Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * audio resampling
3
 * Copyright (c) 2004-2012 Michael Niedermayer 
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
 
22
/**
23
 * @file
24
 * audio resampling
25
 * @author Michael Niedermayer 
26
 */
27
 
28
#if defined(TEMPLATE_RESAMPLE_DBL)
29
#    define RENAME(N) N ## _double
30
#    define FILTER_SHIFT 0
31
#    define DELEM  double
32
#    define FELEM  double
33
#    define FELEM2 double
34
#    define FELEML double
35
#    define OUT(d, v) d = v
36
 
37
#elif defined(TEMPLATE_RESAMPLE_FLT)
38
#    define RENAME(N) N ## _float
39
#    define FILTER_SHIFT 0
40
#    define DELEM  float
41
#    define FELEM  float
42
#    define FELEM2 float
43
#    define FELEML float
44
#    define OUT(d, v) d = v
45
 
46
#elif defined(TEMPLATE_RESAMPLE_S32)
47
#    define RENAME(N) N ## _int32
48
#    define FILTER_SHIFT 30
49
#    define DELEM  int32_t
50
#    define FELEM  int32_t
51
#    define FELEM2 int64_t
52
#    define FELEML int64_t
53
#    define FELEM_MAX INT32_MAX
54
#    define FELEM_MIN INT32_MIN
55
#    define OUT(d, v) v = (v + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;\
56
                      d = (uint64_t)(v + 0x80000000) > 0xFFFFFFFF ? (v>>63) ^ 0x7FFFFFFF : v
57
 
58
#elif    defined(TEMPLATE_RESAMPLE_S16)      \
59
      || defined(TEMPLATE_RESAMPLE_S16_MMX2) \
60
      || defined(TEMPLATE_RESAMPLE_S16_SSSE3)
61
 
62
#    define FILTER_SHIFT 15
63
#    define DELEM  int16_t
64
#    define FELEM  int16_t
65
#    define FELEM2 int32_t
66
#    define FELEML int64_t
67
#    define FELEM_MAX INT16_MAX
68
#    define FELEM_MIN INT16_MIN
69
#    define OUT(d, v) v = (v + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;\
70
                      d = (unsigned)(v + 32768) > 65535 ? (v>>31) ^ 32767 : v
71
 
72
#    if defined(TEMPLATE_RESAMPLE_S16)
73
#        define RENAME(N) N ## _int16
74
#    elif defined(TEMPLATE_RESAMPLE_S16_MMX2)
75
#        define COMMON_CORE COMMON_CORE_INT16_MMX2
76
#        define RENAME(N) N ## _int16_mmx2
77
#    elif defined(TEMPLATE_RESAMPLE_S16_SSSE3)
78
#        define COMMON_CORE COMMON_CORE_INT16_SSSE3
79
#        define RENAME(N) N ## _int16_ssse3
80
#    endif
81
 
82
#endif
83
 
84
int RENAME(swri_resample)(ResampleContext *c, DELEM *dst, const DELEM *src, int *consumed, int src_size, int dst_size, int update_ctx){
85
    int dst_index, i;
86
    int index= c->index;
87
    int frac= c->frac;
88
    int dst_incr_frac= c->dst_incr % c->src_incr;
89
    int dst_incr=      c->dst_incr / c->src_incr;
90
    int compensation_distance= c->compensation_distance;
91
 
92
    av_assert1(c->filter_shift == FILTER_SHIFT);
93
    av_assert1(c->felem_size == sizeof(FELEM));
94
 
95
    if(compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0){
96
        int64_t index2= ((int64_t)index)<<32;
97
        int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
98
        dst_size= FFMIN(dst_size, (src_size-1-index) * (int64_t)c->src_incr / c->dst_incr);
99
 
100
        for(dst_index=0; dst_index < dst_size; dst_index++){
101
            dst[dst_index] = src[index2>>32];
102
            index2 += incr;
103
        }
104
        index += dst_index * dst_incr;
105
        index += (frac + dst_index * (int64_t)dst_incr_frac) / c->src_incr;
106
        frac   = (frac + dst_index * (int64_t)dst_incr_frac) % c->src_incr;
107
        av_assert2(index >= 0);
108
        *consumed= index >> c->phase_shift;
109
        index &= c->phase_mask;
110
    }else if(compensation_distance == 0 && !c->linear && index >= 0){
111
        int sample_index = 0;
112
        for(dst_index=0; dst_index < dst_size; dst_index++){
113
            FELEM *filter;
114
            sample_index += index >> c->phase_shift;
115
            index &= c->phase_mask;
116
            filter= ((FELEM*)c->filter_bank) + c->filter_alloc*index;
117
 
118
            if(sample_index + c->filter_length > src_size){
119
                break;
120
            }else{
121
#ifdef COMMON_CORE
122
                COMMON_CORE
123
#else
124
                FELEM2 val=0;
125
                for(i=0; ifilter_length; i++){
126
                    val += src[sample_index + i] * (FELEM2)filter[i];
127
                }
128
                OUT(dst[dst_index], val);
129
#endif
130
            }
131
 
132
            frac += dst_incr_frac;
133
            index += dst_incr;
134
            if(frac >= c->src_incr){
135
                frac -= c->src_incr;
136
                index++;
137
            }
138
        }
139
        *consumed = sample_index;
140
    }else{
141
        int sample_index = 0;
142
        for(dst_index=0; dst_index < dst_size; dst_index++){
143
            FELEM *filter;
144
            FELEM2 val=0;
145
 
146
            sample_index += index >> c->phase_shift;
147
            index &= c->phase_mask;
148
            filter = ((FELEM*)c->filter_bank) + c->filter_alloc*index;
149
 
150
            if(sample_index + c->filter_length > src_size || -sample_index >= src_size){
151
                break;
152
            }else if(sample_index < 0){
153
                for(i=0; ifilter_length; i++)
154
                    val += src[FFABS(sample_index + i)] * (FELEM2)filter[i];
155
            }else if(c->linear){
156
                FELEM2 v2=0;
157
                for(i=0; ifilter_length; i++){
158
                    val += src[sample_index + i] * (FELEM2)filter[i];
159
                    v2  += src[sample_index + i] * (FELEM2)filter[i + c->filter_alloc];
160
                }
161
                val+=(v2-val)*(FELEML)frac / c->src_incr;
162
            }else{
163
                for(i=0; ifilter_length; i++){
164
                    val += src[sample_index + i] * (FELEM2)filter[i];
165
                }
166
            }
167
 
168
            OUT(dst[dst_index], val);
169
 
170
            frac += dst_incr_frac;
171
            index += dst_incr;
172
            if(frac >= c->src_incr){
173
                frac -= c->src_incr;
174
                index++;
175
            }
176
 
177
            if(dst_index + 1 == compensation_distance){
178
                compensation_distance= 0;
179
                dst_incr_frac= c->ideal_dst_incr % c->src_incr;
180
                dst_incr=      c->ideal_dst_incr / c->src_incr;
181
            }
182
        }
183
        *consumed= FFMAX(sample_index, 0);
184
        index += FFMIN(sample_index, 0) << c->phase_shift;
185
 
186
        if(compensation_distance){
187
            compensation_distance -= dst_index;
188
            av_assert1(compensation_distance > 0);
189
        }
190
    }
191
 
192
    if(update_ctx){
193
        c->frac= frac;
194
        c->index= index;
195
        c->dst_incr= dst_incr_frac + c->src_incr*dst_incr;
196
        c->compensation_distance= compensation_distance;
197
    }
198
 
199
    return dst_index;
200
}
201
 
202
#undef COMMON_CORE
203
#undef RENAME
204
#undef FILTER_SHIFT
205
#undef DELEM
206
#undef FELEM
207
#undef FELEM2
208
#undef FELEML
209
#undef FELEM_MAX
210
#undef FELEM_MIN
211
#undef OUT