Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * Ut Video encoder
3
 * Copyright (c) 2012 Jan Ekström
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
 
22
/**
23
 * @file
24
 * Ut Video encoder
25
 */
26
 
27
#include "libavutil/imgutils.h"
28
#include "libavutil/intreadwrite.h"
29
#include "avcodec.h"
30
#include "internal.h"
31
#include "bytestream.h"
32
#include "put_bits.h"
33
#include "dsputil.h"
34
#include "mathops.h"
35
#include "utvideo.h"
36
#include "huffman.h"
37
 
38
/* Compare huffentry symbols */
39
static int huff_cmp_sym(const void *a, const void *b)
40
{
41
    const HuffEntry *aa = a, *bb = b;
42
    return aa->sym - bb->sym;
43
}
44
 
45
static av_cold int utvideo_encode_close(AVCodecContext *avctx)
46
{
47
    UtvideoContext *c = avctx->priv_data;
48
    int i;
49
 
50
    av_freep(&avctx->coded_frame);
51
    av_freep(&c->slice_bits);
52
    for (i = 0; i < 4; i++)
53
        av_freep(&c->slice_buffer[i]);
54
 
55
    return 0;
56
}
57
 
58
static av_cold int utvideo_encode_init(AVCodecContext *avctx)
59
{
60
    UtvideoContext *c = avctx->priv_data;
61
    int i;
62
    uint32_t original_format;
63
 
64
    c->avctx           = avctx;
65
    c->frame_info_size = 4;
66
    c->slice_stride    = FFALIGN(avctx->width, 32);
67
 
68
    switch (avctx->pix_fmt) {
69
    case AV_PIX_FMT_RGB24:
70
        c->planes        = 3;
71
        avctx->codec_tag = MKTAG('U', 'L', 'R', 'G');
72
        original_format  = UTVIDEO_RGB;
73
        break;
74
    case AV_PIX_FMT_RGBA:
75
        c->planes        = 4;
76
        avctx->codec_tag = MKTAG('U', 'L', 'R', 'A');
77
        original_format  = UTVIDEO_RGBA;
78
        break;
79
    case AV_PIX_FMT_YUV420P:
80
        if (avctx->width & 1 || avctx->height & 1) {
81
            av_log(avctx, AV_LOG_ERROR,
82
                   "4:2:0 video requires even width and height.\n");
83
            return AVERROR_INVALIDDATA;
84
        }
85
        c->planes        = 3;
86
        avctx->codec_tag = MKTAG('U', 'L', 'Y', '0');
87
        original_format  = UTVIDEO_420;
88
        break;
89
    case AV_PIX_FMT_YUV422P:
90
        if (avctx->width & 1) {
91
            av_log(avctx, AV_LOG_ERROR,
92
                   "4:2:2 video requires even width.\n");
93
            return AVERROR_INVALIDDATA;
94
        }
95
        c->planes        = 3;
96
        avctx->codec_tag = MKTAG('U', 'L', 'Y', '2');
97
        original_format  = UTVIDEO_422;
98
        break;
99
    default:
100
        av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
101
               avctx->pix_fmt);
102
        return AVERROR_INVALIDDATA;
103
    }
104
 
105
    ff_dsputil_init(&c->dsp, avctx);
106
 
107
    /* Check the prediction method, and error out if unsupported */
108
    if (avctx->prediction_method < 0 || avctx->prediction_method > 4) {
109
        av_log(avctx, AV_LOG_WARNING,
110
               "Prediction method %d is not supported in Ut Video.\n",
111
               avctx->prediction_method);
112
        return AVERROR_OPTION_NOT_FOUND;
113
    }
114
 
115
    if (avctx->prediction_method == FF_PRED_PLANE) {
116
        av_log(avctx, AV_LOG_ERROR,
117
               "Plane prediction is not supported in Ut Video.\n");
118
        return AVERROR_OPTION_NOT_FOUND;
119
    }
120
 
121
    /* Convert from libavcodec prediction type to Ut Video's */
122
    c->frame_pred = ff_ut_pred_order[avctx->prediction_method];
123
 
124
    if (c->frame_pred == PRED_GRADIENT) {
125
        av_log(avctx, AV_LOG_ERROR, "Gradient prediction is not supported.\n");
126
        return AVERROR_OPTION_NOT_FOUND;
127
    }
128
 
129
    avctx->coded_frame = avcodec_alloc_frame();
130
 
131
    if (!avctx->coded_frame) {
132
        av_log(avctx, AV_LOG_ERROR, "Could not allocate frame.\n");
133
        utvideo_encode_close(avctx);
134
        return AVERROR(ENOMEM);
135
    }
136
 
137
    /* extradata size is 4 * 32bit */
138
    avctx->extradata_size = 16;
139
 
140
    avctx->extradata = av_mallocz(avctx->extradata_size +
141
                                  FF_INPUT_BUFFER_PADDING_SIZE);
142
 
143
    if (!avctx->extradata) {
144
        av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n");
145
        utvideo_encode_close(avctx);
146
        return AVERROR(ENOMEM);
147
    }
148
 
149
    for (i = 0; i < c->planes; i++) {
150
        c->slice_buffer[i] = av_malloc(c->slice_stride * (avctx->height + 2) +
151
                                       FF_INPUT_BUFFER_PADDING_SIZE);
152
        if (!c->slice_buffer[i]) {
153
            av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 1.\n");
154
            utvideo_encode_close(avctx);
155
            return AVERROR(ENOMEM);
156
        }
157
    }
158
 
159
    /*
160
     * Set the version of the encoder.
161
     * Last byte is "implementation ID", which is
162
     * obtained from the creator of the format.
163
     * Libavcodec has been assigned with the ID 0xF0.
164
     */
165
    AV_WB32(avctx->extradata, MKTAG(1, 0, 0, 0xF0));
166
 
167
    /*
168
     * Set the "original format"
169
     * Not used for anything during decoding.
170
     */
171
    AV_WL32(avctx->extradata + 4, original_format);
172
 
173
    /* Write 4 as the 'frame info size' */
174
    AV_WL32(avctx->extradata + 8, c->frame_info_size);
175
 
176
    /*
177
     * Set how many slices are going to be used.
178
     * Set one slice for now.
179
     */
180
    c->slices = 1;
181
 
182
    /* Set compression mode */
183
    c->compression = COMP_HUFF;
184
 
185
    /*
186
     * Set the encoding flags:
187
     * - Slice count minus 1
188
     * - Interlaced encoding mode flag, set to zero for now.
189
     * - Compression mode (none/huff)
190
     * And write the flags.
191
     */
192
    c->flags  = (c->slices - 1) << 24;
193
    c->flags |= 0 << 11; // bit field to signal interlaced encoding mode
194
    c->flags |= c->compression;
195
 
196
    AV_WL32(avctx->extradata + 12, c->flags);
197
 
198
    return 0;
199
}
200
 
201
static void mangle_rgb_planes(uint8_t *dst[4], int dst_stride, uint8_t *src,
202
                              int step, int stride, int width, int height)
203
{
204
    int i, j;
205
    int k = 2 * dst_stride;
206
    unsigned int g;
207
 
208
    for (j = 0; j < height; j++) {
209
        if (step == 3) {
210
            for (i = 0; i < width * step; i += step) {
211
                g         = src[i + 1];
212
                dst[0][k] = g;
213
                g        += 0x80;
214
                dst[1][k] = src[i + 2] - g;
215
                dst[2][k] = src[i + 0] - g;
216
                k++;
217
            }
218
        } else {
219
            for (i = 0; i < width * step; i += step) {
220
                g         = src[i + 1];
221
                dst[0][k] = g;
222
                g        += 0x80;
223
                dst[1][k] = src[i + 2] - g;
224
                dst[2][k] = src[i + 0] - g;
225
                dst[3][k] = src[i + 3];
226
                k++;
227
            }
228
        }
229
        k += dst_stride - width;
230
        src += stride;
231
    }
232
}
233
 
234
/* Write data to a plane with left prediction */
235
static void left_predict(uint8_t *src, uint8_t *dst, int stride,
236
                         int width, int height)
237
{
238
    int i, j;
239
    uint8_t prev;
240
 
241
    prev = 0x80; /* Set the initial value */
242
    for (j = 0; j < height; j++) {
243
        for (i = 0; i < width; i++) {
244
            *dst++ = src[i] - prev;
245
            prev   = src[i];
246
        }
247
        src += stride;
248
    }
249
}
250
 
251
/* Write data to a plane with median prediction */
252
static void median_predict(UtvideoContext *c, uint8_t *src, uint8_t *dst, int stride,
253
                           int width, int height)
254
{
255
    int i, j;
256
    int A, B;
257
    uint8_t prev;
258
 
259
    /* First line uses left neighbour prediction */
260
    prev = 0x80; /* Set the initial value */
261
    for (i = 0; i < width; i++) {
262
        *dst++ = src[i] - prev;
263
        prev   = src[i];
264
    }
265
 
266
    if (height == 1)
267
        return;
268
 
269
    src += stride;
270
 
271
    /*
272
     * Second line uses top prediction for the first sample,
273
     * and median for the rest.
274
     */
275
    A = B = 0;
276
 
277
    /* Rest of the coded part uses median prediction */
278
    for (j = 1; j < height; j++) {
279
        c->dsp.sub_hfyu_median_prediction(dst, src - stride, src, width, &A, &B);
280
        dst += width;
281
        src += stride;
282
    }
283
}
284
 
285
/* Count the usage of values in a plane */
286
static void count_usage(uint8_t *src, int width,
287
                        int height, uint64_t *counts)
288
{
289
    int i, j;
290
 
291
    for (j = 0; j < height; j++) {
292
        for (i = 0; i < width; i++) {
293
            counts[src[i]]++;
294
        }
295
        src += width;
296
    }
297
}
298
 
299
/* Calculate the actual huffman codes from the code lengths */
300
static void calculate_codes(HuffEntry *he)
301
{
302
    int last, i;
303
    uint32_t code;
304
 
305
    qsort(he, 256, sizeof(*he), ff_ut_huff_cmp_len);
306
 
307
    last = 255;
308
    while (he[last].len == 255 && last)
309
        last--;
310
 
311
    code = 1;
312
    for (i = last; i >= 0; i--) {
313
        he[i].code  = code >> (32 - he[i].len);
314
        code       += 0x80000000u >> (he[i].len - 1);
315
    }
316
 
317
    qsort(he, 256, sizeof(*he), huff_cmp_sym);
318
}
319
 
320
/* Write huffman bit codes to a memory block */
321
static int write_huff_codes(uint8_t *src, uint8_t *dst, int dst_size,
322
                            int width, int height, HuffEntry *he)
323
{
324
    PutBitContext pb;
325
    int i, j;
326
    int count;
327
 
328
    init_put_bits(&pb, dst, dst_size);
329
 
330
    /* Write the codes */
331
    for (j = 0; j < height; j++) {
332
        for (i = 0; i < width; i++)
333
            put_bits(&pb, he[src[i]].len, he[src[i]].code);
334
 
335
        src += width;
336
    }
337
 
338
    /* Pad output to a 32bit boundary */
339
    count = put_bits_count(&pb) & 0x1F;
340
 
341
    if (count)
342
        put_bits(&pb, 32 - count, 0);
343
 
344
    /* Get the amount of bits written */
345
    count = put_bits_count(&pb);
346
 
347
    /* Flush the rest with zeroes */
348
    flush_put_bits(&pb);
349
 
350
    return count;
351
}
352
 
353
static int encode_plane(AVCodecContext *avctx, uint8_t *src,
354
                        uint8_t *dst, int stride,
355
                        int width, int height, PutByteContext *pb)
356
{
357
    UtvideoContext *c        = avctx->priv_data;
358
    uint8_t  lengths[256];
359
    uint64_t counts[256]     = { 0 };
360
 
361
    HuffEntry he[256];
362
 
363
    uint32_t offset = 0, slice_len = 0;
364
    int      i, sstart, send = 0;
365
    int      symbol;
366
 
367
    /* Do prediction / make planes */
368
    switch (c->frame_pred) {
369
    case PRED_NONE:
370
        for (i = 0; i < c->slices; i++) {
371
            sstart = send;
372
            send   = height * (i + 1) / c->slices;
373
            av_image_copy_plane(dst + sstart * width, width,
374
                                src + sstart * stride, stride,
375
                                width, send - sstart);
376
        }
377
        break;
378
    case PRED_LEFT:
379
        for (i = 0; i < c->slices; i++) {
380
            sstart = send;
381
            send   = height * (i + 1) / c->slices;
382
            left_predict(src + sstart * stride, dst + sstart * width,
383
                         stride, width, send - sstart);
384
        }
385
        break;
386
    case PRED_MEDIAN:
387
        for (i = 0; i < c->slices; i++) {
388
            sstart = send;
389
            send   = height * (i + 1) / c->slices;
390
            median_predict(c, src + sstart * stride, dst + sstart * width,
391
                           stride, width, send - sstart);
392
        }
393
        break;
394
    default:
395
        av_log(avctx, AV_LOG_ERROR, "Unknown prediction mode: %d\n",
396
               c->frame_pred);
397
        return AVERROR_OPTION_NOT_FOUND;
398
    }
399
 
400
    /* Count the usage of values */
401
    count_usage(dst, width, height, counts);
402
 
403
    /* Check for a special case where only one symbol was used */
404
    for (symbol = 0; symbol < 256; symbol++) {
405
        /* If non-zero count is found, see if it matches width * height */
406
        if (counts[symbol]) {
407
            /* Special case if only one symbol was used */
408
            if (counts[symbol] == width * (int64_t)height) {
409
                /*
410
                 * Write a zero for the single symbol
411
                 * used in the plane, else 0xFF.
412
                 */
413
                for (i = 0; i < 256; i++) {
414
                    if (i == symbol)
415
                        bytestream2_put_byte(pb, 0);
416
                    else
417
                        bytestream2_put_byte(pb, 0xFF);
418
                }
419
 
420
                /* Write zeroes for lengths */
421
                for (i = 0; i < c->slices; i++)
422
                    bytestream2_put_le32(pb, 0);
423
 
424
                /* And that's all for that plane folks */
425
                return 0;
426
            }
427
            break;
428
        }
429
    }
430
 
431
    /* Calculate huffman lengths */
432
    ff_huff_gen_len_table(lengths, counts);
433
 
434
    /*
435
     * Write the plane's header into the output packet:
436
     * - huffman code lengths (256 bytes)
437
     * - slice end offsets (gotten from the slice lengths)
438
     */
439
    for (i = 0; i < 256; i++) {
440
        bytestream2_put_byte(pb, lengths[i]);
441
 
442
        he[i].len = lengths[i];
443
        he[i].sym = i;
444
    }
445
 
446
    /* Calculate the huffman codes themselves */
447
    calculate_codes(he);
448
 
449
    send = 0;
450
    for (i = 0; i < c->slices; i++) {
451
        sstart  = send;
452
        send    = height * (i + 1) / c->slices;
453
 
454
        /*
455
         * Write the huffman codes to a buffer,
456
         * get the offset in bits and convert to bytes.
457
         */
458
        offset += write_huff_codes(dst + sstart * width, c->slice_bits,
459
                                   width * (send - sstart), width,
460
                                   send - sstart, he) >> 3;
461
 
462
        slice_len = offset - slice_len;
463
 
464
        /* Byteswap the written huffman codes */
465
        c->dsp.bswap_buf((uint32_t *) c->slice_bits,
466
                         (uint32_t *) c->slice_bits,
467
                         slice_len >> 2);
468
 
469
        /* Write the offset to the stream */
470
        bytestream2_put_le32(pb, offset);
471
 
472
        /* Seek to the data part of the packet */
473
        bytestream2_seek_p(pb, 4 * (c->slices - i - 1) +
474
                           offset - slice_len, SEEK_CUR);
475
 
476
        /* Write the slices' data into the output packet */
477
        bytestream2_put_buffer(pb, c->slice_bits, slice_len);
478
 
479
        /* Seek back to the slice offsets */
480
        bytestream2_seek_p(pb, -4 * (c->slices - i - 1) - offset,
481
                           SEEK_CUR);
482
 
483
        slice_len = offset;
484
    }
485
 
486
    /* And at the end seek to the end of written slice(s) */
487
    bytestream2_seek_p(pb, offset, SEEK_CUR);
488
 
489
    return 0;
490
}
491
 
492
static int utvideo_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
493
                                const AVFrame *pic, int *got_packet)
494
{
495
    UtvideoContext *c = avctx->priv_data;
496
    PutByteContext pb;
497
 
498
    uint32_t frame_info;
499
 
500
    uint8_t *dst;
501
 
502
    int width = avctx->width, height = avctx->height;
503
    int i, ret = 0;
504
 
505
    /* Allocate a new packet if needed, and set it to the pointer dst */
506
    ret = ff_alloc_packet2(avctx, pkt, (256 + 4 * c->slices + width * height) *
507
                           c->planes + 4);
508
 
509
    if (ret < 0)
510
        return ret;
511
 
512
    dst = pkt->data;
513
 
514
    bytestream2_init_writer(&pb, dst, pkt->size);
515
 
516
    av_fast_malloc(&c->slice_bits, &c->slice_bits_size,
517
                   width * height + FF_INPUT_BUFFER_PADDING_SIZE);
518
 
519
    if (!c->slice_bits) {
520
        av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 2.\n");
521
        return AVERROR(ENOMEM);
522
    }
523
 
524
    /* In case of RGB, mangle the planes to Ut Video's format */
525
    if (avctx->pix_fmt == AV_PIX_FMT_RGBA || avctx->pix_fmt == AV_PIX_FMT_RGB24)
526
        mangle_rgb_planes(c->slice_buffer, c->slice_stride, pic->data[0],
527
                          c->planes, pic->linesize[0], width, height);
528
 
529
    /* Deal with the planes */
530
    switch (avctx->pix_fmt) {
531
    case AV_PIX_FMT_RGB24:
532
    case AV_PIX_FMT_RGBA:
533
        for (i = 0; i < c->planes; i++) {
534
            ret = encode_plane(avctx, c->slice_buffer[i] + 2 * c->slice_stride,
535
                               c->slice_buffer[i], c->slice_stride,
536
                               width, height, &pb);
537
 
538
            if (ret) {
539
                av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
540
                return ret;
541
            }
542
        }
543
        break;
544
    case AV_PIX_FMT_YUV422P:
545
        for (i = 0; i < c->planes; i++) {
546
            ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
547
                               pic->linesize[i], width >> !!i, height, &pb);
548
 
549
            if (ret) {
550
                av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
551
                return ret;
552
            }
553
        }
554
        break;
555
    case AV_PIX_FMT_YUV420P:
556
        for (i = 0; i < c->planes; i++) {
557
            ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
558
                               pic->linesize[i], width >> !!i, height >> !!i,
559
                               &pb);
560
 
561
            if (ret) {
562
                av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
563
                return ret;
564
            }
565
        }
566
        break;
567
    default:
568
        av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
569
               avctx->pix_fmt);
570
        return AVERROR_INVALIDDATA;
571
    }
572
 
573
    /*
574
     * Write frame information (LE 32bit unsigned)
575
     * into the output packet.
576
     * Contains the prediction method.
577
     */
578
    frame_info = c->frame_pred << 8;
579
    bytestream2_put_le32(&pb, frame_info);
580
 
581
    /*
582
     * At least currently Ut Video is IDR only.
583
     * Set flags accordingly.
584
     */
585
    avctx->coded_frame->key_frame = 1;
586
    avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
587
 
588
    pkt->size   = bytestream2_tell_p(&pb);
589
    pkt->flags |= AV_PKT_FLAG_KEY;
590
 
591
    /* Packet should be done */
592
    *got_packet = 1;
593
 
594
    return 0;
595
}
596
 
597
AVCodec ff_utvideo_encoder = {
598
    .name           = "utvideo",
599
    .long_name      = NULL_IF_CONFIG_SMALL("Ut Video"),
600
    .type           = AVMEDIA_TYPE_VIDEO,
601
    .id             = AV_CODEC_ID_UTVIDEO,
602
    .priv_data_size = sizeof(UtvideoContext),
603
    .init           = utvideo_encode_init,
604
    .encode2        = utvideo_encode_frame,
605
    .close          = utvideo_encode_close,
606
    .pix_fmts       = (const enum AVPixelFormat[]) {
607
                          AV_PIX_FMT_RGB24, AV_PIX_FMT_RGBA, AV_PIX_FMT_YUV422P,
608
                          AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE
609
                      },
610
};