Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * Copyright (C) 2003-2004 the ffmpeg project
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 */
20
 
21
/**
22
 * @file
23
 * On2 VP3 Video Decoder
24
 *
25
 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26
 * For more information about the VP3 coding process, visit:
27
 *   http://wiki.multimedia.cx/index.php?title=On2_VP3
28
 *
29
 * Theora decoder by Alex Beregszaszi
30
 */
31
 
32
#include 
33
#include 
34
#include 
35
 
36
#include "libavutil/imgutils.h"
37
#include "avcodec.h"
38
#include "internal.h"
39
#include "dsputil.h"
40
#include "get_bits.h"
41
#include "hpeldsp.h"
42
#include "videodsp.h"
43
#include "vp3data.h"
44
#include "vp3dsp.h"
45
#include "xiph.h"
46
#include "thread.h"
47
 
48
#define FRAGMENT_PIXELS 8
49
 
50
//FIXME split things out into their own arrays
51
typedef struct Vp3Fragment {
52
    int16_t dc;
53
    uint8_t coding_method;
54
    uint8_t qpi;
55
} Vp3Fragment;
56
 
57
#define SB_NOT_CODED        0
58
#define SB_PARTIALLY_CODED  1
59
#define SB_FULLY_CODED      2
60
 
61
// This is the maximum length of a single long bit run that can be encoded
62
// for superblock coding or block qps. Theora special-cases this to read a
63
// bit instead of flipping the current bit to allow for runs longer than 4129.
64
#define MAXIMUM_LONG_BIT_RUN 4129
65
 
66
#define MODE_INTER_NO_MV      0
67
#define MODE_INTRA            1
68
#define MODE_INTER_PLUS_MV    2
69
#define MODE_INTER_LAST_MV    3
70
#define MODE_INTER_PRIOR_LAST 4
71
#define MODE_USING_GOLDEN     5
72
#define MODE_GOLDEN_MV        6
73
#define MODE_INTER_FOURMV     7
74
#define CODING_MODE_COUNT     8
75
 
76
/* special internal mode */
77
#define MODE_COPY             8
78
 
79
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb);
80
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb);
81
 
82
 
83
/* There are 6 preset schemes, plus a free-form scheme */
84
static const int ModeAlphabet[6][CODING_MODE_COUNT] =
85
{
86
    /* scheme 1: Last motion vector dominates */
87
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
88
         MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
89
         MODE_INTRA,            MODE_USING_GOLDEN,
90
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
91
 
92
    /* scheme 2 */
93
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
94
         MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
95
         MODE_INTRA,            MODE_USING_GOLDEN,
96
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
97
 
98
    /* scheme 3 */
99
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
100
         MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
101
         MODE_INTRA,            MODE_USING_GOLDEN,
102
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
103
 
104
    /* scheme 4 */
105
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
106
         MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
107
         MODE_INTRA,            MODE_USING_GOLDEN,
108
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
109
 
110
    /* scheme 5: No motion vector dominates */
111
    {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
112
         MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
113
         MODE_INTRA,            MODE_USING_GOLDEN,
114
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
115
 
116
    /* scheme 6 */
117
    {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
118
         MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
119
         MODE_INTER_PLUS_MV,    MODE_INTRA,
120
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
121
 
122
};
123
 
124
static const uint8_t hilbert_offset[16][2] = {
125
    {0,0}, {1,0}, {1,1}, {0,1},
126
    {0,2}, {0,3}, {1,3}, {1,2},
127
    {2,2}, {2,3}, {3,3}, {3,2},
128
    {3,1}, {2,1}, {2,0}, {3,0}
129
};
130
 
131
#define MIN_DEQUANT_VAL 2
132
 
133
typedef struct Vp3DecodeContext {
134
    AVCodecContext *avctx;
135
    int theora, theora_tables;
136
    int version;
137
    int width, height;
138
    int chroma_x_shift, chroma_y_shift;
139
    ThreadFrame golden_frame;
140
    ThreadFrame last_frame;
141
    ThreadFrame current_frame;
142
    int keyframe;
143
    uint8_t idct_permutation[64];
144
    uint8_t idct_scantable[64];
145
    HpelDSPContext hdsp;
146
    VideoDSPContext vdsp;
147
    VP3DSPContext vp3dsp;
148
    DECLARE_ALIGNED(16, int16_t, block)[64];
149
    int flipped_image;
150
    int last_slice_end;
151
    int skip_loop_filter;
152
 
153
    int qps[3];
154
    int nqps;
155
    int last_qps[3];
156
 
157
    int superblock_count;
158
    int y_superblock_width;
159
    int y_superblock_height;
160
    int y_superblock_count;
161
    int c_superblock_width;
162
    int c_superblock_height;
163
    int c_superblock_count;
164
    int u_superblock_start;
165
    int v_superblock_start;
166
    unsigned char *superblock_coding;
167
 
168
    int macroblock_count;
169
    int macroblock_width;
170
    int macroblock_height;
171
 
172
    int fragment_count;
173
    int fragment_width[2];
174
    int fragment_height[2];
175
 
176
    Vp3Fragment *all_fragments;
177
    int fragment_start[3];
178
    int data_offset[3];
179
 
180
    int8_t (*motion_val[2])[2];
181
 
182
    /* tables */
183
    uint16_t coded_dc_scale_factor[64];
184
    uint32_t coded_ac_scale_factor[64];
185
    uint8_t base_matrix[384][64];
186
    uint8_t qr_count[2][3];
187
    uint8_t qr_size [2][3][64];
188
    uint16_t qr_base[2][3][64];
189
 
190
    /**
191
     * This is a list of all tokens in bitstream order. Reordering takes place
192
     * by pulling from each level during IDCT. As a consequence, IDCT must be
193
     * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
194
     * otherwise. The 32 different tokens with up to 12 bits of extradata are
195
     * collapsed into 3 types, packed as follows:
196
     *   (from the low to high bits)
197
     *
198
     * 2 bits: type (0,1,2)
199
     *   0: EOB run, 14 bits for run length (12 needed)
200
     *   1: zero run, 7 bits for run length
201
     *                7 bits for the next coefficient (3 needed)
202
     *   2: coefficient, 14 bits (11 needed)
203
     *
204
     * Coefficients are signed, so are packed in the highest bits for automatic
205
     * sign extension.
206
     */
207
    int16_t *dct_tokens[3][64];
208
    int16_t *dct_tokens_base;
209
#define TOKEN_EOB(eob_run)              ((eob_run) << 2)
210
#define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) << 9) + ((zero_run) << 2) + 1)
211
#define TOKEN_COEFF(coeff)              (((coeff) << 2) + 2)
212
 
213
    /**
214
     * number of blocks that contain DCT coefficients at the given level or higher
215
     */
216
    int num_coded_frags[3][64];
217
    int total_num_coded_frags;
218
 
219
    /* this is a list of indexes into the all_fragments array indicating
220
     * which of the fragments are coded */
221
    int *coded_fragment_list[3];
222
 
223
    VLC dc_vlc[16];
224
    VLC ac_vlc_1[16];
225
    VLC ac_vlc_2[16];
226
    VLC ac_vlc_3[16];
227
    VLC ac_vlc_4[16];
228
 
229
    VLC superblock_run_length_vlc;
230
    VLC fragment_run_length_vlc;
231
    VLC mode_code_vlc;
232
    VLC motion_vector_vlc;
233
 
234
    /* these arrays need to be on 16-byte boundaries since SSE2 operations
235
     * index into them */
236
    DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64];     ///< qmat[qpi][is_inter][plane]
237
 
238
    /* This table contains superblock_count * 16 entries. Each set of 16
239
     * numbers corresponds to the fragment indexes 0..15 of the superblock.
240
     * An entry will be -1 to indicate that no entry corresponds to that
241
     * index. */
242
    int *superblock_fragments;
243
 
244
    /* This is an array that indicates how a particular macroblock
245
     * is coded. */
246
    unsigned char *macroblock_coding;
247
 
248
    uint8_t *edge_emu_buffer;
249
 
250
    /* Huffman decode */
251
    int hti;
252
    unsigned int hbits;
253
    int entries;
254
    int huff_code_size;
255
    uint32_t huffman_table[80][32][2];
256
 
257
    uint8_t filter_limit_values[64];
258
    DECLARE_ALIGNED(8, int, bounding_values_array)[256+2];
259
} Vp3DecodeContext;
260
 
261
/************************************************************************
262
 * VP3 specific functions
263
 ************************************************************************/
264
 
265
static void vp3_decode_flush(AVCodecContext *avctx)
266
{
267
    Vp3DecodeContext *s = avctx->priv_data;
268
 
269
    if (s->golden_frame.f)
270
        ff_thread_release_buffer(avctx, &s->golden_frame);
271
    if (s->last_frame.f)
272
        ff_thread_release_buffer(avctx, &s->last_frame);
273
    if (s->current_frame.f)
274
        ff_thread_release_buffer(avctx, &s->current_frame);
275
}
276
 
277
static av_cold int vp3_decode_end(AVCodecContext *avctx)
278
{
279
    Vp3DecodeContext *s = avctx->priv_data;
280
    int i;
281
 
282
    av_freep(&s->superblock_coding);
283
    av_freep(&s->all_fragments);
284
    av_freep(&s->coded_fragment_list[0]);
285
    av_freep(&s->dct_tokens_base);
286
    av_freep(&s->superblock_fragments);
287
    av_freep(&s->macroblock_coding);
288
    av_freep(&s->motion_val[0]);
289
    av_freep(&s->motion_val[1]);
290
    av_freep(&s->edge_emu_buffer);
291
 
292
    s->theora_tables = 0;
293
 
294
    /* release all frames */
295
    vp3_decode_flush(avctx);
296
    av_frame_free(&s->current_frame.f);
297
    av_frame_free(&s->last_frame.f);
298
    av_frame_free(&s->golden_frame.f);
299
 
300
    if (avctx->internal->is_copy)
301
        return 0;
302
 
303
    for (i = 0; i < 16; i++) {
304
        ff_free_vlc(&s->dc_vlc[i]);
305
        ff_free_vlc(&s->ac_vlc_1[i]);
306
        ff_free_vlc(&s->ac_vlc_2[i]);
307
        ff_free_vlc(&s->ac_vlc_3[i]);
308
        ff_free_vlc(&s->ac_vlc_4[i]);
309
    }
310
 
311
    ff_free_vlc(&s->superblock_run_length_vlc);
312
    ff_free_vlc(&s->fragment_run_length_vlc);
313
    ff_free_vlc(&s->mode_code_vlc);
314
    ff_free_vlc(&s->motion_vector_vlc);
315
 
316
 
317
    return 0;
318
}
319
 
320
/**
321
 * This function sets up all of the various blocks mappings:
322
 * superblocks <-> fragments, macroblocks <-> fragments,
323
 * superblocks <-> macroblocks
324
 *
325
 * @return 0 is successful; returns 1 if *anything* went wrong.
326
 */
327
static int init_block_mapping(Vp3DecodeContext *s)
328
{
329
    int sb_x, sb_y, plane;
330
    int x, y, i, j = 0;
331
 
332
    for (plane = 0; plane < 3; plane++) {
333
        int sb_width    = plane ? s->c_superblock_width  : s->y_superblock_width;
334
        int sb_height   = plane ? s->c_superblock_height : s->y_superblock_height;
335
        int frag_width  = s->fragment_width[!!plane];
336
        int frag_height = s->fragment_height[!!plane];
337
 
338
        for (sb_y = 0; sb_y < sb_height; sb_y++)
339
            for (sb_x = 0; sb_x < sb_width; sb_x++)
340
                for (i = 0; i < 16; i++) {
341
                    x = 4*sb_x + hilbert_offset[i][0];
342
                    y = 4*sb_y + hilbert_offset[i][1];
343
 
344
                    if (x < frag_width && y < frag_height)
345
                        s->superblock_fragments[j++] = s->fragment_start[plane] + y*frag_width + x;
346
                    else
347
                        s->superblock_fragments[j++] = -1;
348
                }
349
    }
350
 
351
    return 0;  /* successful path out */
352
}
353
 
354
/*
355
 * This function sets up the dequantization tables used for a particular
356
 * frame.
357
 */
358
static void init_dequantizer(Vp3DecodeContext *s, int qpi)
359
{
360
    int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
361
    int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
362
    int i, plane, inter, qri, bmi, bmj, qistart;
363
 
364
    for(inter=0; inter<2; inter++){
365
        for(plane=0; plane<3; plane++){
366
            int sum=0;
367
            for(qri=0; qriqr_count[inter][plane]; qri++){
368
                sum+= s->qr_size[inter][plane][qri];
369
                if(s->qps[qpi] <= sum)
370
                    break;
371
            }
372
            qistart= sum - s->qr_size[inter][plane][qri];
373
            bmi= s->qr_base[inter][plane][qri  ];
374
            bmj= s->qr_base[inter][plane][qri+1];
375
            for(i=0; i<64; i++){
376
                int coeff= (  2*(sum    -s->qps[qpi])*s->base_matrix[bmi][i]
377
                            - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
378
                            + s->qr_size[inter][plane][qri])
379
                           / (2*s->qr_size[inter][plane][qri]);
380
 
381
                int qmin= 8<<(inter + !i);
382
                int qscale= i ? ac_scale_factor : dc_scale_factor;
383
 
384
                s->qmat[qpi][inter][plane][s->idct_permutation[i]] =
385
                    av_clip((qscale * coeff) / 100 * 4, qmin, 4096);
386
            }
387
            // all DC coefficients use the same quant so as not to interfere with DC prediction
388
            s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
389
        }
390
    }
391
}
392
 
393
/*
394
 * This function initializes the loop filter boundary limits if the frame's
395
 * quality index is different from the previous frame's.
396
 *
397
 * The filter_limit_values may not be larger than 127.
398
 */
399
static void init_loop_filter(Vp3DecodeContext *s)
400
{
401
    int *bounding_values= s->bounding_values_array+127;
402
    int filter_limit;
403
    int x;
404
    int value;
405
 
406
    filter_limit = s->filter_limit_values[s->qps[0]];
407
    av_assert0(filter_limit < 128U);
408
 
409
    /* set up the bounding values */
410
    memset(s->bounding_values_array, 0, 256 * sizeof(int));
411
    for (x = 0; x < filter_limit; x++) {
412
        bounding_values[-x] = -x;
413
        bounding_values[x] = x;
414
    }
415
    for (x = value = filter_limit; x < 128 && value; x++, value--) {
416
        bounding_values[ x] =  value;
417
        bounding_values[-x] = -value;
418
    }
419
    if (value)
420
        bounding_values[128] = value;
421
    bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
422
}
423
 
424
/*
425
 * This function unpacks all of the superblock/macroblock/fragment coding
426
 * information from the bitstream.
427
 */
428
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
429
{
430
    int superblock_starts[3] = { 0, s->u_superblock_start, s->v_superblock_start };
431
    int bit = 0;
432
    int current_superblock = 0;
433
    int current_run = 0;
434
    int num_partial_superblocks = 0;
435
 
436
    int i, j;
437
    int current_fragment;
438
    int plane;
439
 
440
    if (s->keyframe) {
441
        memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
442
 
443
    } else {
444
 
445
        /* unpack the list of partially-coded superblocks */
446
        bit = get_bits1(gb) ^ 1;
447
        current_run = 0;
448
 
449
        while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
450
            if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
451
                bit = get_bits1(gb);
452
            else
453
                bit ^= 1;
454
 
455
                current_run = get_vlc2(gb,
456
                    s->superblock_run_length_vlc.table, 6, 2) + 1;
457
                if (current_run == 34)
458
                    current_run += get_bits(gb, 12);
459
 
460
            if (current_superblock + current_run > s->superblock_count) {
461
                av_log(s->avctx, AV_LOG_ERROR, "Invalid partially coded superblock run length\n");
462
                return -1;
463
            }
464
 
465
            memset(s->superblock_coding + current_superblock, bit, current_run);
466
 
467
            current_superblock += current_run;
468
            if (bit)
469
                num_partial_superblocks += current_run;
470
        }
471
 
472
        /* unpack the list of fully coded superblocks if any of the blocks were
473
         * not marked as partially coded in the previous step */
474
        if (num_partial_superblocks < s->superblock_count) {
475
            int superblocks_decoded = 0;
476
 
477
            current_superblock = 0;
478
            bit = get_bits1(gb) ^ 1;
479
            current_run = 0;
480
 
481
            while (superblocks_decoded < s->superblock_count - num_partial_superblocks
482
                   && get_bits_left(gb) > 0) {
483
 
484
                if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
485
                    bit = get_bits1(gb);
486
                else
487
                    bit ^= 1;
488
 
489
                        current_run = get_vlc2(gb,
490
                            s->superblock_run_length_vlc.table, 6, 2) + 1;
491
                        if (current_run == 34)
492
                            current_run += get_bits(gb, 12);
493
 
494
                for (j = 0; j < current_run; current_superblock++) {
495
                    if (current_superblock >= s->superblock_count) {
496
                        av_log(s->avctx, AV_LOG_ERROR, "Invalid fully coded superblock run length\n");
497
                        return -1;
498
                    }
499
 
500
                /* skip any superblocks already marked as partially coded */
501
                if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
502
                    s->superblock_coding[current_superblock] = 2*bit;
503
                    j++;
504
                }
505
                }
506
                superblocks_decoded += current_run;
507
            }
508
        }
509
 
510
        /* if there were partial blocks, initialize bitstream for
511
         * unpacking fragment codings */
512
        if (num_partial_superblocks) {
513
 
514
            current_run = 0;
515
            bit = get_bits1(gb);
516
            /* toggle the bit because as soon as the first run length is
517
             * fetched the bit will be toggled again */
518
            bit ^= 1;
519
        }
520
    }
521
 
522
    /* figure out which fragments are coded; iterate through each
523
     * superblock (all planes) */
524
    s->total_num_coded_frags = 0;
525
    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
526
 
527
    for (plane = 0; plane < 3; plane++) {
528
        int sb_start = superblock_starts[plane];
529
        int sb_end = sb_start + (plane ? s->c_superblock_count : s->y_superblock_count);
530
        int num_coded_frags = 0;
531
 
532
    for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
533
 
534
        /* iterate through all 16 fragments in a superblock */
535
        for (j = 0; j < 16; j++) {
536
 
537
            /* if the fragment is in bounds, check its coding status */
538
            current_fragment = s->superblock_fragments[i * 16 + j];
539
            if (current_fragment != -1) {
540
                int coded = s->superblock_coding[i];
541
 
542
                if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
543
 
544
                    /* fragment may or may not be coded; this is the case
545
                     * that cares about the fragment coding runs */
546
                    if (current_run-- == 0) {
547
                        bit ^= 1;
548
                        current_run = get_vlc2(gb,
549
                            s->fragment_run_length_vlc.table, 5, 2);
550
                    }
551
                    coded = bit;
552
                }
553
 
554
                    if (coded) {
555
                        /* default mode; actual mode will be decoded in
556
                         * the next phase */
557
                        s->all_fragments[current_fragment].coding_method =
558
                            MODE_INTER_NO_MV;
559
                        s->coded_fragment_list[plane][num_coded_frags++] =
560
                            current_fragment;
561
                    } else {
562
                        /* not coded; copy this fragment from the prior frame */
563
                        s->all_fragments[current_fragment].coding_method =
564
                            MODE_COPY;
565
                    }
566
            }
567
        }
568
    }
569
        s->total_num_coded_frags += num_coded_frags;
570
        for (i = 0; i < 64; i++)
571
            s->num_coded_frags[plane][i] = num_coded_frags;
572
        if (plane < 2)
573
            s->coded_fragment_list[plane+1] = s->coded_fragment_list[plane] + num_coded_frags;
574
    }
575
    return 0;
576
}
577
 
578
/*
579
 * This function unpacks all the coding mode data for individual macroblocks
580
 * from the bitstream.
581
 */
582
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
583
{
584
    int i, j, k, sb_x, sb_y;
585
    int scheme;
586
    int current_macroblock;
587
    int current_fragment;
588
    int coding_mode;
589
    int custom_mode_alphabet[CODING_MODE_COUNT];
590
    const int *alphabet;
591
    Vp3Fragment *frag;
592
 
593
    if (s->keyframe) {
594
        for (i = 0; i < s->fragment_count; i++)
595
            s->all_fragments[i].coding_method = MODE_INTRA;
596
 
597
    } else {
598
 
599
        /* fetch the mode coding scheme for this frame */
600
        scheme = get_bits(gb, 3);
601
 
602
        /* is it a custom coding scheme? */
603
        if (scheme == 0) {
604
            for (i = 0; i < 8; i++)
605
                custom_mode_alphabet[i] = MODE_INTER_NO_MV;
606
            for (i = 0; i < 8; i++)
607
                custom_mode_alphabet[get_bits(gb, 3)] = i;
608
            alphabet = custom_mode_alphabet;
609
        } else
610
            alphabet = ModeAlphabet[scheme-1];
611
 
612
        /* iterate through all of the macroblocks that contain 1 or more
613
         * coded fragments */
614
        for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
615
            for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
616
                if (get_bits_left(gb) <= 0)
617
                    return -1;
618
 
619
            for (j = 0; j < 4; j++) {
620
                int mb_x = 2*sb_x +   (j>>1);
621
                int mb_y = 2*sb_y + (((j>>1)+j)&1);
622
                current_macroblock = mb_y * s->macroblock_width + mb_x;
623
 
624
                if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height)
625
                    continue;
626
 
627
#define BLOCK_X (2*mb_x + (k&1))
628
#define BLOCK_Y (2*mb_y + (k>>1))
629
                /* coding modes are only stored if the macroblock has at least one
630
                 * luma block coded, otherwise it must be INTER_NO_MV */
631
                for (k = 0; k < 4; k++) {
632
                    current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
633
                    if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
634
                        break;
635
                }
636
                if (k == 4) {
637
                    s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
638
                    continue;
639
                }
640
 
641
                /* mode 7 means get 3 bits for each coding mode */
642
                if (scheme == 7)
643
                    coding_mode = get_bits(gb, 3);
644
                else
645
                    coding_mode = alphabet
646
                        [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
647
 
648
                s->macroblock_coding[current_macroblock] = coding_mode;
649
                for (k = 0; k < 4; k++) {
650
                    frag = s->all_fragments + BLOCK_Y*s->fragment_width[0] + BLOCK_X;
651
                    if (frag->coding_method != MODE_COPY)
652
                        frag->coding_method = coding_mode;
653
                }
654
 
655
#define SET_CHROMA_MODES \
656
    if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \
657
        frag[s->fragment_start[1]].coding_method = coding_mode;\
658
    if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \
659
        frag[s->fragment_start[2]].coding_method = coding_mode;
660
 
661
                if (s->chroma_y_shift) {
662
                    frag = s->all_fragments + mb_y*s->fragment_width[1] + mb_x;
663
                    SET_CHROMA_MODES
664
                } else if (s->chroma_x_shift) {
665
                    frag = s->all_fragments + 2*mb_y*s->fragment_width[1] + mb_x;
666
                    for (k = 0; k < 2; k++) {
667
                        SET_CHROMA_MODES
668
                        frag += s->fragment_width[1];
669
                    }
670
                } else {
671
                    for (k = 0; k < 4; k++) {
672
                        frag = s->all_fragments + BLOCK_Y*s->fragment_width[1] + BLOCK_X;
673
                        SET_CHROMA_MODES
674
                    }
675
                }
676
            }
677
            }
678
        }
679
    }
680
 
681
    return 0;
682
}
683
 
684
/*
685
 * This function unpacks all the motion vectors for the individual
686
 * macroblocks from the bitstream.
687
 */
688
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
689
{
690
    int j, k, sb_x, sb_y;
691
    int coding_mode;
692
    int motion_x[4];
693
    int motion_y[4];
694
    int last_motion_x = 0;
695
    int last_motion_y = 0;
696
    int prior_last_motion_x = 0;
697
    int prior_last_motion_y = 0;
698
    int current_macroblock;
699
    int current_fragment;
700
    int frag;
701
 
702
    if (s->keyframe)
703
        return 0;
704
 
705
    /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
706
    coding_mode = get_bits1(gb);
707
 
708
    /* iterate through all of the macroblocks that contain 1 or more
709
     * coded fragments */
710
    for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
711
        for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
712
            if (get_bits_left(gb) <= 0)
713
                return -1;
714
 
715
        for (j = 0; j < 4; j++) {
716
            int mb_x = 2*sb_x +   (j>>1);
717
            int mb_y = 2*sb_y + (((j>>1)+j)&1);
718
            current_macroblock = mb_y * s->macroblock_width + mb_x;
719
 
720
            if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height ||
721
                (s->macroblock_coding[current_macroblock] == MODE_COPY))
722
                continue;
723
 
724
            switch (s->macroblock_coding[current_macroblock]) {
725
 
726
            case MODE_INTER_PLUS_MV:
727
            case MODE_GOLDEN_MV:
728
                /* all 6 fragments use the same motion vector */
729
                if (coding_mode == 0) {
730
                    motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
731
                    motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
732
                } else {
733
                    motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
734
                    motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
735
                }
736
 
737
                /* vector maintenance, only on MODE_INTER_PLUS_MV */
738
                if (s->macroblock_coding[current_macroblock] ==
739
                    MODE_INTER_PLUS_MV) {
740
                    prior_last_motion_x = last_motion_x;
741
                    prior_last_motion_y = last_motion_y;
742
                    last_motion_x = motion_x[0];
743
                    last_motion_y = motion_y[0];
744
                }
745
                break;
746
 
747
            case MODE_INTER_FOURMV:
748
                /* vector maintenance */
749
                prior_last_motion_x = last_motion_x;
750
                prior_last_motion_y = last_motion_y;
751
 
752
                /* fetch 4 vectors from the bitstream, one for each
753
                 * Y fragment, then average for the C fragment vectors */
754
                for (k = 0; k < 4; k++) {
755
                    current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
756
                    if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
757
                        if (coding_mode == 0) {
758
                            motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
759
                            motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
760
                        } else {
761
                            motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
762
                            motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
763
                        }
764
                        last_motion_x = motion_x[k];
765
                        last_motion_y = motion_y[k];
766
                    } else {
767
                        motion_x[k] = 0;
768
                        motion_y[k] = 0;
769
                    }
770
                }
771
                break;
772
 
773
            case MODE_INTER_LAST_MV:
774
                /* all 6 fragments use the last motion vector */
775
                motion_x[0] = last_motion_x;
776
                motion_y[0] = last_motion_y;
777
 
778
                /* no vector maintenance (last vector remains the
779
                 * last vector) */
780
                break;
781
 
782
            case MODE_INTER_PRIOR_LAST:
783
                /* all 6 fragments use the motion vector prior to the
784
                 * last motion vector */
785
                motion_x[0] = prior_last_motion_x;
786
                motion_y[0] = prior_last_motion_y;
787
 
788
                /* vector maintenance */
789
                prior_last_motion_x = last_motion_x;
790
                prior_last_motion_y = last_motion_y;
791
                last_motion_x = motion_x[0];
792
                last_motion_y = motion_y[0];
793
                break;
794
 
795
            default:
796
                /* covers intra, inter without MV, golden without MV */
797
                motion_x[0] = 0;
798
                motion_y[0] = 0;
799
 
800
                /* no vector maintenance */
801
                break;
802
            }
803
 
804
            /* assign the motion vectors to the correct fragments */
805
            for (k = 0; k < 4; k++) {
806
                current_fragment =
807
                    BLOCK_Y*s->fragment_width[0] + BLOCK_X;
808
                if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
809
                    s->motion_val[0][current_fragment][0] = motion_x[k];
810
                    s->motion_val[0][current_fragment][1] = motion_y[k];
811
                } else {
812
                    s->motion_val[0][current_fragment][0] = motion_x[0];
813
                    s->motion_val[0][current_fragment][1] = motion_y[0];
814
                }
815
            }
816
 
817
            if (s->chroma_y_shift) {
818
                if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
819
                    motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] + motion_x[2] + motion_x[3], 2);
820
                    motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] + motion_y[2] + motion_y[3], 2);
821
                }
822
                motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1);
823
                motion_y[0] = (motion_y[0]>>1) | (motion_y[0]&1);
824
                frag = mb_y*s->fragment_width[1] + mb_x;
825
                s->motion_val[1][frag][0] = motion_x[0];
826
                s->motion_val[1][frag][1] = motion_y[0];
827
            } else if (s->chroma_x_shift) {
828
                if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
829
                    motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
830
                    motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
831
                    motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
832
                    motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
833
                } else {
834
                    motion_x[1] = motion_x[0];
835
                    motion_y[1] = motion_y[0];
836
                }
837
                motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1);
838
                motion_x[1] = (motion_x[1]>>1) | (motion_x[1]&1);
839
 
840
                frag = 2*mb_y*s->fragment_width[1] + mb_x;
841
                for (k = 0; k < 2; k++) {
842
                    s->motion_val[1][frag][0] = motion_x[k];
843
                    s->motion_val[1][frag][1] = motion_y[k];
844
                    frag += s->fragment_width[1];
845
                }
846
            } else {
847
                for (k = 0; k < 4; k++) {
848
                    frag = BLOCK_Y*s->fragment_width[1] + BLOCK_X;
849
                    if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
850
                        s->motion_val[1][frag][0] = motion_x[k];
851
                        s->motion_val[1][frag][1] = motion_y[k];
852
                    } else {
853
                        s->motion_val[1][frag][0] = motion_x[0];
854
                        s->motion_val[1][frag][1] = motion_y[0];
855
                    }
856
                }
857
            }
858
        }
859
        }
860
    }
861
 
862
    return 0;
863
}
864
 
865
static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
866
{
867
    int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
868
    int num_blocks = s->total_num_coded_frags;
869
 
870
    for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
871
        i = blocks_decoded = num_blocks_at_qpi = 0;
872
 
873
        bit = get_bits1(gb) ^ 1;
874
        run_length = 0;
875
 
876
        do {
877
            if (run_length == MAXIMUM_LONG_BIT_RUN)
878
                bit = get_bits1(gb);
879
            else
880
                bit ^= 1;
881
 
882
            run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
883
            if (run_length == 34)
884
                run_length += get_bits(gb, 12);
885
            blocks_decoded += run_length;
886
 
887
            if (!bit)
888
                num_blocks_at_qpi += run_length;
889
 
890
            for (j = 0; j < run_length; i++) {
891
                if (i >= s->total_num_coded_frags)
892
                    return -1;
893
 
894
                if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
895
                    s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
896
                    j++;
897
                }
898
            }
899
        } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
900
 
901
        num_blocks -= num_blocks_at_qpi;
902
    }
903
 
904
    return 0;
905
}
906
 
907
/*
908
 * This function is called by unpack_dct_coeffs() to extract the VLCs from
909
 * the bitstream. The VLCs encode tokens which are used to unpack DCT
910
 * data. This function unpacks all the VLCs for either the Y plane or both
911
 * C planes, and is called for DC coefficients or different AC coefficient
912
 * levels (since different coefficient types require different VLC tables.
913
 *
914
 * This function returns a residual eob run. E.g, if a particular token gave
915
 * instructions to EOB the next 5 fragments and there were only 2 fragments
916
 * left in the current fragment range, 3 would be returned so that it could
917
 * be passed into the next call to this same function.
918
 */
919
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
920
                        VLC *table, int coeff_index,
921
                        int plane,
922
                        int eob_run)
923
{
924
    int i, j = 0;
925
    int token;
926
    int zero_run = 0;
927
    int16_t coeff = 0;
928
    int bits_to_get;
929
    int blocks_ended;
930
    int coeff_i = 0;
931
    int num_coeffs = s->num_coded_frags[plane][coeff_index];
932
    int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
933
 
934
    /* local references to structure members to avoid repeated deferences */
935
    int *coded_fragment_list = s->coded_fragment_list[plane];
936
    Vp3Fragment *all_fragments = s->all_fragments;
937
    VLC_TYPE (*vlc_table)[2] = table->table;
938
 
939
    if (num_coeffs < 0)
940
        av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coefficents at level %d\n", coeff_index);
941
 
942
    if (eob_run > num_coeffs) {
943
        coeff_i = blocks_ended = num_coeffs;
944
        eob_run -= num_coeffs;
945
    } else {
946
        coeff_i = blocks_ended = eob_run;
947
        eob_run = 0;
948
    }
949
 
950
    // insert fake EOB token to cover the split between planes or zzi
951
    if (blocks_ended)
952
        dct_tokens[j++] = blocks_ended << 2;
953
 
954
    while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
955
            /* decode a VLC into a token */
956
            token = get_vlc2(gb, vlc_table, 11, 3);
957
            /* use the token to get a zero run, a coefficient, and an eob run */
958
            if ((unsigned) token <= 6U) {
959
                eob_run = eob_run_base[token];
960
                if (eob_run_get_bits[token])
961
                    eob_run += get_bits(gb, eob_run_get_bits[token]);
962
 
963
                // record only the number of blocks ended in this plane,
964
                // any spill will be recorded in the next plane.
965
                if (eob_run > num_coeffs - coeff_i) {
966
                    dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
967
                    blocks_ended   += num_coeffs - coeff_i;
968
                    eob_run        -= num_coeffs - coeff_i;
969
                    coeff_i         = num_coeffs;
970
                } else {
971
                    dct_tokens[j++] = TOKEN_EOB(eob_run);
972
                    blocks_ended   += eob_run;
973
                    coeff_i        += eob_run;
974
                    eob_run = 0;
975
                }
976
            } else if (token >= 0) {
977
                bits_to_get = coeff_get_bits[token];
978
                if (bits_to_get)
979
                    bits_to_get = get_bits(gb, bits_to_get);
980
                coeff = coeff_tables[token][bits_to_get];
981
 
982
                zero_run = zero_run_base[token];
983
                if (zero_run_get_bits[token])
984
                    zero_run += get_bits(gb, zero_run_get_bits[token]);
985
 
986
                if (zero_run) {
987
                    dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
988
                } else {
989
                    // Save DC into the fragment structure. DC prediction is
990
                    // done in raster order, so the actual DC can't be in with
991
                    // other tokens. We still need the token in dct_tokens[]
992
                    // however, or else the structure collapses on itself.
993
                    if (!coeff_index)
994
                        all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
995
 
996
                    dct_tokens[j++] = TOKEN_COEFF(coeff);
997
                }
998
 
999
                if (coeff_index + zero_run > 64) {
1000
                    av_log(s->avctx, AV_LOG_DEBUG, "Invalid zero run of %d with"
1001
                           " %d coeffs left\n", zero_run, 64-coeff_index);
1002
                    zero_run = 64 - coeff_index;
1003
                }
1004
 
1005
                // zero runs code multiple coefficients,
1006
                // so don't try to decode coeffs for those higher levels
1007
                for (i = coeff_index+1; i <= coeff_index+zero_run; i++)
1008
                    s->num_coded_frags[plane][i]--;
1009
                coeff_i++;
1010
            } else {
1011
                av_log(s->avctx, AV_LOG_ERROR,
1012
                       "Invalid token %d\n", token);
1013
                return -1;
1014
            }
1015
    }
1016
 
1017
    if (blocks_ended > s->num_coded_frags[plane][coeff_index])
1018
        av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
1019
 
1020
    // decrement the number of blocks that have higher coeffecients for each
1021
    // EOB run at this level
1022
    if (blocks_ended)
1023
        for (i = coeff_index+1; i < 64; i++)
1024
            s->num_coded_frags[plane][i] -= blocks_ended;
1025
 
1026
    // setup the next buffer
1027
    if (plane < 2)
1028
        s->dct_tokens[plane+1][coeff_index] = dct_tokens + j;
1029
    else if (coeff_index < 63)
1030
        s->dct_tokens[0][coeff_index+1] = dct_tokens + j;
1031
 
1032
    return eob_run;
1033
}
1034
 
1035
static void reverse_dc_prediction(Vp3DecodeContext *s,
1036
                                  int first_fragment,
1037
                                  int fragment_width,
1038
                                  int fragment_height);
1039
/*
1040
 * This function unpacks all of the DCT coefficient data from the
1041
 * bitstream.
1042
 */
1043
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1044
{
1045
    int i;
1046
    int dc_y_table;
1047
    int dc_c_table;
1048
    int ac_y_table;
1049
    int ac_c_table;
1050
    int residual_eob_run = 0;
1051
    VLC *y_tables[64];
1052
    VLC *c_tables[64];
1053
 
1054
    s->dct_tokens[0][0] = s->dct_tokens_base;
1055
 
1056
    /* fetch the DC table indexes */
1057
    dc_y_table = get_bits(gb, 4);
1058
    dc_c_table = get_bits(gb, 4);
1059
 
1060
    /* unpack the Y plane DC coefficients */
1061
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1062
        0, residual_eob_run);
1063
    if (residual_eob_run < 0)
1064
        return residual_eob_run;
1065
 
1066
    /* reverse prediction of the Y-plane DC coefficients */
1067
    reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]);
1068
 
1069
    /* unpack the C plane DC coefficients */
1070
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1071
        1, residual_eob_run);
1072
    if (residual_eob_run < 0)
1073
        return residual_eob_run;
1074
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1075
        2, residual_eob_run);
1076
    if (residual_eob_run < 0)
1077
        return residual_eob_run;
1078
 
1079
    /* reverse prediction of the C-plane DC coefficients */
1080
    if (!(s->avctx->flags & CODEC_FLAG_GRAY))
1081
    {
1082
        reverse_dc_prediction(s, s->fragment_start[1],
1083
            s->fragment_width[1], s->fragment_height[1]);
1084
        reverse_dc_prediction(s, s->fragment_start[2],
1085
            s->fragment_width[1], s->fragment_height[1]);
1086
    }
1087
 
1088
    /* fetch the AC table indexes */
1089
    ac_y_table = get_bits(gb, 4);
1090
    ac_c_table = get_bits(gb, 4);
1091
 
1092
    /* build tables of AC VLC tables */
1093
    for (i = 1; i <= 5; i++) {
1094
        y_tables[i] = &s->ac_vlc_1[ac_y_table];
1095
        c_tables[i] = &s->ac_vlc_1[ac_c_table];
1096
    }
1097
    for (i = 6; i <= 14; i++) {
1098
        y_tables[i] = &s->ac_vlc_2[ac_y_table];
1099
        c_tables[i] = &s->ac_vlc_2[ac_c_table];
1100
    }
1101
    for (i = 15; i <= 27; i++) {
1102
        y_tables[i] = &s->ac_vlc_3[ac_y_table];
1103
        c_tables[i] = &s->ac_vlc_3[ac_c_table];
1104
    }
1105
    for (i = 28; i <= 63; i++) {
1106
        y_tables[i] = &s->ac_vlc_4[ac_y_table];
1107
        c_tables[i] = &s->ac_vlc_4[ac_c_table];
1108
    }
1109
 
1110
    /* decode all AC coefficents */
1111
    for (i = 1; i <= 63; i++) {
1112
            residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
1113
                0, residual_eob_run);
1114
            if (residual_eob_run < 0)
1115
                return residual_eob_run;
1116
 
1117
            residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1118
                1, residual_eob_run);
1119
            if (residual_eob_run < 0)
1120
                return residual_eob_run;
1121
            residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1122
                2, residual_eob_run);
1123
            if (residual_eob_run < 0)
1124
                return residual_eob_run;
1125
    }
1126
 
1127
    return 0;
1128
}
1129
 
1130
/*
1131
 * This function reverses the DC prediction for each coded fragment in
1132
 * the frame. Much of this function is adapted directly from the original
1133
 * VP3 source code.
1134
 */
1135
#define COMPATIBLE_FRAME(x) \
1136
  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1137
#define DC_COEFF(u) s->all_fragments[u].dc
1138
 
1139
static void reverse_dc_prediction(Vp3DecodeContext *s,
1140
                                  int first_fragment,
1141
                                  int fragment_width,
1142
                                  int fragment_height)
1143
{
1144
 
1145
#define PUL 8
1146
#define PU 4
1147
#define PUR 2
1148
#define PL 1
1149
 
1150
    int x, y;
1151
    int i = first_fragment;
1152
 
1153
    int predicted_dc;
1154
 
1155
    /* DC values for the left, up-left, up, and up-right fragments */
1156
    int vl, vul, vu, vur;
1157
 
1158
    /* indexes for the left, up-left, up, and up-right fragments */
1159
    int l, ul, u, ur;
1160
 
1161
    /*
1162
     * The 6 fields mean:
1163
     *   0: up-left multiplier
1164
     *   1: up multiplier
1165
     *   2: up-right multiplier
1166
     *   3: left multiplier
1167
     */
1168
    static const int predictor_transform[16][4] = {
1169
        {  0,  0,  0,  0},
1170
        {  0,  0,  0,128},        // PL
1171
        {  0,  0,128,  0},        // PUR
1172
        {  0,  0, 53, 75},        // PUR|PL
1173
        {  0,128,  0,  0},        // PU
1174
        {  0, 64,  0, 64},        // PU|PL
1175
        {  0,128,  0,  0},        // PU|PUR
1176
        {  0,  0, 53, 75},        // PU|PUR|PL
1177
        {128,  0,  0,  0},        // PUL
1178
        {  0,  0,  0,128},        // PUL|PL
1179
        { 64,  0, 64,  0},        // PUL|PUR
1180
        {  0,  0, 53, 75},        // PUL|PUR|PL
1181
        {  0,128,  0,  0},        // PUL|PU
1182
       {-104,116,  0,116},        // PUL|PU|PL
1183
        { 24, 80, 24,  0},        // PUL|PU|PUR
1184
       {-104,116,  0,116}         // PUL|PU|PUR|PL
1185
    };
1186
 
1187
    /* This table shows which types of blocks can use other blocks for
1188
     * prediction. For example, INTRA is the only mode in this table to
1189
     * have a frame number of 0. That means INTRA blocks can only predict
1190
     * from other INTRA blocks. There are 2 golden frame coding types;
1191
     * blocks encoding in these modes can only predict from other blocks
1192
     * that were encoded with these 1 of these 2 modes. */
1193
    static const unsigned char compatible_frame[9] = {
1194
        1,    /* MODE_INTER_NO_MV */
1195
        0,    /* MODE_INTRA */
1196
        1,    /* MODE_INTER_PLUS_MV */
1197
        1,    /* MODE_INTER_LAST_MV */
1198
        1,    /* MODE_INTER_PRIOR_MV */
1199
        2,    /* MODE_USING_GOLDEN */
1200
        2,    /* MODE_GOLDEN_MV */
1201
        1,    /* MODE_INTER_FOUR_MV */
1202
        3     /* MODE_COPY */
1203
    };
1204
    int current_frame_type;
1205
 
1206
    /* there is a last DC predictor for each of the 3 frame types */
1207
    short last_dc[3];
1208
 
1209
    int transform = 0;
1210
 
1211
    vul = vu = vur = vl = 0;
1212
    last_dc[0] = last_dc[1] = last_dc[2] = 0;
1213
 
1214
    /* for each fragment row... */
1215
    for (y = 0; y < fragment_height; y++) {
1216
 
1217
        /* for each fragment in a row... */
1218
        for (x = 0; x < fragment_width; x++, i++) {
1219
 
1220
            /* reverse prediction if this block was coded */
1221
            if (s->all_fragments[i].coding_method != MODE_COPY) {
1222
 
1223
                current_frame_type =
1224
                    compatible_frame[s->all_fragments[i].coding_method];
1225
 
1226
                transform= 0;
1227
                if(x){
1228
                    l= i-1;
1229
                    vl = DC_COEFF(l);
1230
                    if(COMPATIBLE_FRAME(l))
1231
                        transform |= PL;
1232
                }
1233
                if(y){
1234
                    u= i-fragment_width;
1235
                    vu = DC_COEFF(u);
1236
                    if(COMPATIBLE_FRAME(u))
1237
                        transform |= PU;
1238
                    if(x){
1239
                        ul= i-fragment_width-1;
1240
                        vul = DC_COEFF(ul);
1241
                        if(COMPATIBLE_FRAME(ul))
1242
                            transform |= PUL;
1243
                    }
1244
                    if(x + 1 < fragment_width){
1245
                        ur= i-fragment_width+1;
1246
                        vur = DC_COEFF(ur);
1247
                        if(COMPATIBLE_FRAME(ur))
1248
                            transform |= PUR;
1249
                    }
1250
                }
1251
 
1252
                if (transform == 0) {
1253
 
1254
                    /* if there were no fragments to predict from, use last
1255
                     * DC saved */
1256
                    predicted_dc = last_dc[current_frame_type];
1257
                } else {
1258
 
1259
                    /* apply the appropriate predictor transform */
1260
                    predicted_dc =
1261
                        (predictor_transform[transform][0] * vul) +
1262
                        (predictor_transform[transform][1] * vu) +
1263
                        (predictor_transform[transform][2] * vur) +
1264
                        (predictor_transform[transform][3] * vl);
1265
 
1266
                    predicted_dc /= 128;
1267
 
1268
                    /* check for outranging on the [ul u l] and
1269
                     * [ul u ur l] predictors */
1270
                    if ((transform == 15) || (transform == 13)) {
1271
                        if (FFABS(predicted_dc - vu) > 128)
1272
                            predicted_dc = vu;
1273
                        else if (FFABS(predicted_dc - vl) > 128)
1274
                            predicted_dc = vl;
1275
                        else if (FFABS(predicted_dc - vul) > 128)
1276
                            predicted_dc = vul;
1277
                    }
1278
                }
1279
 
1280
                /* at long last, apply the predictor */
1281
                DC_COEFF(i) += predicted_dc;
1282
                /* save the DC */
1283
                last_dc[current_frame_type] = DC_COEFF(i);
1284
            }
1285
        }
1286
    }
1287
}
1288
 
1289
static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
1290
{
1291
    int x, y;
1292
    int *bounding_values= s->bounding_values_array+127;
1293
 
1294
    int width           = s->fragment_width[!!plane];
1295
    int height          = s->fragment_height[!!plane];
1296
    int fragment        = s->fragment_start        [plane] + ystart * width;
1297
    ptrdiff_t stride    = s->current_frame.f->linesize[plane];
1298
    uint8_t *plane_data = s->current_frame.f->data    [plane];
1299
    if (!s->flipped_image) stride = -stride;
1300
    plane_data += s->data_offset[plane] + 8*ystart*stride;
1301
 
1302
    for (y = ystart; y < yend; y++) {
1303
 
1304
        for (x = 0; x < width; x++) {
1305
            /* This code basically just deblocks on the edges of coded blocks.
1306
             * However, it has to be much more complicated because of the
1307
             * braindamaged deblock ordering used in VP3/Theora. Order matters
1308
             * because some pixels get filtered twice. */
1309
            if( s->all_fragments[fragment].coding_method != MODE_COPY )
1310
            {
1311
                /* do not perform left edge filter for left columns frags */
1312
                if (x > 0) {
1313
                    s->vp3dsp.h_loop_filter(
1314
                        plane_data + 8*x,
1315
                        stride, bounding_values);
1316
                }
1317
 
1318
                /* do not perform top edge filter for top row fragments */
1319
                if (y > 0) {
1320
                    s->vp3dsp.v_loop_filter(
1321
                        plane_data + 8*x,
1322
                        stride, bounding_values);
1323
                }
1324
 
1325
                /* do not perform right edge filter for right column
1326
                 * fragments or if right fragment neighbor is also coded
1327
                 * in this frame (it will be filtered in next iteration) */
1328
                if ((x < width - 1) &&
1329
                    (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1330
                    s->vp3dsp.h_loop_filter(
1331
                        plane_data + 8*x + 8,
1332
                        stride, bounding_values);
1333
                }
1334
 
1335
                /* do not perform bottom edge filter for bottom row
1336
                 * fragments or if bottom fragment neighbor is also coded
1337
                 * in this frame (it will be filtered in the next row) */
1338
                if ((y < height - 1) &&
1339
                    (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1340
                    s->vp3dsp.v_loop_filter(
1341
                        plane_data + 8*x + 8*stride,
1342
                        stride, bounding_values);
1343
                }
1344
            }
1345
 
1346
            fragment++;
1347
        }
1348
        plane_data += 8*stride;
1349
    }
1350
}
1351
 
1352
/**
1353
 * Pull DCT tokens from the 64 levels to decode and dequant the coefficients
1354
 * for the next block in coding order
1355
 */
1356
static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
1357
                              int plane, int inter, int16_t block[64])
1358
{
1359
    int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
1360
    uint8_t *perm = s->idct_scantable;
1361
    int i = 0;
1362
 
1363
    do {
1364
        int token = *s->dct_tokens[plane][i];
1365
        switch (token & 3) {
1366
        case 0: // EOB
1367
            if (--token < 4) // 0-3 are token types, so the EOB run must now be 0
1368
                s->dct_tokens[plane][i]++;
1369
            else
1370
                *s->dct_tokens[plane][i] = token & ~3;
1371
            goto end;
1372
        case 1: // zero run
1373
            s->dct_tokens[plane][i]++;
1374
            i += (token >> 2) & 0x7f;
1375
            if (i > 63) {
1376
                av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n");
1377
                return i;
1378
            }
1379
            block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
1380
            i++;
1381
            break;
1382
        case 2: // coeff
1383
            block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
1384
            s->dct_tokens[plane][i++]++;
1385
            break;
1386
        default: // shouldn't happen
1387
            return i;
1388
        }
1389
    } while (i < 64);
1390
    // return value is expected to be a valid level
1391
    i--;
1392
end:
1393
    // the actual DC+prediction is in the fragment structure
1394
    block[0] = frag->dc * s->qmat[0][inter][plane][0];
1395
    return i;
1396
}
1397
 
1398
/**
1399
 * called when all pixels up to row y are complete
1400
 */
1401
static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
1402
{
1403
    int h, cy, i;
1404
    int offset[AV_NUM_DATA_POINTERS];
1405
 
1406
    if (HAVE_THREADS && s->avctx->active_thread_type&FF_THREAD_FRAME) {
1407
        int y_flipped = s->flipped_image ? s->avctx->height-y : y;
1408
 
1409
        // At the end of the frame, report INT_MAX instead of the height of the frame.
1410
        // This makes the other threads' ff_thread_await_progress() calls cheaper, because
1411
        // they don't have to clip their values.
1412
        ff_thread_report_progress(&s->current_frame, y_flipped==s->avctx->height ? INT_MAX : y_flipped-1, 0);
1413
    }
1414
 
1415
    if(s->avctx->draw_horiz_band==NULL)
1416
        return;
1417
 
1418
    h= y - s->last_slice_end;
1419
    s->last_slice_end= y;
1420
    y -= h;
1421
 
1422
    if (!s->flipped_image) {
1423
        y = s->avctx->height - y - h;
1424
    }
1425
 
1426
    cy = y >> s->chroma_y_shift;
1427
    offset[0] = s->current_frame.f->linesize[0]*y;
1428
    offset[1] = s->current_frame.f->linesize[1]*cy;
1429
    offset[2] = s->current_frame.f->linesize[2]*cy;
1430
    for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
1431
        offset[i] = 0;
1432
 
1433
    emms_c();
1434
    s->avctx->draw_horiz_band(s->avctx, s->current_frame.f, offset, y, 3, h);
1435
}
1436
 
1437
/**
1438
 * Wait for the reference frame of the current fragment.
1439
 * The progress value is in luma pixel rows.
1440
 */
1441
static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment, int motion_y, int y)
1442
{
1443
    ThreadFrame *ref_frame;
1444
    int ref_row;
1445
    int border = motion_y&1;
1446
 
1447
    if (fragment->coding_method == MODE_USING_GOLDEN ||
1448
        fragment->coding_method == MODE_GOLDEN_MV)
1449
        ref_frame = &s->golden_frame;
1450
    else
1451
        ref_frame = &s->last_frame;
1452
 
1453
    ref_row = y + (motion_y>>1);
1454
    ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border);
1455
 
1456
    ff_thread_await_progress(ref_frame, ref_row, 0);
1457
}
1458
 
1459
/*
1460
 * Perform the final rendering for a particular slice of data.
1461
 * The slice number ranges from 0..(c_superblock_height - 1).
1462
 */
1463
static void render_slice(Vp3DecodeContext *s, int slice)
1464
{
1465
    int x, y, i, j, fragment;
1466
    int16_t *block = s->block;
1467
    int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1468
    int motion_halfpel_index;
1469
    uint8_t *motion_source;
1470
    int plane, first_pixel;
1471
 
1472
    if (slice >= s->c_superblock_height)
1473
        return;
1474
 
1475
    for (plane = 0; plane < 3; plane++) {
1476
        uint8_t *output_plane = s->current_frame.f->data    [plane] + s->data_offset[plane];
1477
        uint8_t *  last_plane = s->   last_frame.f->data    [plane] + s->data_offset[plane];
1478
        uint8_t *golden_plane = s-> golden_frame.f->data    [plane] + s->data_offset[plane];
1479
        ptrdiff_t stride      = s->current_frame.f->linesize[plane];
1480
        int plane_width       = s->width  >> (plane && s->chroma_x_shift);
1481
        int plane_height      = s->height >> (plane && s->chroma_y_shift);
1482
        int8_t (*motion_val)[2] = s->motion_val[!!plane];
1483
 
1484
        int sb_x, sb_y        = slice << (!plane && s->chroma_y_shift);
1485
        int slice_height      = sb_y + 1 + (!plane && s->chroma_y_shift);
1486
        int slice_width       = plane ? s->c_superblock_width : s->y_superblock_width;
1487
 
1488
        int fragment_width    = s->fragment_width[!!plane];
1489
        int fragment_height   = s->fragment_height[!!plane];
1490
        int fragment_start    = s->fragment_start[plane];
1491
        int do_await          = !plane && HAVE_THREADS && (s->avctx->active_thread_type&FF_THREAD_FRAME);
1492
 
1493
        if (!s->flipped_image) stride = -stride;
1494
        if (CONFIG_GRAY && plane && (s->avctx->flags & CODEC_FLAG_GRAY))
1495
            continue;
1496
 
1497
        /* for each superblock row in the slice (both of them)... */
1498
        for (; sb_y < slice_height; sb_y++) {
1499
 
1500
            /* for each superblock in a row... */
1501
            for (sb_x = 0; sb_x < slice_width; sb_x++) {
1502
 
1503
                /* for each block in a superblock... */
1504
                for (j = 0; j < 16; j++) {
1505
                    x = 4*sb_x + hilbert_offset[j][0];
1506
                    y = 4*sb_y + hilbert_offset[j][1];
1507
                    fragment = y*fragment_width + x;
1508
 
1509
                    i = fragment_start + fragment;
1510
 
1511
                    // bounds check
1512
                    if (x >= fragment_width || y >= fragment_height)
1513
                        continue;
1514
 
1515
                first_pixel = 8*y*stride + 8*x;
1516
 
1517
                if (do_await && s->all_fragments[i].coding_method != MODE_INTRA)
1518
                    await_reference_row(s, &s->all_fragments[i], motion_val[fragment][1], (16*y) >> s->chroma_y_shift);
1519
 
1520
                /* transform if this block was coded */
1521
                if (s->all_fragments[i].coding_method != MODE_COPY) {
1522
                    if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1523
                        (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1524
                        motion_source= golden_plane;
1525
                    else
1526
                        motion_source= last_plane;
1527
 
1528
                    motion_source += first_pixel;
1529
                    motion_halfpel_index = 0;
1530
 
1531
                    /* sort out the motion vector if this fragment is coded
1532
                     * using a motion vector method */
1533
                    if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1534
                        (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1535
                        int src_x, src_y;
1536
                        motion_x = motion_val[fragment][0];
1537
                        motion_y = motion_val[fragment][1];
1538
 
1539
                        src_x= (motion_x>>1) + 8*x;
1540
                        src_y= (motion_y>>1) + 8*y;
1541
 
1542
                        motion_halfpel_index = motion_x & 0x01;
1543
                        motion_source += (motion_x >> 1);
1544
 
1545
                        motion_halfpel_index |= (motion_y & 0x01) << 1;
1546
                        motion_source += ((motion_y >> 1) * stride);
1547
 
1548
                        if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1549
                            uint8_t *temp= s->edge_emu_buffer;
1550
                            if(stride<0) temp -= 8*stride;
1551
 
1552
                            s->vdsp.emulated_edge_mc(temp, stride,
1553
                                                     motion_source, stride,
1554
                                                     9, 9, src_x, src_y,
1555
                                                     plane_width, plane_height);
1556
                            motion_source= temp;
1557
                        }
1558
                    }
1559
 
1560
 
1561
                    /* first, take care of copying a block from either the
1562
                     * previous or the golden frame */
1563
                    if (s->all_fragments[i].coding_method != MODE_INTRA) {
1564
                        /* Note, it is possible to implement all MC cases with
1565
                           put_no_rnd_pixels_l2 which would look more like the
1566
                           VP3 source but this would be slower as
1567
                           put_no_rnd_pixels_tab is better optimzed */
1568
                        if(motion_halfpel_index != 3){
1569
                            s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1570
                                output_plane + first_pixel,
1571
                                motion_source, stride, 8);
1572
                        }else{
1573
                            int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1574
                            s->vp3dsp.put_no_rnd_pixels_l2(
1575
                                output_plane + first_pixel,
1576
                                motion_source - d,
1577
                                motion_source + stride + 1 + d,
1578
                                stride, 8);
1579
                        }
1580
                    }
1581
 
1582
                    /* invert DCT and place (or add) in final output */
1583
 
1584
                    if (s->all_fragments[i].coding_method == MODE_INTRA) {
1585
                        vp3_dequant(s, s->all_fragments + i, plane, 0, block);
1586
                        s->vp3dsp.idct_put(
1587
                            output_plane + first_pixel,
1588
                            stride,
1589
                            block);
1590
                    } else {
1591
                        if (vp3_dequant(s, s->all_fragments + i, plane, 1, block)) {
1592
                        s->vp3dsp.idct_add(
1593
                            output_plane + first_pixel,
1594
                            stride,
1595
                            block);
1596
                        } else {
1597
                            s->vp3dsp.idct_dc_add(output_plane + first_pixel, stride, block);
1598
                        }
1599
                    }
1600
                } else {
1601
 
1602
                    /* copy directly from the previous frame */
1603
                    s->hdsp.put_pixels_tab[1][0](
1604
                        output_plane + first_pixel,
1605
                        last_plane + first_pixel,
1606
                        stride, 8);
1607
 
1608
                }
1609
                }
1610
            }
1611
 
1612
            // Filter up to the last row in the superblock row
1613
            if (!s->skip_loop_filter)
1614
                apply_loop_filter(s, plane, 4*sb_y - !!sb_y, FFMIN(4*sb_y+3, fragment_height-1));
1615
        }
1616
    }
1617
 
1618
     /* this looks like a good place for slice dispatch... */
1619
     /* algorithm:
1620
      *   if (slice == s->macroblock_height - 1)
1621
      *     dispatch (both last slice & 2nd-to-last slice);
1622
      *   else if (slice > 0)
1623
      *     dispatch (slice - 1);
1624
      */
1625
 
1626
    vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) -16, s->height-16));
1627
}
1628
 
1629
/// Allocate tables for per-frame data in Vp3DecodeContext
1630
static av_cold int allocate_tables(AVCodecContext *avctx)
1631
{
1632
    Vp3DecodeContext *s = avctx->priv_data;
1633
    int y_fragment_count, c_fragment_count;
1634
 
1635
    y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1636
    c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1637
 
1638
    s->superblock_coding = av_mallocz(s->superblock_count);
1639
    s->all_fragments = av_mallocz(s->fragment_count * sizeof(Vp3Fragment));
1640
    s->coded_fragment_list[0] = av_mallocz(s->fragment_count * sizeof(int));
1641
    s->dct_tokens_base = av_mallocz(64*s->fragment_count * sizeof(*s->dct_tokens_base));
1642
    s->motion_val[0] = av_mallocz(y_fragment_count * sizeof(*s->motion_val[0]));
1643
    s->motion_val[1] = av_mallocz(c_fragment_count * sizeof(*s->motion_val[1]));
1644
 
1645
    /* work out the block mapping tables */
1646
    s->superblock_fragments = av_mallocz(s->superblock_count * 16 * sizeof(int));
1647
    s->macroblock_coding = av_mallocz(s->macroblock_count + 1);
1648
 
1649
    if (!s->superblock_coding || !s->all_fragments || !s->dct_tokens_base ||
1650
        !s->coded_fragment_list[0] || !s->superblock_fragments || !s->macroblock_coding ||
1651
        !s->motion_val[0] || !s->motion_val[1]) {
1652
        vp3_decode_end(avctx);
1653
        return -1;
1654
    }
1655
 
1656
    init_block_mapping(s);
1657
 
1658
    return 0;
1659
}
1660
 
1661
static av_cold int init_frames(Vp3DecodeContext *s)
1662
{
1663
    s->current_frame.f = av_frame_alloc();
1664
    s->last_frame.f    = av_frame_alloc();
1665
    s->golden_frame.f  = av_frame_alloc();
1666
 
1667
    if (!s->current_frame.f || !s->last_frame.f || !s->golden_frame.f) {
1668
        av_frame_free(&s->current_frame.f);
1669
        av_frame_free(&s->last_frame.f);
1670
        av_frame_free(&s->golden_frame.f);
1671
        return AVERROR(ENOMEM);
1672
    }
1673
 
1674
    return 0;
1675
}
1676
 
1677
static av_cold int vp3_decode_init(AVCodecContext *avctx)
1678
{
1679
    Vp3DecodeContext *s = avctx->priv_data;
1680
    int i, inter, plane, ret;
1681
    int c_width;
1682
    int c_height;
1683
    int y_fragment_count, c_fragment_count;
1684
 
1685
    ret = init_frames(s);
1686
    if (ret < 0)
1687
        return ret;
1688
 
1689
    avctx->internal->allocate_progress = 1;
1690
 
1691
    if (avctx->codec_tag == MKTAG('V','P','3','0'))
1692
        s->version = 0;
1693
    else
1694
        s->version = 1;
1695
 
1696
    s->avctx = avctx;
1697
    s->width = FFALIGN(avctx->width, 16);
1698
    s->height = FFALIGN(avctx->height, 16);
1699
    if (avctx->codec_id != AV_CODEC_ID_THEORA)
1700
        avctx->pix_fmt = AV_PIX_FMT_YUV420P;
1701
    avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
1702
    ff_hpeldsp_init(&s->hdsp, avctx->flags | CODEC_FLAG_BITEXACT);
1703
    ff_videodsp_init(&s->vdsp, 8);
1704
    ff_vp3dsp_init(&s->vp3dsp, avctx->flags);
1705
 
1706
    for (i = 0; i < 64; i++) {
1707
#define T(x) (x >> 3) | ((x & 7) << 3)
1708
        s->idct_permutation[i] = T(i);
1709
        s->idct_scantable[i] = T(ff_zigzag_direct[i]);
1710
#undef T
1711
    }
1712
 
1713
    /* initialize to an impossible value which will force a recalculation
1714
     * in the first frame decode */
1715
    for (i = 0; i < 3; i++)
1716
        s->qps[i] = -1;
1717
 
1718
    avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
1719
 
1720
    s->y_superblock_width = (s->width + 31) / 32;
1721
    s->y_superblock_height = (s->height + 31) / 32;
1722
    s->y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1723
 
1724
    /* work out the dimensions for the C planes */
1725
    c_width = s->width >> s->chroma_x_shift;
1726
    c_height = s->height >> s->chroma_y_shift;
1727
    s->c_superblock_width = (c_width + 31) / 32;
1728
    s->c_superblock_height = (c_height + 31) / 32;
1729
    s->c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1730
 
1731
    s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2);
1732
    s->u_superblock_start = s->y_superblock_count;
1733
    s->v_superblock_start = s->u_superblock_start + s->c_superblock_count;
1734
 
1735
    s->macroblock_width = (s->width + 15) / 16;
1736
    s->macroblock_height = (s->height + 15) / 16;
1737
    s->macroblock_count = s->macroblock_width * s->macroblock_height;
1738
 
1739
    s->fragment_width[0] = s->width / FRAGMENT_PIXELS;
1740
    s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
1741
    s->fragment_width[1]  = s->fragment_width[0]  >> s->chroma_x_shift;
1742
    s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
1743
 
1744
    /* fragment count covers all 8x8 blocks for all 3 planes */
1745
    y_fragment_count     = s->fragment_width[0] * s->fragment_height[0];
1746
    c_fragment_count     = s->fragment_width[1] * s->fragment_height[1];
1747
    s->fragment_count    = y_fragment_count + 2*c_fragment_count;
1748
    s->fragment_start[1] = y_fragment_count;
1749
    s->fragment_start[2] = y_fragment_count + c_fragment_count;
1750
 
1751
    if (!s->theora_tables)
1752
    {
1753
        for (i = 0; i < 64; i++) {
1754
            s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1755
            s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1756
            s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1757
            s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1758
            s->base_matrix[2][i] = vp31_inter_dequant[i];
1759
            s->filter_limit_values[i] = vp31_filter_limit_values[i];
1760
        }
1761
 
1762
        for(inter=0; inter<2; inter++){
1763
            for(plane=0; plane<3; plane++){
1764
                s->qr_count[inter][plane]= 1;
1765
                s->qr_size [inter][plane][0]= 63;
1766
                s->qr_base [inter][plane][0]=
1767
                s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
1768
            }
1769
        }
1770
 
1771
        /* init VLC tables */
1772
        for (i = 0; i < 16; i++) {
1773
 
1774
            /* DC histograms */
1775
            init_vlc(&s->dc_vlc[i], 11, 32,
1776
                &dc_bias[i][0][1], 4, 2,
1777
                &dc_bias[i][0][0], 4, 2, 0);
1778
 
1779
            /* group 1 AC histograms */
1780
            init_vlc(&s->ac_vlc_1[i], 11, 32,
1781
                &ac_bias_0[i][0][1], 4, 2,
1782
                &ac_bias_0[i][0][0], 4, 2, 0);
1783
 
1784
            /* group 2 AC histograms */
1785
            init_vlc(&s->ac_vlc_2[i], 11, 32,
1786
                &ac_bias_1[i][0][1], 4, 2,
1787
                &ac_bias_1[i][0][0], 4, 2, 0);
1788
 
1789
            /* group 3 AC histograms */
1790
            init_vlc(&s->ac_vlc_3[i], 11, 32,
1791
                &ac_bias_2[i][0][1], 4, 2,
1792
                &ac_bias_2[i][0][0], 4, 2, 0);
1793
 
1794
            /* group 4 AC histograms */
1795
            init_vlc(&s->ac_vlc_4[i], 11, 32,
1796
                &ac_bias_3[i][0][1], 4, 2,
1797
                &ac_bias_3[i][0][0], 4, 2, 0);
1798
        }
1799
    } else {
1800
 
1801
        for (i = 0; i < 16; i++) {
1802
            /* DC histograms */
1803
            if (init_vlc(&s->dc_vlc[i], 11, 32,
1804
                &s->huffman_table[i][0][1], 8, 4,
1805
                &s->huffman_table[i][0][0], 8, 4, 0) < 0)
1806
                goto vlc_fail;
1807
 
1808
            /* group 1 AC histograms */
1809
            if (init_vlc(&s->ac_vlc_1[i], 11, 32,
1810
                &s->huffman_table[i+16][0][1], 8, 4,
1811
                &s->huffman_table[i+16][0][0], 8, 4, 0) < 0)
1812
                goto vlc_fail;
1813
 
1814
            /* group 2 AC histograms */
1815
            if (init_vlc(&s->ac_vlc_2[i], 11, 32,
1816
                &s->huffman_table[i+16*2][0][1], 8, 4,
1817
                &s->huffman_table[i+16*2][0][0], 8, 4, 0) < 0)
1818
                goto vlc_fail;
1819
 
1820
            /* group 3 AC histograms */
1821
            if (init_vlc(&s->ac_vlc_3[i], 11, 32,
1822
                &s->huffman_table[i+16*3][0][1], 8, 4,
1823
                &s->huffman_table[i+16*3][0][0], 8, 4, 0) < 0)
1824
                goto vlc_fail;
1825
 
1826
            /* group 4 AC histograms */
1827
            if (init_vlc(&s->ac_vlc_4[i], 11, 32,
1828
                &s->huffman_table[i+16*4][0][1], 8, 4,
1829
                &s->huffman_table[i+16*4][0][0], 8, 4, 0) < 0)
1830
                goto vlc_fail;
1831
        }
1832
    }
1833
 
1834
    init_vlc(&s->superblock_run_length_vlc, 6, 34,
1835
        &superblock_run_length_vlc_table[0][1], 4, 2,
1836
        &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1837
 
1838
    init_vlc(&s->fragment_run_length_vlc, 5, 30,
1839
        &fragment_run_length_vlc_table[0][1], 4, 2,
1840
        &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1841
 
1842
    init_vlc(&s->mode_code_vlc, 3, 8,
1843
        &mode_code_vlc_table[0][1], 2, 1,
1844
        &mode_code_vlc_table[0][0], 2, 1, 0);
1845
 
1846
    init_vlc(&s->motion_vector_vlc, 6, 63,
1847
        &motion_vector_vlc_table[0][1], 2, 1,
1848
        &motion_vector_vlc_table[0][0], 2, 1, 0);
1849
 
1850
    return allocate_tables(avctx);
1851
 
1852
vlc_fail:
1853
    av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
1854
    return -1;
1855
}
1856
 
1857
/// Release and shuffle frames after decode finishes
1858
static int update_frames(AVCodecContext *avctx)
1859
{
1860
    Vp3DecodeContext *s = avctx->priv_data;
1861
    int ret = 0;
1862
 
1863
 
1864
    /* shuffle frames (last = current) */
1865
    ff_thread_release_buffer(avctx, &s->last_frame);
1866
    ret = ff_thread_ref_frame(&s->last_frame, &s->current_frame);
1867
    if (ret < 0)
1868
        goto fail;
1869
 
1870
    if (s->keyframe) {
1871
        ff_thread_release_buffer(avctx, &s->golden_frame);
1872
        ret = ff_thread_ref_frame(&s->golden_frame, &s->current_frame);
1873
    }
1874
 
1875
fail:
1876
    ff_thread_release_buffer(avctx, &s->current_frame);
1877
    return ret;
1878
}
1879
 
1880
static int ref_frame(Vp3DecodeContext *s, ThreadFrame *dst, ThreadFrame *src)
1881
{
1882
    ff_thread_release_buffer(s->avctx, dst);
1883
    if (src->f->data[0])
1884
        return ff_thread_ref_frame(dst, src);
1885
    return 0;
1886
}
1887
 
1888
static int ref_frames(Vp3DecodeContext *dst, Vp3DecodeContext *src)
1889
{
1890
    int ret;
1891
    if ((ret = ref_frame(dst, &dst->current_frame, &src->current_frame)) < 0 ||
1892
        (ret = ref_frame(dst, &dst->golden_frame,  &src->golden_frame)) < 0  ||
1893
        (ret = ref_frame(dst, &dst->last_frame,    &src->last_frame)) < 0)
1894
        return ret;
1895
    return 0;
1896
}
1897
 
1898
static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
1899
{
1900
    Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data;
1901
    int qps_changed = 0, i, err;
1902
 
1903
#define copy_fields(to, from, start_field, end_field) memcpy(&to->start_field, &from->start_field, (char*)&to->end_field - (char*)&to->start_field)
1904
 
1905
    if (!s1->current_frame.f->data[0]
1906
        ||s->width != s1->width
1907
        ||s->height!= s1->height) {
1908
        if (s != s1)
1909
            ref_frames(s, s1);
1910
        return -1;
1911
    }
1912
 
1913
    if (s != s1) {
1914
        // init tables if the first frame hasn't been decoded
1915
        if (!s->current_frame.f->data[0]) {
1916
            int y_fragment_count, c_fragment_count;
1917
            s->avctx = dst;
1918
            err = allocate_tables(dst);
1919
            if (err)
1920
                return err;
1921
            y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1922
            c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1923
            memcpy(s->motion_val[0], s1->motion_val[0], y_fragment_count * sizeof(*s->motion_val[0]));
1924
            memcpy(s->motion_val[1], s1->motion_val[1], c_fragment_count * sizeof(*s->motion_val[1]));
1925
        }
1926
 
1927
        // copy previous frame data
1928
        if ((err = ref_frames(s, s1)) < 0)
1929
            return err;
1930
 
1931
        s->keyframe = s1->keyframe;
1932
 
1933
        // copy qscale data if necessary
1934
        for (i = 0; i < 3; i++) {
1935
            if (s->qps[i] != s1->qps[1]) {
1936
                qps_changed = 1;
1937
                memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i]));
1938
            }
1939
        }
1940
 
1941
        if (s->qps[0] != s1->qps[0])
1942
            memcpy(&s->bounding_values_array, &s1->bounding_values_array, sizeof(s->bounding_values_array));
1943
 
1944
        if (qps_changed)
1945
            copy_fields(s, s1, qps, superblock_count);
1946
#undef copy_fields
1947
    }
1948
 
1949
    return update_frames(dst);
1950
}
1951
 
1952
static int vp3_decode_frame(AVCodecContext *avctx,
1953
                            void *data, int *got_frame,
1954
                            AVPacket *avpkt)
1955
{
1956
    const uint8_t *buf = avpkt->data;
1957
    int buf_size = avpkt->size;
1958
    Vp3DecodeContext *s = avctx->priv_data;
1959
    GetBitContext gb;
1960
    int i, ret;
1961
 
1962
    init_get_bits(&gb, buf, buf_size * 8);
1963
 
1964
#if CONFIG_THEORA_DECODER
1965
    if (s->theora && get_bits1(&gb))
1966
    {
1967
        int type = get_bits(&gb, 7);
1968
        skip_bits_long(&gb, 6*8); /* "theora" */
1969
 
1970
        if (s->avctx->active_thread_type&FF_THREAD_FRAME) {
1971
            av_log(avctx, AV_LOG_ERROR, "midstream reconfiguration with multithreading is unsupported, try -threads 1\n");
1972
            return AVERROR_PATCHWELCOME;
1973
        }
1974
        if (type == 0) {
1975
            vp3_decode_end(avctx);
1976
            ret = theora_decode_header(avctx, &gb);
1977
 
1978
            if (ret < 0) {
1979
                vp3_decode_end(avctx);
1980
            } else
1981
                ret = vp3_decode_init(avctx);
1982
            return ret;
1983
        } else if (type == 2) {
1984
            ret = theora_decode_tables(avctx, &gb);
1985
            if (ret < 0) {
1986
                vp3_decode_end(avctx);
1987
            } else
1988
                ret = vp3_decode_init(avctx);
1989
            return ret;
1990
        }
1991
 
1992
        av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
1993
        return -1;
1994
    }
1995
#endif
1996
 
1997
    s->keyframe = !get_bits1(&gb);
1998
    if (!s->all_fragments) {
1999
        av_log(avctx, AV_LOG_ERROR, "Data packet without prior valid headers\n");
2000
        return -1;
2001
    }
2002
    if (!s->theora)
2003
        skip_bits(&gb, 1);
2004
    for (i = 0; i < 3; i++)
2005
        s->last_qps[i] = s->qps[i];
2006
 
2007
    s->nqps=0;
2008
    do{
2009
        s->qps[s->nqps++]= get_bits(&gb, 6);
2010
    } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
2011
    for (i = s->nqps; i < 3; i++)
2012
        s->qps[i] = -1;
2013
 
2014
    if (s->avctx->debug & FF_DEBUG_PICT_INFO)
2015
        av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
2016
            s->keyframe?"key":"", avctx->frame_number+1, s->qps[0]);
2017
 
2018
    s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] ||
2019
        avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL : AVDISCARD_NONKEY);
2020
 
2021
    if (s->qps[0] != s->last_qps[0])
2022
        init_loop_filter(s);
2023
 
2024
    for (i = 0; i < s->nqps; i++)
2025
        // reinit all dequantizers if the first one changed, because
2026
        // the DC of the first quantizer must be used for all matrices
2027
        if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
2028
            init_dequantizer(s, i);
2029
 
2030
    if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
2031
        return buf_size;
2032
 
2033
    s->current_frame.f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
2034
    s->current_frame.f->key_frame = s->keyframe;
2035
    if (ff_thread_get_buffer(avctx, &s->current_frame, AV_GET_BUFFER_FLAG_REF) < 0)
2036
        goto error;
2037
 
2038
    if (!s->edge_emu_buffer)
2039
        s->edge_emu_buffer = av_malloc(9*FFABS(s->current_frame.f->linesize[0]));
2040
 
2041
    if (s->keyframe) {
2042
        if (!s->theora)
2043
        {
2044
            skip_bits(&gb, 4); /* width code */
2045
            skip_bits(&gb, 4); /* height code */
2046
            if (s->version)
2047
            {
2048
                s->version = get_bits(&gb, 5);
2049
                if (avctx->frame_number == 0)
2050
                    av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
2051
            }
2052
        }
2053
        if (s->version || s->theora)
2054
        {
2055
                if (get_bits1(&gb))
2056
                    av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
2057
            skip_bits(&gb, 2); /* reserved? */
2058
        }
2059
    } else {
2060
        if (!s->golden_frame.f->data[0]) {
2061
            av_log(s->avctx, AV_LOG_WARNING, "vp3: first frame not a keyframe\n");
2062
 
2063
            s->golden_frame.f->pict_type = AV_PICTURE_TYPE_I;
2064
            if (ff_thread_get_buffer(avctx, &s->golden_frame, AV_GET_BUFFER_FLAG_REF) < 0)
2065
                goto error;
2066
            ff_thread_release_buffer(avctx, &s->last_frame);
2067
            if ((ret = ff_thread_ref_frame(&s->last_frame, &s->golden_frame)) < 0)
2068
                goto error;
2069
            ff_thread_report_progress(&s->last_frame, INT_MAX, 0);
2070
        }
2071
    }
2072
 
2073
    memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
2074
    ff_thread_finish_setup(avctx);
2075
 
2076
    if (unpack_superblocks(s, &gb)){
2077
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
2078
        goto error;
2079
    }
2080
    if (unpack_modes(s, &gb)){
2081
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
2082
        goto error;
2083
    }
2084
    if (unpack_vectors(s, &gb)){
2085
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
2086
        goto error;
2087
    }
2088
    if (unpack_block_qpis(s, &gb)){
2089
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
2090
        goto error;
2091
    }
2092
    if (unpack_dct_coeffs(s, &gb)){
2093
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2094
        goto error;
2095
    }
2096
 
2097
    for (i = 0; i < 3; i++) {
2098
        int height = s->height >> (i && s->chroma_y_shift);
2099
        if (s->flipped_image)
2100
            s->data_offset[i] = 0;
2101
        else
2102
            s->data_offset[i] = (height-1) * s->current_frame.f->linesize[i];
2103
    }
2104
 
2105
    s->last_slice_end = 0;
2106
    for (i = 0; i < s->c_superblock_height; i++)
2107
        render_slice(s, i);
2108
 
2109
    // filter the last row
2110
    for (i = 0; i < 3; i++) {
2111
        int row = (s->height >> (3+(i && s->chroma_y_shift))) - 1;
2112
        apply_loop_filter(s, i, row, row+1);
2113
    }
2114
    vp3_draw_horiz_band(s, s->avctx->height);
2115
 
2116
    if ((ret = av_frame_ref(data, s->current_frame.f)) < 0)
2117
        return ret;
2118
    *got_frame = 1;
2119
 
2120
    if (!HAVE_THREADS || !(s->avctx->active_thread_type&FF_THREAD_FRAME)) {
2121
        ret = update_frames(avctx);
2122
        if (ret < 0)
2123
            return ret;
2124
    }
2125
 
2126
    return buf_size;
2127
 
2128
error:
2129
    ff_thread_report_progress(&s->current_frame, INT_MAX, 0);
2130
 
2131
    if (!HAVE_THREADS || !(s->avctx->active_thread_type&FF_THREAD_FRAME))
2132
        av_frame_unref(s->current_frame.f);
2133
 
2134
    return -1;
2135
}
2136
 
2137
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
2138
{
2139
    Vp3DecodeContext *s = avctx->priv_data;
2140
 
2141
    if (get_bits1(gb)) {
2142
        int token;
2143
        if (s->entries >= 32) { /* overflow */
2144
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2145
            return -1;
2146
        }
2147
        token = get_bits(gb, 5);
2148
        av_dlog(avctx, "hti %d hbits %x token %d entry : %d size %d\n",
2149
                s->hti, s->hbits, token, s->entries, s->huff_code_size);
2150
        s->huffman_table[s->hti][token][0] = s->hbits;
2151
        s->huffman_table[s->hti][token][1] = s->huff_code_size;
2152
        s->entries++;
2153
    }
2154
    else {
2155
        if (s->huff_code_size >= 32) {/* overflow */
2156
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2157
            return -1;
2158
        }
2159
        s->huff_code_size++;
2160
        s->hbits <<= 1;
2161
        if (read_huffman_tree(avctx, gb))
2162
            return -1;
2163
        s->hbits |= 1;
2164
        if (read_huffman_tree(avctx, gb))
2165
            return -1;
2166
        s->hbits >>= 1;
2167
        s->huff_code_size--;
2168
    }
2169
    return 0;
2170
}
2171
 
2172
static int vp3_init_thread_copy(AVCodecContext *avctx)
2173
{
2174
    Vp3DecodeContext *s = avctx->priv_data;
2175
 
2176
    s->superblock_coding      = NULL;
2177
    s->all_fragments          = NULL;
2178
    s->coded_fragment_list[0] = NULL;
2179
    s->dct_tokens_base        = NULL;
2180
    s->superblock_fragments   = NULL;
2181
    s->macroblock_coding      = NULL;
2182
    s->motion_val[0]          = NULL;
2183
    s->motion_val[1]          = NULL;
2184
    s->edge_emu_buffer        = NULL;
2185
 
2186
    return init_frames(s);
2187
}
2188
 
2189
#if CONFIG_THEORA_DECODER
2190
static const enum AVPixelFormat theora_pix_fmts[4] = {
2191
    AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P
2192
};
2193
 
2194
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2195
{
2196
    Vp3DecodeContext *s = avctx->priv_data;
2197
    int visible_width, visible_height, colorspace;
2198
    int offset_x = 0, offset_y = 0;
2199
    AVRational fps, aspect;
2200
 
2201
    s->theora = get_bits_long(gb, 24);
2202
    av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2203
 
2204
    /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2205
    /* but previous versions have the image flipped relative to vp3 */
2206
    if (s->theora < 0x030200)
2207
    {
2208
        s->flipped_image = 1;
2209
        av_log(avctx, AV_LOG_DEBUG, "Old (
2210
    }
2211
 
2212
    visible_width  = s->width  = get_bits(gb, 16) << 4;
2213
    visible_height = s->height = get_bits(gb, 16) << 4;
2214
 
2215
    if(av_image_check_size(s->width, s->height, 0, avctx)){
2216
        av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2217
        s->width= s->height= 0;
2218
        return -1;
2219
    }
2220
 
2221
    if (s->theora >= 0x030200) {
2222
        visible_width  = get_bits_long(gb, 24);
2223
        visible_height = get_bits_long(gb, 24);
2224
 
2225
        offset_x = get_bits(gb, 8); /* offset x */
2226
        offset_y = get_bits(gb, 8); /* offset y, from bottom */
2227
    }
2228
 
2229
    fps.num = get_bits_long(gb, 32);
2230
    fps.den = get_bits_long(gb, 32);
2231
    if (fps.num && fps.den) {
2232
        if (fps.num < 0 || fps.den < 0) {
2233
            av_log(avctx, AV_LOG_ERROR, "Invalid framerate\n");
2234
            return AVERROR_INVALIDDATA;
2235
        }
2236
        av_reduce(&avctx->time_base.num, &avctx->time_base.den,
2237
                  fps.den, fps.num, 1<<30);
2238
    }
2239
 
2240
    aspect.num = get_bits_long(gb, 24);
2241
    aspect.den = get_bits_long(gb, 24);
2242
    if (aspect.num && aspect.den) {
2243
        av_reduce(&avctx->sample_aspect_ratio.num,
2244
                  &avctx->sample_aspect_ratio.den,
2245
                  aspect.num, aspect.den, 1<<30);
2246
    }
2247
 
2248
    if (s->theora < 0x030200)
2249
        skip_bits(gb, 5); /* keyframe frequency force */
2250
    colorspace = get_bits(gb, 8);
2251
    skip_bits(gb, 24); /* bitrate */
2252
 
2253
    skip_bits(gb, 6); /* quality hint */
2254
 
2255
    if (s->theora >= 0x030200)
2256
    {
2257
        skip_bits(gb, 5); /* keyframe frequency force */
2258
        avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
2259
        if (avctx->pix_fmt == AV_PIX_FMT_NONE) {
2260
            av_log(avctx, AV_LOG_ERROR, "Invalid pixel format\n");
2261
            return AVERROR_INVALIDDATA;
2262
        }
2263
        skip_bits(gb, 3); /* reserved */
2264
    }
2265
 
2266
//    align_get_bits(gb);
2267
 
2268
    if (   visible_width  <= s->width  && visible_width  > s->width-16
2269
        && visible_height <= s->height && visible_height > s->height-16
2270
        && !offset_x && (offset_y == s->height - visible_height))
2271
        avcodec_set_dimensions(avctx, visible_width, visible_height);
2272
    else
2273
        avcodec_set_dimensions(avctx, s->width, s->height);
2274
 
2275
    if (colorspace == 1) {
2276
        avctx->color_primaries = AVCOL_PRI_BT470M;
2277
    } else if (colorspace == 2) {
2278
        avctx->color_primaries = AVCOL_PRI_BT470BG;
2279
    }
2280
    if (colorspace == 1 || colorspace == 2) {
2281
        avctx->colorspace = AVCOL_SPC_BT470BG;
2282
        avctx->color_trc  = AVCOL_TRC_BT709;
2283
    }
2284
 
2285
    return 0;
2286
}
2287
 
2288
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2289
{
2290
    Vp3DecodeContext *s = avctx->priv_data;
2291
    int i, n, matrices, inter, plane;
2292
 
2293
    if (s->theora >= 0x030200) {
2294
        n = get_bits(gb, 3);
2295
        /* loop filter limit values table */
2296
        if (n)
2297
            for (i = 0; i < 64; i++)
2298
                s->filter_limit_values[i] = get_bits(gb, n);
2299
    }
2300
 
2301
    if (s->theora >= 0x030200)
2302
        n = get_bits(gb, 4) + 1;
2303
    else
2304
        n = 16;
2305
    /* quality threshold table */
2306
    for (i = 0; i < 64; i++)
2307
        s->coded_ac_scale_factor[i] = get_bits(gb, n);
2308
 
2309
    if (s->theora >= 0x030200)
2310
        n = get_bits(gb, 4) + 1;
2311
    else
2312
        n = 16;
2313
    /* dc scale factor table */
2314
    for (i = 0; i < 64; i++)
2315
        s->coded_dc_scale_factor[i] = get_bits(gb, n);
2316
 
2317
    if (s->theora >= 0x030200)
2318
        matrices = get_bits(gb, 9) + 1;
2319
    else
2320
        matrices = 3;
2321
 
2322
    if(matrices > 384){
2323
        av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2324
        return -1;
2325
    }
2326
 
2327
    for(n=0; n
2328
        for (i = 0; i < 64; i++)
2329
            s->base_matrix[n][i]= get_bits(gb, 8);
2330
    }
2331
 
2332
    for (inter = 0; inter <= 1; inter++) {
2333
        for (plane = 0; plane <= 2; plane++) {
2334
            int newqr= 1;
2335
            if (inter || plane > 0)
2336
                newqr = get_bits1(gb);
2337
            if (!newqr) {
2338
                int qtj, plj;
2339
                if(inter && get_bits1(gb)){
2340
                    qtj = 0;
2341
                    plj = plane;
2342
                }else{
2343
                    qtj= (3*inter + plane - 1) / 3;
2344
                    plj= (plane + 2) % 3;
2345
                }
2346
                s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2347
                memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2348
                memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2349
            } else {
2350
                int qri= 0;
2351
                int qi = 0;
2352
 
2353
                for(;;){
2354
                    i= get_bits(gb, av_log2(matrices-1)+1);
2355
                    if(i>= matrices){
2356
                        av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2357
                        return -1;
2358
                    }
2359
                    s->qr_base[inter][plane][qri]= i;
2360
                    if(qi >= 63)
2361
                        break;
2362
                    i = get_bits(gb, av_log2(63-qi)+1) + 1;
2363
                    s->qr_size[inter][plane][qri++]= i;
2364
                    qi += i;
2365
                }
2366
 
2367
                if (qi > 63) {
2368
                    av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2369
                    return -1;
2370
                }
2371
                s->qr_count[inter][plane]= qri;
2372
            }
2373
        }
2374
    }
2375
 
2376
    /* Huffman tables */
2377
    for (s->hti = 0; s->hti < 80; s->hti++) {
2378
        s->entries = 0;
2379
        s->huff_code_size = 1;
2380
        if (!get_bits1(gb)) {
2381
            s->hbits = 0;
2382
            if(read_huffman_tree(avctx, gb))
2383
                return -1;
2384
            s->hbits = 1;
2385
            if(read_huffman_tree(avctx, gb))
2386
                return -1;
2387
        }
2388
    }
2389
 
2390
    s->theora_tables = 1;
2391
 
2392
    return 0;
2393
}
2394
 
2395
static av_cold int theora_decode_init(AVCodecContext *avctx)
2396
{
2397
    Vp3DecodeContext *s = avctx->priv_data;
2398
    GetBitContext gb;
2399
    int ptype;
2400
    uint8_t *header_start[3];
2401
    int header_len[3];
2402
    int i;
2403
 
2404
    avctx->pix_fmt = AV_PIX_FMT_YUV420P;
2405
 
2406
    s->theora = 1;
2407
 
2408
    if (!avctx->extradata_size)
2409
    {
2410
        av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2411
        return -1;
2412
    }
2413
 
2414
    if (avpriv_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2415
                              42, header_start, header_len) < 0) {
2416
        av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2417
        return -1;
2418
    }
2419
 
2420
  for(i=0;i<3;i++) {
2421
    if (header_len[i] <= 0)
2422
        continue;
2423
    init_get_bits(&gb, header_start[i], header_len[i] * 8);
2424
 
2425
    ptype = get_bits(&gb, 8);
2426
 
2427
     if (!(ptype & 0x80))
2428
     {
2429
        av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2430
//        return -1;
2431
     }
2432
 
2433
    // FIXME: Check for this as well.
2434
    skip_bits_long(&gb, 6*8); /* "theora" */
2435
 
2436
    switch(ptype)
2437
    {
2438
        case 0x80:
2439
            if (theora_decode_header(avctx, &gb) < 0)
2440
                return -1;
2441
                break;
2442
        case 0x81:
2443
// FIXME: is this needed? it breaks sometimes
2444
//            theora_decode_comments(avctx, gb);
2445
            break;
2446
        case 0x82:
2447
            if (theora_decode_tables(avctx, &gb))
2448
                return -1;
2449
            break;
2450
        default:
2451
            av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2452
            break;
2453
    }
2454
    if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
2455
        av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
2456
    if (s->theora < 0x030200)
2457
        break;
2458
  }
2459
 
2460
    return vp3_decode_init(avctx);
2461
}
2462
 
2463
AVCodec ff_theora_decoder = {
2464
    .name                  = "theora",
2465
    .long_name             = NULL_IF_CONFIG_SMALL("Theora"),
2466
    .type                  = AVMEDIA_TYPE_VIDEO,
2467
    .id                    = AV_CODEC_ID_THEORA,
2468
    .priv_data_size        = sizeof(Vp3DecodeContext),
2469
    .init                  = theora_decode_init,
2470
    .close                 = vp3_decode_end,
2471
    .decode                = vp3_decode_frame,
2472
    .capabilities          = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
2473
                             CODEC_CAP_FRAME_THREADS,
2474
    .flush                 = vp3_decode_flush,
2475
    .init_thread_copy      = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
2476
    .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context)
2477
};
2478
#endif
2479
 
2480
AVCodec ff_vp3_decoder = {
2481
    .name                  = "vp3",
2482
    .long_name             = NULL_IF_CONFIG_SMALL("On2 VP3"),
2483
    .type                  = AVMEDIA_TYPE_VIDEO,
2484
    .id                    = AV_CODEC_ID_VP3,
2485
    .priv_data_size        = sizeof(Vp3DecodeContext),
2486
    .init                  = vp3_decode_init,
2487
    .close                 = vp3_decode_end,
2488
    .decode                = vp3_decode_frame,
2489
    .capabilities          = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
2490
                             CODEC_CAP_FRAME_THREADS,
2491
    .flush                 = vp3_decode_flush,
2492
    .init_thread_copy      = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
2493
    .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
2494
};