 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2542
	    return FALSE;
2543
	  bfd_set_error (bfd_error_bad_value);
2544
	  return FALSE;
2545
	}
2546
      r->sym_ptr_ptr = &h->sym;
2547
    }
2548
 
2549
  /* If this is an inplace reloc, write the addend to the object file.
2550
     Otherwise, store it in the reloc addend.  */
2551
  if (! r->howto->partial_inplace)
2552
    r->addend = link_order->u.reloc.p->addend;
2553
  else
2554
    {
2555
      bfd_size_type size;
2556
      bfd_reloc_status_type rstat;
2557
      bfd_byte *buf;
2558
      bfd_boolean ok;
2559
      file_ptr loc;
2560
 
2561
      size = bfd_get_reloc_size (r->howto);
2562
      buf = (bfd_byte *) bfd_zmalloc (size);
2563
      if (buf == NULL)
2564
	return FALSE;
2565
      rstat = _bfd_relocate_contents (r->howto, abfd,
2566
				      (bfd_vma) link_order->u.reloc.p->addend,
2567
				      buf);
2568
      switch (rstat)
2569
	{
2570
	case bfd_reloc_ok:
2571
	  break;
2572
	default:
2573
	case bfd_reloc_outofrange:
2574
	  abort ();
2575
	case bfd_reloc_overflow:
2576
	  if (! ((*info->callbacks->reloc_overflow)
2577
		 (info, NULL,
2578
		  (link_order->type == bfd_section_reloc_link_order
2579
		   ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2580
		   : link_order->u.reloc.p->u.name),
2581
		  r->howto->name, link_order->u.reloc.p->addend,
2582
		  NULL, NULL, 0)))
2583
	    {
2584
	      free (buf);
2585
	      return FALSE;
2586
	    }
2587
	  break;
2588
	}
2589
      loc = link_order->offset * bfd_octets_per_byte (abfd);
2590
      ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2591
      free (buf);
2592
      if (! ok)
2593
	return FALSE;
2594
 
2595
      r->addend = 0;
2596
    }
2597
 
2598
  sec->orelocation[sec->reloc_count] = r;
2599
  ++sec->reloc_count;
2600
 
2601
  return TRUE;
2602
}
2603
 
2604
/* Allocate a new link_order for a section.  */
2605
 
2606
struct bfd_link_order *
2607
bfd_new_link_order (bfd *abfd, asection *section)
2608
{
2609
  bfd_size_type amt = sizeof (struct bfd_link_order);
2610
  struct bfd_link_order *new_lo;
2611
 
2612
  new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2613
  if (!new_lo)
2614
    return NULL;
2615
 
2616
  new_lo->type = bfd_undefined_link_order;
2617
 
2618
  if (section->map_tail.link_order != NULL)
2619
    section->map_tail.link_order->next = new_lo;
2620
  else
2621
    section->map_head.link_order = new_lo;
2622
  section->map_tail.link_order = new_lo;
2623
 
2624
  return new_lo;
2625
}
2626
 
2627
/* Default link order processing routine.  Note that we can not handle
2628
   the reloc_link_order types here, since they depend upon the details
2629
   of how the particular backends generates relocs.  */
2630
 
2631
bfd_boolean
2632
_bfd_default_link_order (bfd *abfd,
2633
			 struct bfd_link_info *info,
2634
			 asection *sec,
2635
			 struct bfd_link_order *link_order)
2636
{
2637
  switch (link_order->type)
2638
    {
2639
    case bfd_undefined_link_order:
2640
    case bfd_section_reloc_link_order:
2641
    case bfd_symbol_reloc_link_order:
2642
    default:
2643
      abort ();
2644
    case bfd_indirect_link_order:
2645
      return default_indirect_link_order (abfd, info, sec, link_order,
2646
					  FALSE);
2647
    case bfd_data_link_order:
2648
      return default_data_link_order (abfd, info, sec, link_order);
2649
    }
2650
}
2651
 
2652
/* Default routine to handle a bfd_data_link_order.  */
2653
 
2654
static bfd_boolean
2655
default_data_link_order (bfd *abfd,
2656
			 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2657
			 asection *sec,
2658
			 struct bfd_link_order *link_order)
2659
{
2660
  bfd_size_type size;
2661
  size_t fill_size;
2662
  bfd_byte *fill;
2663
  file_ptr loc;
2664
  bfd_boolean result;
2665
 
2666
  BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2667
 
2668
  size = link_order->size;
2669
  if (size == 0)
2670
    return TRUE;
2671
 
2672
  fill = link_order->u.data.contents;
2673
  fill_size = link_order->u.data.size;
2674
  if (fill_size == 0)
2675
    {
2676
      fill = abfd->arch_info->fill (size, bfd_big_endian (abfd),
2677
				    (sec->flags & SEC_CODE) != 0);
2678
      if (fill == NULL)
2679
	return FALSE;
2680
    }
2681
  else if (fill_size < size)
2682
    {
2683
      bfd_byte *p;
2684
      fill = (bfd_byte *) bfd_malloc (size);
2685
      if (fill == NULL)
2686
	return FALSE;
2687
      p = fill;
2688
      if (fill_size == 1)
2689
	memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2690
      else
2691
	{
2692
	  do
2693
	    {
2694
	      memcpy (p, link_order->u.data.contents, fill_size);
2695
	      p += fill_size;
2696
	      size -= fill_size;
2697
	    }
2698
	  while (size >= fill_size);
2699
	  if (size != 0)
2700
	    memcpy (p, link_order->u.data.contents, (size_t) size);
2701
	  size = link_order->size;
2702
	}
2703
    }
2704
 
2705
  loc = link_order->offset * bfd_octets_per_byte (abfd);
2706
  result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2707
 
2708
  if (fill != link_order->u.data.contents)
2709
    free (fill);
2710
  return result;
2711
}
2712
 
2713
/* Default routine to handle a bfd_indirect_link_order.  */
2714
 
2715
static bfd_boolean
2716
default_indirect_link_order (bfd *output_bfd,
2717
			     struct bfd_link_info *info,
2718
			     asection *output_section,
2719
			     struct bfd_link_order *link_order,
2720
			     bfd_boolean generic_linker)
2721
{
2722
  asection *input_section;
2723
  bfd *input_bfd;
2724
  bfd_byte *contents = NULL;
2725
  bfd_byte *new_contents;
2726
  bfd_size_type sec_size;
2727
  file_ptr loc;
2728
 
2729
  BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2730
 
2731
  input_section = link_order->u.indirect.section;
2732
  input_bfd = input_section->owner;
2733
  if (input_section->size == 0)
2734
    return TRUE;
2735
 
2736
  BFD_ASSERT (input_section->output_section == output_section);
2737
  BFD_ASSERT (input_section->output_offset == link_order->offset);
2738
  BFD_ASSERT (input_section->size == link_order->size);
2739
 
2740
  if (info->relocatable
2741
      && input_section->reloc_count > 0
2742
      && output_section->orelocation == NULL)
2743
    {
2744
      /* Space has not been allocated for the output relocations.
2745
	 This can happen when we are called by a specific backend
2746
	 because somebody is attempting to link together different
2747
	 types of object files.  Handling this case correctly is
2748
	 difficult, and sometimes impossible.  */
2749
      (*_bfd_error_handler)
2750
	(_("Attempt to do relocatable link with %s input and %s output"),
2751
	 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2752
      bfd_set_error (bfd_error_wrong_format);
2753
      return FALSE;
2754
    }
2755
 
2756
  if (! generic_linker)
2757
    {
2758
      asymbol **sympp;
2759
      asymbol **symppend;
2760
 
2761
      /* Get the canonical symbols.  The generic linker will always
2762
	 have retrieved them by this point, but we are being called by
2763
	 a specific linker, presumably because we are linking
2764
	 different types of object files together.  */
2765
      if (!bfd_generic_link_read_symbols (input_bfd))
2766
	return FALSE;
2767
 
2768
      /* Since we have been called by a specific linker, rather than
2769
	 the generic linker, the values of the symbols will not be
2770
	 right.  They will be the values as seen in the input file,
2771
	 not the values of the final link.  We need to fix them up
2772
	 before we can relocate the section.  */
2773
      sympp = _bfd_generic_link_get_symbols (input_bfd);
2774
      symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2775
      for (; sympp < symppend; sympp++)
2776
	{
2777
	  asymbol *sym;
2778
	  struct bfd_link_hash_entry *h;
2779
 
2780
	  sym = *sympp;
2781
 
2782
	  if ((sym->flags & (BSF_INDIRECT
2783
			     | BSF_WARNING
2784
			     | BSF_GLOBAL
2785
			     | BSF_CONSTRUCTOR
2786
			     | BSF_WEAK)) != 0
2787
	      || bfd_is_und_section (bfd_get_section (sym))
2788
	      || bfd_is_com_section (bfd_get_section (sym))
2789
	      || bfd_is_ind_section (bfd_get_section (sym)))
2790
	    {
2791
	      /* sym->udata may have been set by
2792
		 generic_link_add_symbol_list.  */
2793
	      if (sym->udata.p != NULL)
2794
		h = (struct bfd_link_hash_entry *) sym->udata.p;
2795
	      else if (bfd_is_und_section (bfd_get_section (sym)))
2796
		h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2797
						  bfd_asymbol_name (sym),
2798
						  FALSE, FALSE, TRUE);
2799
	      else
2800
		h = bfd_link_hash_lookup (info->hash,
2801
					  bfd_asymbol_name (sym),
2802
					  FALSE, FALSE, TRUE);
2803
	      if (h != NULL)
2804
		set_symbol_from_hash (sym, h);
2805
	    }
2806
	}
2807
    }
2808
 
2809
  if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2810
      && input_section->size != 0)
2811
    {
2812
      /* Group section contents are set by bfd_elf_set_group_contents.  */
2813
      if (!output_bfd->output_has_begun)
2814
	{
2815
	  /* FIXME: This hack ensures bfd_elf_set_group_contents is called.  */
2816
	  if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2817
	    goto error_return;
2818
	}
2819
      new_contents = output_section->contents;
2820
      BFD_ASSERT (new_contents != NULL);
2821
      BFD_ASSERT (input_section->output_offset == 0);
2822
    }
2823
  else
2824
    {
2825
      /* Get and relocate the section contents.  */
2826
      sec_size = (input_section->rawsize > input_section->size
2827
		  ? input_section->rawsize
2828
		  : input_section->size);
2829
      contents = (bfd_byte *) bfd_malloc (sec_size);
2830
      if (contents == NULL && sec_size != 0)
2831
	goto error_return;
2832
      new_contents = (bfd_get_relocated_section_contents
2833
		      (output_bfd, info, link_order, contents,
2834
		       info->relocatable,
2835
		       _bfd_generic_link_get_symbols (input_bfd)));
2836
      if (!new_contents)
2837
	goto error_return;
2838
    }
2839
 
2840
  /* Output the section contents.  */
2841
  loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2842
  if (! bfd_set_section_contents (output_bfd, output_section,
2843
				  new_contents, loc, input_section->size))
2844
    goto error_return;
2845
 
2846
  if (contents != NULL)
2847
    free (contents);
2848
  return TRUE;
2849
 
2850
 error_return:
2851
  if (contents != NULL)
2852
    free (contents);
2853
  return FALSE;
2854
}
2855
 
2856
/* A little routine to count the number of relocs in a link_order
2857
   list.  */
2858
 
2859
unsigned int
2860
_bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2861
{
2862
  register unsigned int c;
2863
  register struct bfd_link_order *l;
2864
 
2865
  c = 0;
2866
  for (l = link_order; l != NULL; l = l->next)
2867
    {
2868
      if (l->type == bfd_section_reloc_link_order
2869
	  || l->type == bfd_symbol_reloc_link_order)
2870
	++c;
2871
    }
2872
 
2873
  return c;
2874
}
2875
 
2876
/*
2877
FUNCTION
2878
	bfd_link_split_section
2879
 
2880
SYNOPSIS
2881
        bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2882
 
2883
DESCRIPTION
2884
	Return nonzero if @var{sec} should be split during a
2885
	reloceatable or final link.
2886
 
2887
.#define bfd_link_split_section(abfd, sec) \
2888
.       BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2889
.
2890
 
2891
*/
2892
 
2893
bfd_boolean
2894
_bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2895
				 asection *sec ATTRIBUTE_UNUSED)
2896
{
2897
  return FALSE;
2898
}
2899
 
2900
/*
2901
FUNCTION
2902
	bfd_section_already_linked
2903
 
2904
SYNOPSIS
2905
        bfd_boolean bfd_section_already_linked (bfd *abfd,
2906
						asection *sec,
2907
						struct bfd_link_info *info);
2908
 
2909
DESCRIPTION
2910
	Check if @var{data} has been already linked during a reloceatable
2911
	or final link.  Return TRUE if it has.
2912
 
2913
.#define bfd_section_already_linked(abfd, sec, info) \
2914
.       BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2915
.
2916
 
2917
*/
2918
 
2919
/* Sections marked with the SEC_LINK_ONCE flag should only be linked
2920
   once into the output.  This routine checks each section, and
2921
   arrange to discard it if a section of the same name has already
2922
   been linked.  This code assumes that all relevant sections have the
2923
   SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2924
   section name.  bfd_section_already_linked is called via
2925
   bfd_map_over_sections.  */
2926
 
2927
/* The hash table.  */
2928
 
2929
static struct bfd_hash_table _bfd_section_already_linked_table;
2930
 
2931
/* Support routines for the hash table used by section_already_linked,
2932
   initialize the table, traverse, lookup, fill in an entry and remove
2933
   the table.  */
2934
 
2935
void
2936
bfd_section_already_linked_table_traverse
2937
  (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2938
			void *), void *info)
2939
{
2940
  bfd_hash_traverse (&_bfd_section_already_linked_table,
2941
		     (bfd_boolean (*) (struct bfd_hash_entry *,
2942
				       void *)) func,
2943
		     info);
2944
}
2945
 
2946
struct bfd_section_already_linked_hash_entry *
2947
bfd_section_already_linked_table_lookup (const char *name)
2948
{
2949
  return ((struct bfd_section_already_linked_hash_entry *)
2950
	  bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2951
			   TRUE, FALSE));
2952
}
2953
 
2954
bfd_boolean
2955
bfd_section_already_linked_table_insert
2956
  (struct bfd_section_already_linked_hash_entry *already_linked_list,
2957
   asection *sec)
2958
{
2959
  struct bfd_section_already_linked *l;
2960
 
2961
  /* Allocate the memory from the same obstack as the hash table is
2962
     kept in.  */
2963
  l = (struct bfd_section_already_linked *)
2964
      bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2965
  if (l == NULL)
2966
    return FALSE;
2967
  l->sec = sec;
2968
  l->next = already_linked_list->entry;
2969
  already_linked_list->entry = l;
2970
  return TRUE;
2971
}
2972
 
2973
static struct bfd_hash_entry *
2974
already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2975
			struct bfd_hash_table *table,
2976
			const char *string ATTRIBUTE_UNUSED)
2977
{
2978
  struct bfd_section_already_linked_hash_entry *ret =
2979
    (struct bfd_section_already_linked_hash_entry *)
2980
      bfd_hash_allocate (table, sizeof *ret);
2981
 
2982
  if (ret == NULL)
2983
    return NULL;
2984
 
2985
  ret->entry = NULL;
2986
 
2987
  return &ret->root;
2988
}
2989
 
2990
bfd_boolean
2991
bfd_section_already_linked_table_init (void)
2992
{
2993
  return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2994
				already_linked_newfunc,
2995
				sizeof (struct bfd_section_already_linked_hash_entry),
2996
				42);
2997
}
2998
 
2999
void
3000
bfd_section_already_linked_table_free (void)
3001
{
3002
  bfd_hash_table_free (&_bfd_section_already_linked_table);
3003
}
3004
 
3005
/* Report warnings as appropriate for duplicate section SEC.
3006
   Return FALSE if we decide to keep SEC after all.  */
3007
 
3008
bfd_boolean
3009
_bfd_handle_already_linked (asection *sec,
3010
			    struct bfd_section_already_linked *l,
3011
			    struct bfd_link_info *info)
3012
{
3013
  switch (sec->flags & SEC_LINK_DUPLICATES)
3014
    {
3015
    default:
3016
      abort ();
3017
 
3018
    case SEC_LINK_DUPLICATES_DISCARD:
3019
      /* If we found an LTO IR match for this comdat group on
3020
	 the first pass, replace it with the LTO output on the
3021
	 second pass.  We can't simply choose real object
3022
	 files over IR because the first pass may contain a
3023
	 mix of LTO and normal objects and we must keep the
3024
	 first match, be it IR or real.  */
3025
      if (info->loading_lto_outputs
3026
	  && (l->sec->owner->flags & BFD_PLUGIN) != 0)
3027
	{
3028
	  l->sec = sec;
3029
	  return FALSE;
3030
	}
3031
      break;
3032
 
3033
    case SEC_LINK_DUPLICATES_ONE_ONLY:
3034
      info->callbacks->einfo
3035
	(_("%B: ignoring duplicate section `%A'\n"),
3036
	 sec->owner, sec);
3037
      break;
3038
 
3039
    case SEC_LINK_DUPLICATES_SAME_SIZE:
3040
      if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
3041
	;
3042
      else if (sec->size != l->sec->size)
3043
	info->callbacks->einfo
3044
	  (_("%B: duplicate section `%A' has different size\n"),
3045
	   sec->owner, sec);
3046
      break;
3047
 
3048
    case SEC_LINK_DUPLICATES_SAME_CONTENTS:
3049
      if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
3050
	;
3051
      else if (sec->size != l->sec->size)
3052
	info->callbacks->einfo
3053
	  (_("%B: duplicate section `%A' has different size\n"),
3054
	   sec->owner, sec);
3055
      else if (sec->size != 0)
3056
	{
3057
	  bfd_byte *sec_contents, *l_sec_contents = NULL;
3058
 
3059
	  if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
3060
	    info->callbacks->einfo
3061
	      (_("%B: could not read contents of section `%A'\n"),
3062
	       sec->owner, sec);
3063
	  else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
3064
						&l_sec_contents))
3065
	    info->callbacks->einfo
3066
	      (_("%B: could not read contents of section `%A'\n"),
3067
	       l->sec->owner, l->sec);
3068
	  else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
3069
	    info->callbacks->einfo
3070
	      (_("%B: duplicate section `%A' has different contents\n"),
3071
	       sec->owner, sec);
3072
 
3073
	  if (sec_contents)
3074
	    free (sec_contents);
3075
	  if (l_sec_contents)
3076
	    free (l_sec_contents);
3077
	}
3078
      break;
3079
    }
3080
 
3081
  /* Set the output_section field so that lang_add_section
3082
     does not create a lang_input_section structure for this
3083
     section.  Since there might be a symbol in the section
3084
     being discarded, we must retain a pointer to the section
3085
     which we are really going to use.  */
3086
  sec->output_section = bfd_abs_section_ptr;
3087
  sec->kept_section = l->sec;
3088
  return TRUE;
3089
}
3090
 
3091
/* This is used on non-ELF inputs.  */
3092
 
3093
bfd_boolean
3094
_bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
3095
				     asection *sec,
3096
				     struct bfd_link_info *info)
3097
{
3098
  const char *name;
3099
  struct bfd_section_already_linked *l;
3100
  struct bfd_section_already_linked_hash_entry *already_linked_list;
3101
 
3102
  if ((sec->flags & SEC_LINK_ONCE) == 0)
3103
    return FALSE;
3104
 
3105
  /* The generic linker doesn't handle section groups.  */
3106
  if ((sec->flags & SEC_GROUP) != 0)
3107
    return FALSE;
3108
 
3109
  /* FIXME: When doing a relocatable link, we may have trouble
3110
     copying relocations in other sections that refer to local symbols
3111
     in the section being discarded.  Those relocations will have to
3112
     be converted somehow; as of this writing I'm not sure that any of
3113
     the backends handle that correctly.
3114
 
3115
     It is tempting to instead not discard link once sections when
3116
     doing a relocatable link (technically, they should be discarded
3117
     whenever we are building constructors).  However, that fails,
3118
     because the linker winds up combining all the link once sections
3119
     into a single large link once section, which defeats the purpose
3120
     of having link once sections in the first place.  */
3121
 
3122
  name = bfd_get_section_name (abfd, sec);
3123
 
3124
  already_linked_list = bfd_section_already_linked_table_lookup (name);
3125
 
3126
  l = already_linked_list->entry;
3127
  if (l != NULL)
3128
    {
3129
      /* The section has already been linked.  See if we should
3130
	 issue a warning.  */
3131
      return _bfd_handle_already_linked (sec, l, info);
3132
    }
3133
 
3134
  /* This is the first section with this name.  Record it.  */
3135
  if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
3136
    info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
3137
  return FALSE;
3138
}
3139
 
3140
/* Choose a neighbouring section to S in OBFD that will be output, or
3141
   the absolute section if ADDR is out of bounds of the neighbours.  */
3142
 
3143
asection *
3144
_bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
3145
{
3146
  asection *next, *prev, *best;
3147
 
3148
  /* Find preceding kept section.  */
3149
  for (prev = s->prev; prev != NULL; prev = prev->prev)
3150
    if ((prev->flags & SEC_EXCLUDE) == 0
3151
	&& !bfd_section_removed_from_list (obfd, prev))
3152
      break;
3153
 
3154
  /* Find following kept section.  Start at prev->next because
3155
     other sections may have been added after S was removed.  */
3156
  if (s->prev != NULL)
3157
    next = s->prev->next;
3158
  else
3159
    next = s->owner->sections;
3160
  for (; next != NULL; next = next->next)
3161
    if ((next->flags & SEC_EXCLUDE) == 0
3162
	&& !bfd_section_removed_from_list (obfd, next))
3163
      break;
3164
 
3165
  /* Choose better of two sections, based on flags.  The idea
3166
     is to choose a section that will be in the same segment
3167
     as S would have been if it was kept.  */
3168
  best = next;
3169
  if (prev == NULL)
3170
    {
3171
      if (next == NULL)
3172
	best = bfd_abs_section_ptr;
3173
    }
3174
  else if (next == NULL)
3175
    best = prev;
3176
  else if (((prev->flags ^ next->flags)
3177
	    & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3178
    {
3179
      if (((next->flags ^ s->flags)
3180
	   & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3181
	  /* We prefer to choose a loaded section.  Section S
3182
	     doesn't have SEC_LOAD set (it being excluded, that
3183
	     part of the flag processing didn't happen) so we
3184
	     can't compare that flag to those of NEXT and PREV.  */
3185
	  || ((prev->flags & SEC_LOAD) != 0
3186
	      && (next->flags & SEC_LOAD) == 0))
3187
	best = prev;
3188
    }
3189
  else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
3190
    {
3191
      if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
3192
	best = prev;
3193
    }
3194
  else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
3195
    {
3196
      if (((next->flags ^ s->flags) & SEC_CODE) != 0)
3197
	best = prev;
3198
    }
3199
  else
3200
    {
3201
      /* Flags we care about are the same.  Prefer the following
3202
	 section if that will result in a positive valued sym.  */
3203
      if (addr < next->vma)
3204
	best = prev;
3205
    }
3206
 
3207
  return best;
3208
}
3209
 
3210
/* Convert symbols in excluded output sections to use a kept section.  */
3211
 
3212
static bfd_boolean
3213
fix_syms (struct bfd_link_hash_entry *h, void *data)
3214
{
3215
  bfd *obfd = (bfd *) data;
3216
 
3217
  if (h->type == bfd_link_hash_defined
3218
      || h->type == bfd_link_hash_defweak)
3219
    {
3220
      asection *s = h->u.def.section;
3221
      if (s != NULL
3222
	  && s->output_section != NULL
3223
	  && (s->output_section->flags & SEC_EXCLUDE) != 0
3224
	  && bfd_section_removed_from_list (obfd, s->output_section))
3225
	{
3226
	  asection *op;
3227
 
3228
	  h->u.def.value += s->output_offset + s->output_section->vma;
3229
	  op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3230
	  h->u.def.value -= op->vma;
3231
	  h->u.def.section = op;
3232
	}
3233
    }
3234
 
3235
  return TRUE;
3236
}
3237
 
3238
void
3239
_bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3240
{
3241
  bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3242
}
3243
 
3244
/*
3245
FUNCTION
3246
	bfd_generic_define_common_symbol
3247
 
3248
SYNOPSIS
3249
	bfd_boolean bfd_generic_define_common_symbol
3250
	  (bfd *output_bfd, struct bfd_link_info *info,
3251
	   struct bfd_link_hash_entry *h);
3252
 
3253
DESCRIPTION
3254
	Convert common symbol @var{h} into a defined symbol.
3255
	Return TRUE on success and FALSE on failure.
3256
 
3257
.#define bfd_define_common_symbol(output_bfd, info, h) \
3258
.       BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3259
.
3260
*/
3261
 
3262
bfd_boolean
3263
bfd_generic_define_common_symbol (bfd *output_bfd,
3264
				  struct bfd_link_info *info ATTRIBUTE_UNUSED,
3265
				  struct bfd_link_hash_entry *h)
3266
{
3267
  unsigned int power_of_two;
3268
  bfd_vma alignment, size;
3269
  asection *section;
3270
 
3271
  BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3272
 
3273
  size = h->u.c.size;
3274
  power_of_two = h->u.c.p->alignment_power;
3275
  section = h->u.c.p->section;
3276
 
3277
  /* Increase the size of the section to align the common symbol.
3278
     The alignment must be a power of two.  */
3279
  alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3280
  BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3281
  section->size += alignment - 1;
3282
  section->size &= -alignment;
3283
 
3284
  /* Adjust the section's overall alignment if necessary.  */
3285
  if (power_of_two > section->alignment_power)
3286
    section->alignment_power = power_of_two;
3287
 
3288
  /* Change the symbol from common to defined.  */
3289
  h->type = bfd_link_hash_defined;
3290
  h->u.def.section = section;
3291
  h->u.def.value = section->size;
3292
 
3293
  /* Increase the size of the section.  */
3294
  section->size += size;
3295
 
3296
  /* Make sure the section is allocated in memory, and make sure that
3297
     it is no longer a common section.  */
3298
  section->flags |= SEC_ALLOC;
3299
  section->flags &= ~SEC_IS_COMMON;
3300
  return TRUE;
3301
}
3302
 
3303
/*
3304
FUNCTION
3305
	bfd_find_version_for_sym
3306
 
3307
SYNOPSIS
3308
	struct bfd_elf_version_tree * bfd_find_version_for_sym
3309
	  (struct bfd_elf_version_tree *verdefs,
3310
	   const char *sym_name, bfd_boolean *hide);
3311
 
3312
DESCRIPTION
3313
	Search an elf version script tree for symbol versioning
3314
	info and export / don't-export status for a given symbol.
3315
	Return non-NULL on success and NULL on failure; also sets
3316
	the output @samp{hide} boolean parameter.
3317
 
3318
*/
3319
 
3320
struct bfd_elf_version_tree *
3321
bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3322
			  const char *sym_name,
3323
			  bfd_boolean *hide)
3324
{
3325
  struct bfd_elf_version_tree *t;
3326
  struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3327
  struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3328
 
3329
  local_ver = NULL;
3330
  global_ver = NULL;
3331
  star_local_ver = NULL;
3332
  star_global_ver = NULL;
3333
  exist_ver = NULL;
3334
  for (t = verdefs; t != NULL; t = t->next)
3335
    {
3336
      if (t->globals.list != NULL)
3337
	{
3338
	  struct bfd_elf_version_expr *d = NULL;
3339
 
3340
	  while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3341
	    {
3342
	      if (d->literal || strcmp (d->pattern, "*") != 0)
3343
		global_ver = t;
3344
	      else
3345
		star_global_ver = t;
3346
	      if (d->symver)
3347
		exist_ver = t;
3348
	      d->script = 1;
3349
	      /* If the match is a wildcard pattern, keep looking for
3350
		 a more explicit, perhaps even local, match.  */
3351
	      if (d->literal)
3352
		break;
3353
	    }
3354
 
3355
	  if (d != NULL)
3356
	    break;
3357
	}
3358
 
3359
      if (t->locals.list != NULL)
3360
	{
3361
	  struct bfd_elf_version_expr *d = NULL;
3362
 
3363
	  while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3364
	    {
3365
	      if (d->literal || strcmp (d->pattern, "*") != 0)
3366
		local_ver = t;
3367
	      else
3368
		star_local_ver = t;
3369
	      /* If the match is a wildcard pattern, keep looking for
3370
		 a more explicit, perhaps even global, match.  */
3371
	      if (d->literal)
3372
		{
3373
		  /* An exact match overrides a global wildcard.  */
3374
		  global_ver = NULL;
3375
		  star_global_ver = NULL;
3376
		  break;
3377
		}
3378
	    }
3379
 
3380
	  if (d != NULL)
3381
	    break;
3382
	}
3383
    }
3384
 
3385
  if (global_ver == NULL && local_ver == NULL)
3386
    global_ver = star_global_ver;
3387
 
3388
  if (global_ver != NULL)
3389
    {
3390
      /* If we already have a versioned symbol that matches the
3391
	 node for this symbol, then we don't want to create a
3392
	 duplicate from the unversioned symbol.  Instead hide the
3393
	 unversioned symbol.  */
3394
      *hide = exist_ver == global_ver;
3395
      return global_ver;
3396
    }
3397
 
3398
  if (local_ver == NULL)
3399
    local_ver = star_local_ver;
3400
 
3401
  if (local_ver != NULL)
3402
    {
3403
      *hide = TRUE;
3404
      return local_ver;
3405
    }
3406
 
3407
  return NULL;
3408
}
3409
 
3410
/*
3411
FUNCTION
3412
	bfd_hide_sym_by_version
3413
 
3414
SYNOPSIS
3415
	bfd_boolean bfd_hide_sym_by_version
3416
	  (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3417
 
3418
DESCRIPTION
3419
	Search an elf version script tree for symbol versioning
3420
	info for a given symbol.  Return TRUE if the symbol is hidden.
3421
 
3422
*/
3423
 
3424
bfd_boolean
3425
bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3426
			 const char *sym_name)
3427
{
3428
  bfd_boolean hidden = FALSE;
3429
  bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3430
  return hidden;
3431
}