Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * MPEG Audio decoder
3
 * Copyright (c) 2001, 2002 Fabrice Bellard
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
 
22
/**
23
 * @file
24
 * MPEG Audio decoder
25
 */
26
 
27
#include "libavutil/attributes.h"
28
#include "libavutil/avassert.h"
29
#include "libavutil/channel_layout.h"
30
#include "libavutil/float_dsp.h"
31
#include "libavutil/libm.h"
32
#include "avcodec.h"
33
#include "get_bits.h"
34
#include "internal.h"
35
#include "mathops.h"
36
#include "mpegaudiodsp.h"
37
 
38
/*
39
 * TODO:
40
 *  - test lsf / mpeg25 extensively.
41
 */
42
 
43
#include "mpegaudio.h"
44
#include "mpegaudiodecheader.h"
45
 
46
#define BACKSTEP_SIZE 512
47
#define EXTRABYTES 24
48
#define LAST_BUF_SIZE 2 * BACKSTEP_SIZE + EXTRABYTES
49
 
50
/* layer 3 "granule" */
51
typedef struct GranuleDef {
52
    uint8_t scfsi;
53
    int part2_3_length;
54
    int big_values;
55
    int global_gain;
56
    int scalefac_compress;
57
    uint8_t block_type;
58
    uint8_t switch_point;
59
    int table_select[3];
60
    int subblock_gain[3];
61
    uint8_t scalefac_scale;
62
    uint8_t count1table_select;
63
    int region_size[3]; /* number of huffman codes in each region */
64
    int preflag;
65
    int short_start, long_end; /* long/short band indexes */
66
    uint8_t scale_factors[40];
67
    DECLARE_ALIGNED(16, INTFLOAT, sb_hybrid)[SBLIMIT * 18]; /* 576 samples */
68
} GranuleDef;
69
 
70
typedef struct MPADecodeContext {
71
    MPA_DECODE_HEADER
72
    uint8_t last_buf[LAST_BUF_SIZE];
73
    int last_buf_size;
74
    /* next header (used in free format parsing) */
75
    uint32_t free_format_next_header;
76
    GetBitContext gb;
77
    GetBitContext in_gb;
78
    DECLARE_ALIGNED(32, MPA_INT, synth_buf)[MPA_MAX_CHANNELS][512 * 2];
79
    int synth_buf_offset[MPA_MAX_CHANNELS];
80
    DECLARE_ALIGNED(32, INTFLOAT, sb_samples)[MPA_MAX_CHANNELS][36][SBLIMIT];
81
    INTFLOAT mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
82
    GranuleDef granules[2][2]; /* Used in Layer 3 */
83
    int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
84
    int dither_state;
85
    int err_recognition;
86
    AVCodecContext* avctx;
87
    MPADSPContext mpadsp;
88
    AVFloatDSPContext fdsp;
89
    AVFrame *frame;
90
} MPADecodeContext;
91
 
92
#if CONFIG_FLOAT
93
#   define SHR(a,b)       ((a)*(1.0f/(1<<(b))))
94
#   define FIXR_OLD(a)    ((int)((a) * FRAC_ONE + 0.5))
95
#   define FIXR(x)        ((float)(x))
96
#   define FIXHR(x)       ((float)(x))
97
#   define MULH3(x, y, s) ((s)*(y)*(x))
98
#   define MULLx(x, y, s) ((y)*(x))
99
#   define RENAME(a) a ## _float
100
#   define OUT_FMT   AV_SAMPLE_FMT_FLT
101
#   define OUT_FMT_P AV_SAMPLE_FMT_FLTP
102
#else
103
#   define SHR(a,b)       ((a)>>(b))
104
/* WARNING: only correct for positive numbers */
105
#   define FIXR_OLD(a)    ((int)((a) * FRAC_ONE + 0.5))
106
#   define FIXR(a)        ((int)((a) * FRAC_ONE + 0.5))
107
#   define FIXHR(a)       ((int)((a) * (1LL<<32) + 0.5))
108
#   define MULH3(x, y, s) MULH((s)*(x), y)
109
#   define MULLx(x, y, s) MULL(x,y,s)
110
#   define RENAME(a)      a ## _fixed
111
#   define OUT_FMT   AV_SAMPLE_FMT_S16
112
#   define OUT_FMT_P AV_SAMPLE_FMT_S16P
113
#endif
114
 
115
/****************/
116
 
117
#define HEADER_SIZE 4
118
 
119
#include "mpegaudiodata.h"
120
#include "mpegaudiodectab.h"
121
 
122
/* vlc structure for decoding layer 3 huffman tables */
123
static VLC huff_vlc[16];
124
static VLC_TYPE huff_vlc_tables[
125
 
126
  142 + 204 + 190 + 170 + 542 + 460 + 662 + 414
127
  ][2];
128
static const int huff_vlc_tables_sizes[16] = {
129
    0,  128,  128,  128,  130,  128,  154,  166,
130
  142,  204,  190,  170,  542,  460,  662,  414
131
};
132
static VLC huff_quad_vlc[2];
133
static VLC_TYPE  huff_quad_vlc_tables[128+16][2];
134
static const int huff_quad_vlc_tables_sizes[2] = { 128, 16 };
135
/* computed from band_size_long */
136
static uint16_t band_index_long[9][23];
137
#include "mpegaudio_tablegen.h"
138
/* intensity stereo coef table */
139
static INTFLOAT is_table[2][16];
140
static INTFLOAT is_table_lsf[2][2][16];
141
static INTFLOAT csa_table[8][4];
142
 
143
static int16_t division_tab3[1<<6 ];
144
static int16_t division_tab5[1<<8 ];
145
static int16_t division_tab9[1<<11];
146
 
147
static int16_t * const division_tabs[4] = {
148
    division_tab3, division_tab5, NULL, division_tab9
149
};
150
 
151
/* lower 2 bits: modulo 3, higher bits: shift */
152
static uint16_t scale_factor_modshift[64];
153
/* [i][j]:  2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
154
static int32_t scale_factor_mult[15][3];
155
/* mult table for layer 2 group quantization */
156
 
157
#define SCALE_GEN(v) \
158
{ FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
159
 
160
static const int32_t scale_factor_mult2[3][3] = {
161
    SCALE_GEN(4.0 / 3.0), /* 3 steps */
162
    SCALE_GEN(4.0 / 5.0), /* 5 steps */
163
    SCALE_GEN(4.0 / 9.0), /* 9 steps */
164
};
165
 
166
/**
167
 * Convert region offsets to region sizes and truncate
168
 * size to big_values.
169
 */
170
static void region_offset2size(GranuleDef *g)
171
{
172
    int i, k, j = 0;
173
    g->region_size[2] = 576 / 2;
174
    for (i = 0; i < 3; i++) {
175
        k = FFMIN(g->region_size[i], g->big_values);
176
        g->region_size[i] = k - j;
177
        j = k;
178
    }
179
}
180
 
181
static void init_short_region(MPADecodeContext *s, GranuleDef *g)
182
{
183
    if (g->block_type == 2) {
184
        if (s->sample_rate_index != 8)
185
            g->region_size[0] = (36 / 2);
186
        else
187
            g->region_size[0] = (72 / 2);
188
    } else {
189
        if (s->sample_rate_index <= 2)
190
            g->region_size[0] = (36 / 2);
191
        else if (s->sample_rate_index != 8)
192
            g->region_size[0] = (54 / 2);
193
        else
194
            g->region_size[0] = (108 / 2);
195
    }
196
    g->region_size[1] = (576 / 2);
197
}
198
 
199
static void init_long_region(MPADecodeContext *s, GranuleDef *g,
200
                             int ra1, int ra2)
201
{
202
    int l;
203
    g->region_size[0] = band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
204
    /* should not overflow */
205
    l = FFMIN(ra1 + ra2 + 2, 22);
206
    g->region_size[1] = band_index_long[s->sample_rate_index][      l] >> 1;
207
}
208
 
209
static void compute_band_indexes(MPADecodeContext *s, GranuleDef *g)
210
{
211
    if (g->block_type == 2) {
212
        if (g->switch_point) {
213
            if(s->sample_rate_index == 8)
214
                avpriv_request_sample(s->avctx, "switch point in 8khz");
215
            /* if switched mode, we handle the 36 first samples as
216
                long blocks.  For 8000Hz, we handle the 72 first
217
                exponents as long blocks */
218
            if (s->sample_rate_index <= 2)
219
                g->long_end = 8;
220
            else
221
                g->long_end = 6;
222
 
223
            g->short_start = 3;
224
        } else {
225
            g->long_end    = 0;
226
            g->short_start = 0;
227
        }
228
    } else {
229
        g->short_start = 13;
230
        g->long_end    = 22;
231
    }
232
}
233
 
234
/* layer 1 unscaling */
235
/* n = number of bits of the mantissa minus 1 */
236
static inline int l1_unscale(int n, int mant, int scale_factor)
237
{
238
    int shift, mod;
239
    int64_t val;
240
 
241
    shift   = scale_factor_modshift[scale_factor];
242
    mod     = shift & 3;
243
    shift >>= 2;
244
    val     = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
245
    shift  += n;
246
    /* NOTE: at this point, 1 <= shift >= 21 + 15 */
247
    return (int)((val + (1LL << (shift - 1))) >> shift);
248
}
249
 
250
static inline int l2_unscale_group(int steps, int mant, int scale_factor)
251
{
252
    int shift, mod, val;
253
 
254
    shift   = scale_factor_modshift[scale_factor];
255
    mod     = shift & 3;
256
    shift >>= 2;
257
 
258
    val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
259
    /* NOTE: at this point, 0 <= shift <= 21 */
260
    if (shift > 0)
261
        val = (val + (1 << (shift - 1))) >> shift;
262
    return val;
263
}
264
 
265
/* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
266
static inline int l3_unscale(int value, int exponent)
267
{
268
    unsigned int m;
269
    int e;
270
 
271
    e  = table_4_3_exp  [4 * value + (exponent & 3)];
272
    m  = table_4_3_value[4 * value + (exponent & 3)];
273
    e -= exponent >> 2;
274
#ifdef DEBUG
275
    if(e < 1)
276
        av_log(NULL, AV_LOG_WARNING, "l3_unscale: e is %d\n", e);
277
#endif
278
    if (e > 31)
279
        return 0;
280
    m = (m + (1 << (e - 1))) >> e;
281
 
282
    return m;
283
}
284
 
285
static av_cold void decode_init_static(void)
286
{
287
    int i, j, k;
288
    int offset;
289
 
290
    /* scale factors table for layer 1/2 */
291
    for (i = 0; i < 64; i++) {
292
        int shift, mod;
293
        /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
294
        shift = i / 3;
295
        mod   = i % 3;
296
        scale_factor_modshift[i] = mod | (shift << 2);
297
    }
298
 
299
    /* scale factor multiply for layer 1 */
300
    for (i = 0; i < 15; i++) {
301
        int n, norm;
302
        n = i + 2;
303
        norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
304
        scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0          * 2.0), FRAC_BITS);
305
        scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
306
        scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
307
        av_dlog(NULL, "%d: norm=%x s=%x %x %x\n", i, norm,
308
                scale_factor_mult[i][0],
309
                scale_factor_mult[i][1],
310
                scale_factor_mult[i][2]);
311
    }
312
 
313
    RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
314
 
315
    /* huffman decode tables */
316
    offset = 0;
317
    for (i = 1; i < 16; i++) {
318
        const HuffTable *h = &mpa_huff_tables[i];
319
        int xsize, x, y;
320
        uint8_t  tmp_bits [512] = { 0 };
321
        uint16_t tmp_codes[512] = { 0 };
322
 
323
        xsize = h->xsize;
324
 
325
        j = 0;
326
        for (x = 0; x < xsize; x++) {
327
            for (y = 0; y < xsize; y++) {
328
                tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j  ];
329
                tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
330
            }
331
        }
332
 
333
        /* XXX: fail test */
334
        huff_vlc[i].table = huff_vlc_tables+offset;
335
        huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
336
        init_vlc(&huff_vlc[i], 7, 512,
337
                 tmp_bits, 1, 1, tmp_codes, 2, 2,
338
                 INIT_VLC_USE_NEW_STATIC);
339
        offset += huff_vlc_tables_sizes[i];
340
    }
341
    av_assert0(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
342
 
343
    offset = 0;
344
    for (i = 0; i < 2; i++) {
345
        huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
346
        huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
347
        init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
348
                 mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
349
                 INIT_VLC_USE_NEW_STATIC);
350
        offset += huff_quad_vlc_tables_sizes[i];
351
    }
352
    av_assert0(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
353
 
354
    for (i = 0; i < 9; i++) {
355
        k = 0;
356
        for (j = 0; j < 22; j++) {
357
            band_index_long[i][j] = k;
358
            k += band_size_long[i][j];
359
        }
360
        band_index_long[i][22] = k;
361
    }
362
 
363
    /* compute n ^ (4/3) and store it in mantissa/exp format */
364
 
365
    mpegaudio_tableinit();
366
 
367
    for (i = 0; i < 4; i++) {
368
        if (ff_mpa_quant_bits[i] < 0) {
369
            for (j = 0; j < (1 << (-ff_mpa_quant_bits[i]+1)); j++) {
370
                int val1, val2, val3, steps;
371
                int val = j;
372
                steps   = ff_mpa_quant_steps[i];
373
                val1    = val % steps;
374
                val    /= steps;
375
                val2    = val % steps;
376
                val3    = val / steps;
377
                division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
378
            }
379
        }
380
    }
381
 
382
 
383
    for (i = 0; i < 7; i++) {
384
        float f;
385
        INTFLOAT v;
386
        if (i != 6) {
387
            f = tan((double)i * M_PI / 12.0);
388
            v = FIXR(f / (1.0 + f));
389
        } else {
390
            v = FIXR(1.0);
391
        }
392
        is_table[0][    i] = v;
393
        is_table[1][6 - i] = v;
394
    }
395
    /* invalid values */
396
    for (i = 7; i < 16; i++)
397
        is_table[0][i] = is_table[1][i] = 0.0;
398
 
399
    for (i = 0; i < 16; i++) {
400
        double f;
401
        int e, k;
402
 
403
        for (j = 0; j < 2; j++) {
404
            e = -(j + 1) * ((i + 1) >> 1);
405
            f = exp2(e / 4.0);
406
            k = i & 1;
407
            is_table_lsf[j][k ^ 1][i] = FIXR(f);
408
            is_table_lsf[j][k    ][i] = FIXR(1.0);
409
            av_dlog(NULL, "is_table_lsf %d %d: %f %f\n",
410
                    i, j, (float) is_table_lsf[j][0][i],
411
                    (float) is_table_lsf[j][1][i]);
412
        }
413
    }
414
 
415
    for (i = 0; i < 8; i++) {
416
        float ci, cs, ca;
417
        ci = ci_table[i];
418
        cs = 1.0 / sqrt(1.0 + ci * ci);
419
        ca = cs * ci;
420
#if !CONFIG_FLOAT
421
        csa_table[i][0] = FIXHR(cs/4);
422
        csa_table[i][1] = FIXHR(ca/4);
423
        csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
424
        csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
425
#else
426
        csa_table[i][0] = cs;
427
        csa_table[i][1] = ca;
428
        csa_table[i][2] = ca + cs;
429
        csa_table[i][3] = ca - cs;
430
#endif
431
    }
432
}
433
 
434
static av_cold int decode_init(AVCodecContext * avctx)
435
{
436
    static int initialized_tables = 0;
437
    MPADecodeContext *s = avctx->priv_data;
438
 
439
    if (!initialized_tables) {
440
        decode_init_static();
441
        initialized_tables = 1;
442
    }
443
 
444
    s->avctx = avctx;
445
 
446
    avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
447
    ff_mpadsp_init(&s->mpadsp);
448
 
449
    if (avctx->request_sample_fmt == OUT_FMT &&
450
        avctx->codec_id != AV_CODEC_ID_MP3ON4)
451
        avctx->sample_fmt = OUT_FMT;
452
    else
453
        avctx->sample_fmt = OUT_FMT_P;
454
    s->err_recognition = avctx->err_recognition;
455
 
456
    if (avctx->codec_id == AV_CODEC_ID_MP3ADU)
457
        s->adu_mode = 1;
458
 
459
    return 0;
460
}
461
 
462
#define C3 FIXHR(0.86602540378443864676/2)
463
#define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36)
464
#define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36)
465
#define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36)
466
 
467
/* 12 points IMDCT. We compute it "by hand" by factorizing obvious
468
   cases. */
469
static void imdct12(INTFLOAT *out, INTFLOAT *in)
470
{
471
    INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
472
 
473
    in0  = in[0*3];
474
    in1  = in[1*3] + in[0*3];
475
    in2  = in[2*3] + in[1*3];
476
    in3  = in[3*3] + in[2*3];
477
    in4  = in[4*3] + in[3*3];
478
    in5  = in[5*3] + in[4*3];
479
    in5 += in3;
480
    in3 += in1;
481
 
482
    in2  = MULH3(in2, C3, 2);
483
    in3  = MULH3(in3, C3, 4);
484
 
485
    t1   = in0 - in4;
486
    t2   = MULH3(in1 - in5, C4, 2);
487
 
488
    out[ 7] =
489
    out[10] = t1 + t2;
490
    out[ 1] =
491
    out[ 4] = t1 - t2;
492
 
493
    in0    += SHR(in4, 1);
494
    in4     = in0 + in2;
495
    in5    += 2*in1;
496
    in1     = MULH3(in5 + in3, C5, 1);
497
    out[ 8] =
498
    out[ 9] = in4 + in1;
499
    out[ 2] =
500
    out[ 3] = in4 - in1;
501
 
502
    in0    -= in2;
503
    in5     = MULH3(in5 - in3, C6, 2);
504
    out[ 0] =
505
    out[ 5] = in0 - in5;
506
    out[ 6] =
507
    out[11] = in0 + in5;
508
}
509
 
510
/* return the number of decoded frames */
511
static int mp_decode_layer1(MPADecodeContext *s)
512
{
513
    int bound, i, v, n, ch, j, mant;
514
    uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
515
    uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
516
 
517
    if (s->mode == MPA_JSTEREO)
518
        bound = (s->mode_ext + 1) * 4;
519
    else
520
        bound = SBLIMIT;
521
 
522
    /* allocation bits */
523
    for (i = 0; i < bound; i++) {
524
        for (ch = 0; ch < s->nb_channels; ch++) {
525
            allocation[ch][i] = get_bits(&s->gb, 4);
526
        }
527
    }
528
    for (i = bound; i < SBLIMIT; i++)
529
        allocation[0][i] = get_bits(&s->gb, 4);
530
 
531
    /* scale factors */
532
    for (i = 0; i < bound; i++) {
533
        for (ch = 0; ch < s->nb_channels; ch++) {
534
            if (allocation[ch][i])
535
                scale_factors[ch][i] = get_bits(&s->gb, 6);
536
        }
537
    }
538
    for (i = bound; i < SBLIMIT; i++) {
539
        if (allocation[0][i]) {
540
            scale_factors[0][i] = get_bits(&s->gb, 6);
541
            scale_factors[1][i] = get_bits(&s->gb, 6);
542
        }
543
    }
544
 
545
    /* compute samples */
546
    for (j = 0; j < 12; j++) {
547
        for (i = 0; i < bound; i++) {
548
            for (ch = 0; ch < s->nb_channels; ch++) {
549
                n = allocation[ch][i];
550
                if (n) {
551
                    mant = get_bits(&s->gb, n + 1);
552
                    v = l1_unscale(n, mant, scale_factors[ch][i]);
553
                } else {
554
                    v = 0;
555
                }
556
                s->sb_samples[ch][j][i] = v;
557
            }
558
        }
559
        for (i = bound; i < SBLIMIT; i++) {
560
            n = allocation[0][i];
561
            if (n) {
562
                mant = get_bits(&s->gb, n + 1);
563
                v = l1_unscale(n, mant, scale_factors[0][i]);
564
                s->sb_samples[0][j][i] = v;
565
                v = l1_unscale(n, mant, scale_factors[1][i]);
566
                s->sb_samples[1][j][i] = v;
567
            } else {
568
                s->sb_samples[0][j][i] = 0;
569
                s->sb_samples[1][j][i] = 0;
570
            }
571
        }
572
    }
573
    return 12;
574
}
575
 
576
static int mp_decode_layer2(MPADecodeContext *s)
577
{
578
    int sblimit; /* number of used subbands */
579
    const unsigned char *alloc_table;
580
    int table, bit_alloc_bits, i, j, ch, bound, v;
581
    unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
582
    unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
583
    unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
584
    int scale, qindex, bits, steps, k, l, m, b;
585
 
586
    /* select decoding table */
587
    table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
588
                                   s->sample_rate, s->lsf);
589
    sblimit     = ff_mpa_sblimit_table[table];
590
    alloc_table = ff_mpa_alloc_tables[table];
591
 
592
    if (s->mode == MPA_JSTEREO)
593
        bound = (s->mode_ext + 1) * 4;
594
    else
595
        bound = sblimit;
596
 
597
    av_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
598
 
599
    /* sanity check */
600
    if (bound > sblimit)
601
        bound = sblimit;
602
 
603
    /* parse bit allocation */
604
    j = 0;
605
    for (i = 0; i < bound; i++) {
606
        bit_alloc_bits = alloc_table[j];
607
        for (ch = 0; ch < s->nb_channels; ch++)
608
            bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
609
        j += 1 << bit_alloc_bits;
610
    }
611
    for (i = bound; i < sblimit; i++) {
612
        bit_alloc_bits = alloc_table[j];
613
        v = get_bits(&s->gb, bit_alloc_bits);
614
        bit_alloc[0][i] = v;
615
        bit_alloc[1][i] = v;
616
        j += 1 << bit_alloc_bits;
617
    }
618
 
619
    /* scale codes */
620
    for (i = 0; i < sblimit; i++) {
621
        for (ch = 0; ch < s->nb_channels; ch++) {
622
            if (bit_alloc[ch][i])
623
                scale_code[ch][i] = get_bits(&s->gb, 2);
624
        }
625
    }
626
 
627
    /* scale factors */
628
    for (i = 0; i < sblimit; i++) {
629
        for (ch = 0; ch < s->nb_channels; ch++) {
630
            if (bit_alloc[ch][i]) {
631
                sf = scale_factors[ch][i];
632
                switch (scale_code[ch][i]) {
633
                default:
634
                case 0:
635
                    sf[0] = get_bits(&s->gb, 6);
636
                    sf[1] = get_bits(&s->gb, 6);
637
                    sf[2] = get_bits(&s->gb, 6);
638
                    break;
639
                case 2:
640
                    sf[0] = get_bits(&s->gb, 6);
641
                    sf[1] = sf[0];
642
                    sf[2] = sf[0];
643
                    break;
644
                case 1:
645
                    sf[0] = get_bits(&s->gb, 6);
646
                    sf[2] = get_bits(&s->gb, 6);
647
                    sf[1] = sf[0];
648
                    break;
649
                case 3:
650
                    sf[0] = get_bits(&s->gb, 6);
651
                    sf[2] = get_bits(&s->gb, 6);
652
                    sf[1] = sf[2];
653
                    break;
654
                }
655
            }
656
        }
657
    }
658
 
659
    /* samples */
660
    for (k = 0; k < 3; k++) {
661
        for (l = 0; l < 12; l += 3) {
662
            j = 0;
663
            for (i = 0; i < bound; i++) {
664
                bit_alloc_bits = alloc_table[j];
665
                for (ch = 0; ch < s->nb_channels; ch++) {
666
                    b = bit_alloc[ch][i];
667
                    if (b) {
668
                        scale = scale_factors[ch][i][k];
669
                        qindex = alloc_table[j+b];
670
                        bits = ff_mpa_quant_bits[qindex];
671
                        if (bits < 0) {
672
                            int v2;
673
                            /* 3 values at the same time */
674
                            v = get_bits(&s->gb, -bits);
675
                            v2 = division_tabs[qindex][v];
676
                            steps  = ff_mpa_quant_steps[qindex];
677
 
678
                            s->sb_samples[ch][k * 12 + l + 0][i] =
679
                                l2_unscale_group(steps,  v2       & 15, scale);
680
                            s->sb_samples[ch][k * 12 + l + 1][i] =
681
                                l2_unscale_group(steps, (v2 >> 4) & 15, scale);
682
                            s->sb_samples[ch][k * 12 + l + 2][i] =
683
                                l2_unscale_group(steps,  v2 >> 8      , scale);
684
                        } else {
685
                            for (m = 0; m < 3; m++) {
686
                                v = get_bits(&s->gb, bits);
687
                                v = l1_unscale(bits - 1, v, scale);
688
                                s->sb_samples[ch][k * 12 + l + m][i] = v;
689
                            }
690
                        }
691
                    } else {
692
                        s->sb_samples[ch][k * 12 + l + 0][i] = 0;
693
                        s->sb_samples[ch][k * 12 + l + 1][i] = 0;
694
                        s->sb_samples[ch][k * 12 + l + 2][i] = 0;
695
                    }
696
                }
697
                /* next subband in alloc table */
698
                j += 1 << bit_alloc_bits;
699
            }
700
            /* XXX: find a way to avoid this duplication of code */
701
            for (i = bound; i < sblimit; i++) {
702
                bit_alloc_bits = alloc_table[j];
703
                b = bit_alloc[0][i];
704
                if (b) {
705
                    int mant, scale0, scale1;
706
                    scale0 = scale_factors[0][i][k];
707
                    scale1 = scale_factors[1][i][k];
708
                    qindex = alloc_table[j+b];
709
                    bits = ff_mpa_quant_bits[qindex];
710
                    if (bits < 0) {
711
                        /* 3 values at the same time */
712
                        v = get_bits(&s->gb, -bits);
713
                        steps = ff_mpa_quant_steps[qindex];
714
                        mant = v % steps;
715
                        v = v / steps;
716
                        s->sb_samples[0][k * 12 + l + 0][i] =
717
                            l2_unscale_group(steps, mant, scale0);
718
                        s->sb_samples[1][k * 12 + l + 0][i] =
719
                            l2_unscale_group(steps, mant, scale1);
720
                        mant = v % steps;
721
                        v = v / steps;
722
                        s->sb_samples[0][k * 12 + l + 1][i] =
723
                            l2_unscale_group(steps, mant, scale0);
724
                        s->sb_samples[1][k * 12 + l + 1][i] =
725
                            l2_unscale_group(steps, mant, scale1);
726
                        s->sb_samples[0][k * 12 + l + 2][i] =
727
                            l2_unscale_group(steps, v, scale0);
728
                        s->sb_samples[1][k * 12 + l + 2][i] =
729
                            l2_unscale_group(steps, v, scale1);
730
                    } else {
731
                        for (m = 0; m < 3; m++) {
732
                            mant = get_bits(&s->gb, bits);
733
                            s->sb_samples[0][k * 12 + l + m][i] =
734
                                l1_unscale(bits - 1, mant, scale0);
735
                            s->sb_samples[1][k * 12 + l + m][i] =
736
                                l1_unscale(bits - 1, mant, scale1);
737
                        }
738
                    }
739
                } else {
740
                    s->sb_samples[0][k * 12 + l + 0][i] = 0;
741
                    s->sb_samples[0][k * 12 + l + 1][i] = 0;
742
                    s->sb_samples[0][k * 12 + l + 2][i] = 0;
743
                    s->sb_samples[1][k * 12 + l + 0][i] = 0;
744
                    s->sb_samples[1][k * 12 + l + 1][i] = 0;
745
                    s->sb_samples[1][k * 12 + l + 2][i] = 0;
746
                }
747
                /* next subband in alloc table */
748
                j += 1 << bit_alloc_bits;
749
            }
750
            /* fill remaining samples to zero */
751
            for (i = sblimit; i < SBLIMIT; i++) {
752
                for (ch = 0; ch < s->nb_channels; ch++) {
753
                    s->sb_samples[ch][k * 12 + l + 0][i] = 0;
754
                    s->sb_samples[ch][k * 12 + l + 1][i] = 0;
755
                    s->sb_samples[ch][k * 12 + l + 2][i] = 0;
756
                }
757
            }
758
        }
759
    }
760
    return 3 * 12;
761
}
762
 
763
#define SPLIT(dst,sf,n)             \
764
    if (n == 3) {                   \
765
        int m = (sf * 171) >> 9;    \
766
        dst   = sf - 3 * m;         \
767
        sf    = m;                  \
768
    } else if (n == 4) {            \
769
        dst  = sf & 3;              \
770
        sf >>= 2;                   \
771
    } else if (n == 5) {            \
772
        int m = (sf * 205) >> 10;   \
773
        dst   = sf - 5 * m;         \
774
        sf    = m;                  \
775
    } else if (n == 6) {            \
776
        int m = (sf * 171) >> 10;   \
777
        dst   = sf - 6 * m;         \
778
        sf    = m;                  \
779
    } else {                        \
780
        dst = 0;                    \
781
    }
782
 
783
static av_always_inline void lsf_sf_expand(int *slen, int sf, int n1, int n2,
784
                                           int n3)
785
{
786
    SPLIT(slen[3], sf, n3)
787
    SPLIT(slen[2], sf, n2)
788
    SPLIT(slen[1], sf, n1)
789
    slen[0] = sf;
790
}
791
 
792
static void exponents_from_scale_factors(MPADecodeContext *s, GranuleDef *g,
793
                                         int16_t *exponents)
794
{
795
    const uint8_t *bstab, *pretab;
796
    int len, i, j, k, l, v0, shift, gain, gains[3];
797
    int16_t *exp_ptr;
798
 
799
    exp_ptr = exponents;
800
    gain    = g->global_gain - 210;
801
    shift   = g->scalefac_scale + 1;
802
 
803
    bstab  = band_size_long[s->sample_rate_index];
804
    pretab = mpa_pretab[g->preflag];
805
    for (i = 0; i < g->long_end; i++) {
806
        v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
807
        len = bstab[i];
808
        for (j = len; j > 0; j--)
809
            *exp_ptr++ = v0;
810
    }
811
 
812
    if (g->short_start < 13) {
813
        bstab    = band_size_short[s->sample_rate_index];
814
        gains[0] = gain - (g->subblock_gain[0] << 3);
815
        gains[1] = gain - (g->subblock_gain[1] << 3);
816
        gains[2] = gain - (g->subblock_gain[2] << 3);
817
        k        = g->long_end;
818
        for (i = g->short_start; i < 13; i++) {
819
            len = bstab[i];
820
            for (l = 0; l < 3; l++) {
821
                v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
822
                for (j = len; j > 0; j--)
823
                    *exp_ptr++ = v0;
824
            }
825
        }
826
    }
827
}
828
 
829
/* handle n = 0 too */
830
static inline int get_bitsz(GetBitContext *s, int n)
831
{
832
    return n ? get_bits(s, n) : 0;
833
}
834
 
835
 
836
static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos,
837
                          int *end_pos2)
838
{
839
    if (s->in_gb.buffer && *pos >= s->gb.size_in_bits) {
840
        s->gb           = s->in_gb;
841
        s->in_gb.buffer = NULL;
842
        av_assert2((get_bits_count(&s->gb) & 7) == 0);
843
        skip_bits_long(&s->gb, *pos - *end_pos);
844
        *end_pos2 =
845
        *end_pos  = *end_pos2 + get_bits_count(&s->gb) - *pos;
846
        *pos      = get_bits_count(&s->gb);
847
    }
848
}
849
 
850
/* Following is a optimized code for
851
            INTFLOAT v = *src
852
            if(get_bits1(&s->gb))
853
                v = -v;
854
            *dst = v;
855
*/
856
#if CONFIG_FLOAT
857
#define READ_FLIP_SIGN(dst,src)                     \
858
    v = AV_RN32A(src) ^ (get_bits1(&s->gb) << 31);  \
859
    AV_WN32A(dst, v);
860
#else
861
#define READ_FLIP_SIGN(dst,src)     \
862
    v      = -get_bits1(&s->gb);    \
863
    *(dst) = (*(src) ^ v) - v;
864
#endif
865
 
866
static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
867
                          int16_t *exponents, int end_pos2)
868
{
869
    int s_index;
870
    int i;
871
    int last_pos, bits_left;
872
    VLC *vlc;
873
    int end_pos = FFMIN(end_pos2, s->gb.size_in_bits);
874
 
875
    /* low frequencies (called big values) */
876
    s_index = 0;
877
    for (i = 0; i < 3; i++) {
878
        int j, k, l, linbits;
879
        j = g->region_size[i];
880
        if (j == 0)
881
            continue;
882
        /* select vlc table */
883
        k       = g->table_select[i];
884
        l       = mpa_huff_data[k][0];
885
        linbits = mpa_huff_data[k][1];
886
        vlc     = &huff_vlc[l];
887
 
888
        if (!l) {
889
            memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * 2 * j);
890
            s_index += 2 * j;
891
            continue;
892
        }
893
 
894
        /* read huffcode and compute each couple */
895
        for (; j > 0; j--) {
896
            int exponent, x, y;
897
            int v;
898
            int pos = get_bits_count(&s->gb);
899
 
900
            if (pos >= end_pos){
901
                switch_buffer(s, &pos, &end_pos, &end_pos2);
902
                if (pos >= end_pos)
903
                    break;
904
            }
905
            y = get_vlc2(&s->gb, vlc->table, 7, 3);
906
 
907
            if (!y) {
908
                g->sb_hybrid[s_index  ] =
909
                g->sb_hybrid[s_index+1] = 0;
910
                s_index += 2;
911
                continue;
912
            }
913
 
914
            exponent= exponents[s_index];
915
 
916
            av_dlog(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
917
                    i, g->region_size[i] - j, x, y, exponent);
918
            if (y & 16) {
919
                x = y >> 5;
920
                y = y & 0x0f;
921
                if (x < 15) {
922
                    READ_FLIP_SIGN(g->sb_hybrid + s_index, RENAME(expval_table)[exponent] + x)
923
                } else {
924
                    x += get_bitsz(&s->gb, linbits);
925
                    v  = l3_unscale(x, exponent);
926
                    if (get_bits1(&s->gb))
927
                        v = -v;
928
                    g->sb_hybrid[s_index] = v;
929
                }
930
                if (y < 15) {
931
                    READ_FLIP_SIGN(g->sb_hybrid + s_index + 1, RENAME(expval_table)[exponent] + y)
932
                } else {
933
                    y += get_bitsz(&s->gb, linbits);
934
                    v  = l3_unscale(y, exponent);
935
                    if (get_bits1(&s->gb))
936
                        v = -v;
937
                    g->sb_hybrid[s_index+1] = v;
938
                }
939
            } else {
940
                x = y >> 5;
941
                y = y & 0x0f;
942
                x += y;
943
                if (x < 15) {
944
                    READ_FLIP_SIGN(g->sb_hybrid + s_index + !!y, RENAME(expval_table)[exponent] + x)
945
                } else {
946
                    x += get_bitsz(&s->gb, linbits);
947
                    v  = l3_unscale(x, exponent);
948
                    if (get_bits1(&s->gb))
949
                        v = -v;
950
                    g->sb_hybrid[s_index+!!y] = v;
951
                }
952
                g->sb_hybrid[s_index + !y] = 0;
953
            }
954
            s_index += 2;
955
        }
956
    }
957
 
958
    /* high frequencies */
959
    vlc = &huff_quad_vlc[g->count1table_select];
960
    last_pos = 0;
961
    while (s_index <= 572) {
962
        int pos, code;
963
        pos = get_bits_count(&s->gb);
964
        if (pos >= end_pos) {
965
            if (pos > end_pos2 && last_pos) {
966
                /* some encoders generate an incorrect size for this
967
                   part. We must go back into the data */
968
                s_index -= 4;
969
                skip_bits_long(&s->gb, last_pos - pos);
970
                av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
971
                if(s->err_recognition & (AV_EF_BITSTREAM|AV_EF_COMPLIANT))
972
                    s_index=0;
973
                break;
974
            }
975
            switch_buffer(s, &pos, &end_pos, &end_pos2);
976
            if (pos >= end_pos)
977
                break;
978
        }
979
        last_pos = pos;
980
 
981
        code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
982
        av_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
983
        g->sb_hybrid[s_index+0] =
984
        g->sb_hybrid[s_index+1] =
985
        g->sb_hybrid[s_index+2] =
986
        g->sb_hybrid[s_index+3] = 0;
987
        while (code) {
988
            static const int idxtab[16] = { 3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0 };
989
            int v;
990
            int pos = s_index + idxtab[code];
991
            code   ^= 8 >> idxtab[code];
992
            READ_FLIP_SIGN(g->sb_hybrid + pos, RENAME(exp_table)+exponents[pos])
993
        }
994
        s_index += 4;
995
    }
996
    /* skip extension bits */
997
    bits_left = end_pos2 - get_bits_count(&s->gb);
998
    if (bits_left < 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_COMPLIANT))) {
999
        av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
1000
        s_index=0;
1001
    } else if (bits_left > 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_AGGRESSIVE))) {
1002
        av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
1003
        s_index = 0;
1004
    }
1005
    memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * (576 - s_index));
1006
    skip_bits_long(&s->gb, bits_left);
1007
 
1008
    i = get_bits_count(&s->gb);
1009
    switch_buffer(s, &i, &end_pos, &end_pos2);
1010
 
1011
    return 0;
1012
}
1013
 
1014
/* Reorder short blocks from bitstream order to interleaved order. It
1015
   would be faster to do it in parsing, but the code would be far more
1016
   complicated */
1017
static void reorder_block(MPADecodeContext *s, GranuleDef *g)
1018
{
1019
    int i, j, len;
1020
    INTFLOAT *ptr, *dst, *ptr1;
1021
    INTFLOAT tmp[576];
1022
 
1023
    if (g->block_type != 2)
1024
        return;
1025
 
1026
    if (g->switch_point) {
1027
        if (s->sample_rate_index != 8)
1028
            ptr = g->sb_hybrid + 36;
1029
        else
1030
            ptr = g->sb_hybrid + 72;
1031
    } else {
1032
        ptr = g->sb_hybrid;
1033
    }
1034
 
1035
    for (i = g->short_start; i < 13; i++) {
1036
        len  = band_size_short[s->sample_rate_index][i];
1037
        ptr1 = ptr;
1038
        dst  = tmp;
1039
        for (j = len; j > 0; j--) {
1040
            *dst++ = ptr[0*len];
1041
            *dst++ = ptr[1*len];
1042
            *dst++ = ptr[2*len];
1043
            ptr++;
1044
        }
1045
        ptr += 2 * len;
1046
        memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
1047
    }
1048
}
1049
 
1050
#define ISQRT2 FIXR(0.70710678118654752440)
1051
 
1052
static void compute_stereo(MPADecodeContext *s, GranuleDef *g0, GranuleDef *g1)
1053
{
1054
    int i, j, k, l;
1055
    int sf_max, sf, len, non_zero_found;
1056
    INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
1057
    int non_zero_found_short[3];
1058
 
1059
    /* intensity stereo */
1060
    if (s->mode_ext & MODE_EXT_I_STEREO) {
1061
        if (!s->lsf) {
1062
            is_tab = is_table;
1063
            sf_max = 7;
1064
        } else {
1065
            is_tab = is_table_lsf[g1->scalefac_compress & 1];
1066
            sf_max = 16;
1067
        }
1068
 
1069
        tab0 = g0->sb_hybrid + 576;
1070
        tab1 = g1->sb_hybrid + 576;
1071
 
1072
        non_zero_found_short[0] = 0;
1073
        non_zero_found_short[1] = 0;
1074
        non_zero_found_short[2] = 0;
1075
        k = (13 - g1->short_start) * 3 + g1->long_end - 3;
1076
        for (i = 12; i >= g1->short_start; i--) {
1077
            /* for last band, use previous scale factor */
1078
            if (i != 11)
1079
                k -= 3;
1080
            len = band_size_short[s->sample_rate_index][i];
1081
            for (l = 2; l >= 0; l--) {
1082
                tab0 -= len;
1083
                tab1 -= len;
1084
                if (!non_zero_found_short[l]) {
1085
                    /* test if non zero band. if so, stop doing i-stereo */
1086
                    for (j = 0; j < len; j++) {
1087
                        if (tab1[j] != 0) {
1088
                            non_zero_found_short[l] = 1;
1089
                            goto found1;
1090
                        }
1091
                    }
1092
                    sf = g1->scale_factors[k + l];
1093
                    if (sf >= sf_max)
1094
                        goto found1;
1095
 
1096
                    v1 = is_tab[0][sf];
1097
                    v2 = is_tab[1][sf];
1098
                    for (j = 0; j < len; j++) {
1099
                        tmp0    = tab0[j];
1100
                        tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
1101
                        tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
1102
                    }
1103
                } else {
1104
found1:
1105
                    if (s->mode_ext & MODE_EXT_MS_STEREO) {
1106
                        /* lower part of the spectrum : do ms stereo
1107
                           if enabled */
1108
                        for (j = 0; j < len; j++) {
1109
                            tmp0    = tab0[j];
1110
                            tmp1    = tab1[j];
1111
                            tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
1112
                            tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
1113
                        }
1114
                    }
1115
                }
1116
            }
1117
        }
1118
 
1119
        non_zero_found = non_zero_found_short[0] |
1120
                         non_zero_found_short[1] |
1121
                         non_zero_found_short[2];
1122
 
1123
        for (i = g1->long_end - 1;i >= 0;i--) {
1124
            len   = band_size_long[s->sample_rate_index][i];
1125
            tab0 -= len;
1126
            tab1 -= len;
1127
            /* test if non zero band. if so, stop doing i-stereo */
1128
            if (!non_zero_found) {
1129
                for (j = 0; j < len; j++) {
1130
                    if (tab1[j] != 0) {
1131
                        non_zero_found = 1;
1132
                        goto found2;
1133
                    }
1134
                }
1135
                /* for last band, use previous scale factor */
1136
                k  = (i == 21) ? 20 : i;
1137
                sf = g1->scale_factors[k];
1138
                if (sf >= sf_max)
1139
                    goto found2;
1140
                v1 = is_tab[0][sf];
1141
                v2 = is_tab[1][sf];
1142
                for (j = 0; j < len; j++) {
1143
                    tmp0    = tab0[j];
1144
                    tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
1145
                    tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
1146
                }
1147
            } else {
1148
found2:
1149
                if (s->mode_ext & MODE_EXT_MS_STEREO) {
1150
                    /* lower part of the spectrum : do ms stereo
1151
                       if enabled */
1152
                    for (j = 0; j < len; j++) {
1153
                        tmp0    = tab0[j];
1154
                        tmp1    = tab1[j];
1155
                        tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
1156
                        tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
1157
                    }
1158
                }
1159
            }
1160
        }
1161
    } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
1162
        /* ms stereo ONLY */
1163
        /* NOTE: the 1/sqrt(2) normalization factor is included in the
1164
           global gain */
1165
#if CONFIG_FLOAT
1166
       s->fdsp.butterflies_float(g0->sb_hybrid, g1->sb_hybrid, 576);
1167
#else
1168
        tab0 = g0->sb_hybrid;
1169
        tab1 = g1->sb_hybrid;
1170
        for (i = 0; i < 576; i++) {
1171
            tmp0    = tab0[i];
1172
            tmp1    = tab1[i];
1173
            tab0[i] = tmp0 + tmp1;
1174
            tab1[i] = tmp0 - tmp1;
1175
        }
1176
#endif
1177
    }
1178
}
1179
 
1180
#if CONFIG_FLOAT
1181
#if HAVE_MIPSFPU
1182
#   include "mips/compute_antialias_float.h"
1183
#endif /* HAVE_MIPSFPU */
1184
#else
1185
#if HAVE_MIPSDSPR1
1186
#   include "mips/compute_antialias_fixed.h"
1187
#endif /* HAVE_MIPSDSPR1 */
1188
#endif /* CONFIG_FLOAT */
1189
 
1190
#ifndef compute_antialias
1191
#if CONFIG_FLOAT
1192
#define AA(j) do {                                                      \
1193
        float tmp0 = ptr[-1-j];                                         \
1194
        float tmp1 = ptr[   j];                                         \
1195
        ptr[-1-j] = tmp0 * csa_table[j][0] - tmp1 * csa_table[j][1];    \
1196
        ptr[   j] = tmp0 * csa_table[j][1] + tmp1 * csa_table[j][0];    \
1197
    } while (0)
1198
#else
1199
#define AA(j) do {                                              \
1200
        int tmp0 = ptr[-1-j];                                   \
1201
        int tmp1 = ptr[   j];                                   \
1202
        int tmp2 = MULH(tmp0 + tmp1, csa_table[j][0]);          \
1203
        ptr[-1-j] = 4 * (tmp2 - MULH(tmp1, csa_table[j][2]));   \
1204
        ptr[   j] = 4 * (tmp2 + MULH(tmp0, csa_table[j][3]));   \
1205
    } while (0)
1206
#endif
1207
 
1208
static void compute_antialias(MPADecodeContext *s, GranuleDef *g)
1209
{
1210
    INTFLOAT *ptr;
1211
    int n, i;
1212
 
1213
    /* we antialias only "long" bands */
1214
    if (g->block_type == 2) {
1215
        if (!g->switch_point)
1216
            return;
1217
        /* XXX: check this for 8000Hz case */
1218
        n = 1;
1219
    } else {
1220
        n = SBLIMIT - 1;
1221
    }
1222
 
1223
    ptr = g->sb_hybrid + 18;
1224
    for (i = n; i > 0; i--) {
1225
        AA(0);
1226
        AA(1);
1227
        AA(2);
1228
        AA(3);
1229
        AA(4);
1230
        AA(5);
1231
        AA(6);
1232
        AA(7);
1233
 
1234
        ptr += 18;
1235
    }
1236
}
1237
#endif /* compute_antialias */
1238
 
1239
static void compute_imdct(MPADecodeContext *s, GranuleDef *g,
1240
                          INTFLOAT *sb_samples, INTFLOAT *mdct_buf)
1241
{
1242
    INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1;
1243
    INTFLOAT out2[12];
1244
    int i, j, mdct_long_end, sblimit;
1245
 
1246
    /* find last non zero block */
1247
    ptr  = g->sb_hybrid + 576;
1248
    ptr1 = g->sb_hybrid + 2 * 18;
1249
    while (ptr >= ptr1) {
1250
        int32_t *p;
1251
        ptr -= 6;
1252
        p    = (int32_t*)ptr;
1253
        if (p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
1254
            break;
1255
    }
1256
    sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
1257
 
1258
    if (g->block_type == 2) {
1259
        /* XXX: check for 8000 Hz */
1260
        if (g->switch_point)
1261
            mdct_long_end = 2;
1262
        else
1263
            mdct_long_end = 0;
1264
    } else {
1265
        mdct_long_end = sblimit;
1266
    }
1267
 
1268
    s->mpadsp.RENAME(imdct36_blocks)(sb_samples, mdct_buf, g->sb_hybrid,
1269
                                     mdct_long_end, g->switch_point,
1270
                                     g->block_type);
1271
 
1272
    buf = mdct_buf + 4*18*(mdct_long_end >> 2) + (mdct_long_end & 3);
1273
    ptr = g->sb_hybrid + 18 * mdct_long_end;
1274
 
1275
    for (j = mdct_long_end; j < sblimit; j++) {
1276
        /* select frequency inversion */
1277
        win     = RENAME(ff_mdct_win)[2 + (4  & -(j & 1))];
1278
        out_ptr = sb_samples + j;
1279
 
1280
        for (i = 0; i < 6; i++) {
1281
            *out_ptr = buf[4*i];
1282
            out_ptr += SBLIMIT;
1283
        }
1284
        imdct12(out2, ptr + 0);
1285
        for (i = 0; i < 6; i++) {
1286
            *out_ptr     = MULH3(out2[i    ], win[i    ], 1) + buf[4*(i + 6*1)];
1287
            buf[4*(i + 6*2)] = MULH3(out2[i + 6], win[i + 6], 1);
1288
            out_ptr += SBLIMIT;
1289
        }
1290
        imdct12(out2, ptr + 1);
1291
        for (i = 0; i < 6; i++) {
1292
            *out_ptr     = MULH3(out2[i    ], win[i    ], 1) + buf[4*(i + 6*2)];
1293
            buf[4*(i + 6*0)] = MULH3(out2[i + 6], win[i + 6], 1);
1294
            out_ptr += SBLIMIT;
1295
        }
1296
        imdct12(out2, ptr + 2);
1297
        for (i = 0; i < 6; i++) {
1298
            buf[4*(i + 6*0)] = MULH3(out2[i    ], win[i    ], 1) + buf[4*(i + 6*0)];
1299
            buf[4*(i + 6*1)] = MULH3(out2[i + 6], win[i + 6], 1);
1300
            buf[4*(i + 6*2)] = 0;
1301
        }
1302
        ptr += 18;
1303
        buf += (j&3) != 3 ? 1 : (4*18-3);
1304
    }
1305
    /* zero bands */
1306
    for (j = sblimit; j < SBLIMIT; j++) {
1307
        /* overlap */
1308
        out_ptr = sb_samples + j;
1309
        for (i = 0; i < 18; i++) {
1310
            *out_ptr = buf[4*i];
1311
            buf[4*i]   = 0;
1312
            out_ptr += SBLIMIT;
1313
        }
1314
        buf += (j&3) != 3 ? 1 : (4*18-3);
1315
    }
1316
}
1317
 
1318
/* main layer3 decoding function */
1319
static int mp_decode_layer3(MPADecodeContext *s)
1320
{
1321
    int nb_granules, main_data_begin;
1322
    int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
1323
    GranuleDef *g;
1324
    int16_t exponents[576]; //FIXME try INTFLOAT
1325
 
1326
    /* read side info */
1327
    if (s->lsf) {
1328
        main_data_begin = get_bits(&s->gb, 8);
1329
        skip_bits(&s->gb, s->nb_channels);
1330
        nb_granules = 1;
1331
    } else {
1332
        main_data_begin = get_bits(&s->gb, 9);
1333
        if (s->nb_channels == 2)
1334
            skip_bits(&s->gb, 3);
1335
        else
1336
            skip_bits(&s->gb, 5);
1337
        nb_granules = 2;
1338
        for (ch = 0; ch < s->nb_channels; ch++) {
1339
            s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
1340
            s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
1341
        }
1342
    }
1343
 
1344
    for (gr = 0; gr < nb_granules; gr++) {
1345
        for (ch = 0; ch < s->nb_channels; ch++) {
1346
            av_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
1347
            g = &s->granules[ch][gr];
1348
            g->part2_3_length = get_bits(&s->gb, 12);
1349
            g->big_values     = get_bits(&s->gb,  9);
1350
            if (g->big_values > 288) {
1351
                av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
1352
                return AVERROR_INVALIDDATA;
1353
            }
1354
 
1355
            g->global_gain = get_bits(&s->gb, 8);
1356
            /* if MS stereo only is selected, we precompute the
1357
               1/sqrt(2) renormalization factor */
1358
            if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
1359
                MODE_EXT_MS_STEREO)
1360
                g->global_gain -= 2;
1361
            if (s->lsf)
1362
                g->scalefac_compress = get_bits(&s->gb, 9);
1363
            else
1364
                g->scalefac_compress = get_bits(&s->gb, 4);
1365
            blocksplit_flag = get_bits1(&s->gb);
1366
            if (blocksplit_flag) {
1367
                g->block_type = get_bits(&s->gb, 2);
1368
                if (g->block_type == 0) {
1369
                    av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
1370
                    return AVERROR_INVALIDDATA;
1371
                }
1372
                g->switch_point = get_bits1(&s->gb);
1373
                for (i = 0; i < 2; i++)
1374
                    g->table_select[i] = get_bits(&s->gb, 5);
1375
                for (i = 0; i < 3; i++)
1376
                    g->subblock_gain[i] = get_bits(&s->gb, 3);
1377
                init_short_region(s, g);
1378
            } else {
1379
                int region_address1, region_address2;
1380
                g->block_type = 0;
1381
                g->switch_point = 0;
1382
                for (i = 0; i < 3; i++)
1383
                    g->table_select[i] = get_bits(&s->gb, 5);
1384
                /* compute huffman coded region sizes */
1385
                region_address1 = get_bits(&s->gb, 4);
1386
                region_address2 = get_bits(&s->gb, 3);
1387
                av_dlog(s->avctx, "region1=%d region2=%d\n",
1388
                        region_address1, region_address2);
1389
                init_long_region(s, g, region_address1, region_address2);
1390
            }
1391
            region_offset2size(g);
1392
            compute_band_indexes(s, g);
1393
 
1394
            g->preflag = 0;
1395
            if (!s->lsf)
1396
                g->preflag = get_bits1(&s->gb);
1397
            g->scalefac_scale     = get_bits1(&s->gb);
1398
            g->count1table_select = get_bits1(&s->gb);
1399
            av_dlog(s->avctx, "block_type=%d switch_point=%d\n",
1400
                    g->block_type, g->switch_point);
1401
        }
1402
    }
1403
 
1404
    if (!s->adu_mode) {
1405
        int skip;
1406
        const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
1407
        int extrasize = av_clip(get_bits_left(&s->gb) >> 3, 0, EXTRABYTES);
1408
        av_assert1((get_bits_count(&s->gb) & 7) == 0);
1409
        /* now we get bits from the main_data_begin offset */
1410
        av_dlog(s->avctx, "seekback:%d, lastbuf:%d\n",
1411
                main_data_begin, s->last_buf_size);
1412
 
1413
        memcpy(s->last_buf + s->last_buf_size, ptr, extrasize);
1414
        s->in_gb = s->gb;
1415
        init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
1416
#if !UNCHECKED_BITSTREAM_READER
1417
        s->gb.size_in_bits_plus8 += FFMAX(extrasize, LAST_BUF_SIZE - s->last_buf_size) * 8;
1418
#endif
1419
        s->last_buf_size <<= 3;
1420
        for (gr = 0; gr < nb_granules && (s->last_buf_size >> 3) < main_data_begin; gr++) {
1421
            for (ch = 0; ch < s->nb_channels; ch++) {
1422
                g = &s->granules[ch][gr];
1423
                s->last_buf_size += g->part2_3_length;
1424
                memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
1425
                compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
1426
            }
1427
        }
1428
        skip = s->last_buf_size - 8 * main_data_begin;
1429
        if (skip >= s->gb.size_in_bits && s->in_gb.buffer) {
1430
            skip_bits_long(&s->in_gb, skip - s->gb.size_in_bits);
1431
            s->gb           = s->in_gb;
1432
            s->in_gb.buffer = NULL;
1433
        } else {
1434
            skip_bits_long(&s->gb, skip);
1435
        }
1436
    } else {
1437
        gr = 0;
1438
    }
1439
 
1440
    for (; gr < nb_granules; gr++) {
1441
        for (ch = 0; ch < s->nb_channels; ch++) {
1442
            g = &s->granules[ch][gr];
1443
            bits_pos = get_bits_count(&s->gb);
1444
 
1445
            if (!s->lsf) {
1446
                uint8_t *sc;
1447
                int slen, slen1, slen2;
1448
 
1449
                /* MPEG1 scale factors */
1450
                slen1 = slen_table[0][g->scalefac_compress];
1451
                slen2 = slen_table[1][g->scalefac_compress];
1452
                av_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
1453
                if (g->block_type == 2) {
1454
                    n = g->switch_point ? 17 : 18;
1455
                    j = 0;
1456
                    if (slen1) {
1457
                        for (i = 0; i < n; i++)
1458
                            g->scale_factors[j++] = get_bits(&s->gb, slen1);
1459
                    } else {
1460
                        for (i = 0; i < n; i++)
1461
                            g->scale_factors[j++] = 0;
1462
                    }
1463
                    if (slen2) {
1464
                        for (i = 0; i < 18; i++)
1465
                            g->scale_factors[j++] = get_bits(&s->gb, slen2);
1466
                        for (i = 0; i < 3; i++)
1467
                            g->scale_factors[j++] = 0;
1468
                    } else {
1469
                        for (i = 0; i < 21; i++)
1470
                            g->scale_factors[j++] = 0;
1471
                    }
1472
                } else {
1473
                    sc = s->granules[ch][0].scale_factors;
1474
                    j = 0;
1475
                    for (k = 0; k < 4; k++) {
1476
                        n = k == 0 ? 6 : 5;
1477
                        if ((g->scfsi & (0x8 >> k)) == 0) {
1478
                            slen = (k < 2) ? slen1 : slen2;
1479
                            if (slen) {
1480
                                for (i = 0; i < n; i++)
1481
                                    g->scale_factors[j++] = get_bits(&s->gb, slen);
1482
                            } else {
1483
                                for (i = 0; i < n; i++)
1484
                                    g->scale_factors[j++] = 0;
1485
                            }
1486
                        } else {
1487
                            /* simply copy from last granule */
1488
                            for (i = 0; i < n; i++) {
1489
                                g->scale_factors[j] = sc[j];
1490
                                j++;
1491
                            }
1492
                        }
1493
                    }
1494
                    g->scale_factors[j++] = 0;
1495
                }
1496
            } else {
1497
                int tindex, tindex2, slen[4], sl, sf;
1498
 
1499
                /* LSF scale factors */
1500
                if (g->block_type == 2)
1501
                    tindex = g->switch_point ? 2 : 1;
1502
                else
1503
                    tindex = 0;
1504
 
1505
                sf = g->scalefac_compress;
1506
                if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
1507
                    /* intensity stereo case */
1508
                    sf >>= 1;
1509
                    if (sf < 180) {
1510
                        lsf_sf_expand(slen, sf, 6, 6, 0);
1511
                        tindex2 = 3;
1512
                    } else if (sf < 244) {
1513
                        lsf_sf_expand(slen, sf - 180, 4, 4, 0);
1514
                        tindex2 = 4;
1515
                    } else {
1516
                        lsf_sf_expand(slen, sf - 244, 3, 0, 0);
1517
                        tindex2 = 5;
1518
                    }
1519
                } else {
1520
                    /* normal case */
1521
                    if (sf < 400) {
1522
                        lsf_sf_expand(slen, sf, 5, 4, 4);
1523
                        tindex2 = 0;
1524
                    } else if (sf < 500) {
1525
                        lsf_sf_expand(slen, sf - 400, 5, 4, 0);
1526
                        tindex2 = 1;
1527
                    } else {
1528
                        lsf_sf_expand(slen, sf - 500, 3, 0, 0);
1529
                        tindex2 = 2;
1530
                        g->preflag = 1;
1531
                    }
1532
                }
1533
 
1534
                j = 0;
1535
                for (k = 0; k < 4; k++) {
1536
                    n  = lsf_nsf_table[tindex2][tindex][k];
1537
                    sl = slen[k];
1538
                    if (sl) {
1539
                        for (i = 0; i < n; i++)
1540
                            g->scale_factors[j++] = get_bits(&s->gb, sl);
1541
                    } else {
1542
                        for (i = 0; i < n; i++)
1543
                            g->scale_factors[j++] = 0;
1544
                    }
1545
                }
1546
                /* XXX: should compute exact size */
1547
                for (; j < 40; j++)
1548
                    g->scale_factors[j] = 0;
1549
            }
1550
 
1551
            exponents_from_scale_factors(s, g, exponents);
1552
 
1553
            /* read Huffman coded residue */
1554
            huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
1555
        } /* ch */
1556
 
1557
        if (s->mode == MPA_JSTEREO)
1558
            compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
1559
 
1560
        for (ch = 0; ch < s->nb_channels; ch++) {
1561
            g = &s->granules[ch][gr];
1562
 
1563
            reorder_block(s, g);
1564
            compute_antialias(s, g);
1565
            compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
1566
        }
1567
    } /* gr */
1568
    if (get_bits_count(&s->gb) < 0)
1569
        skip_bits_long(&s->gb, -get_bits_count(&s->gb));
1570
    return nb_granules * 18;
1571
}
1572
 
1573
static int mp_decode_frame(MPADecodeContext *s, OUT_INT **samples,
1574
                           const uint8_t *buf, int buf_size)
1575
{
1576
    int i, nb_frames, ch, ret;
1577
    OUT_INT *samples_ptr;
1578
 
1579
    init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE) * 8);
1580
 
1581
    /* skip error protection field */
1582
    if (s->error_protection)
1583
        skip_bits(&s->gb, 16);
1584
 
1585
    switch(s->layer) {
1586
    case 1:
1587
        s->avctx->frame_size = 384;
1588
        nb_frames = mp_decode_layer1(s);
1589
        break;
1590
    case 2:
1591
        s->avctx->frame_size = 1152;
1592
        nb_frames = mp_decode_layer2(s);
1593
        break;
1594
    case 3:
1595
        s->avctx->frame_size = s->lsf ? 576 : 1152;
1596
    default:
1597
        nb_frames = mp_decode_layer3(s);
1598
 
1599
        s->last_buf_size=0;
1600
        if (s->in_gb.buffer) {
1601
            align_get_bits(&s->gb);
1602
            i = get_bits_left(&s->gb)>>3;
1603
            if (i >= 0 && i <= BACKSTEP_SIZE) {
1604
                memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
1605
                s->last_buf_size=i;
1606
            } else
1607
                av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
1608
            s->gb           = s->in_gb;
1609
            s->in_gb.buffer = NULL;
1610
        }
1611
 
1612
        align_get_bits(&s->gb);
1613
        av_assert1((get_bits_count(&s->gb) & 7) == 0);
1614
        i = get_bits_left(&s->gb) >> 3;
1615
 
1616
        if (i < 0 || i > BACKSTEP_SIZE || nb_frames < 0) {
1617
            if (i < 0)
1618
                av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
1619
            i = FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
1620
        }
1621
        av_assert1(i <= buf_size - HEADER_SIZE && i >= 0);
1622
        memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
1623
        s->last_buf_size += i;
1624
    }
1625
 
1626
    if(nb_frames < 0)
1627
        return nb_frames;
1628
 
1629
    /* get output buffer */
1630
    if (!samples) {
1631
        av_assert0(s->frame != NULL);
1632
        s->frame->nb_samples = s->avctx->frame_size;
1633
        if ((ret = ff_get_buffer(s->avctx, s->frame, 0)) < 0)
1634
            return ret;
1635
        samples = (OUT_INT **)s->frame->extended_data;
1636
    }
1637
 
1638
    /* apply the synthesis filter */
1639
    for (ch = 0; ch < s->nb_channels; ch++) {
1640
        int sample_stride;
1641
        if (s->avctx->sample_fmt == OUT_FMT_P) {
1642
            samples_ptr   = samples[ch];
1643
            sample_stride = 1;
1644
        } else {
1645
            samples_ptr   = samples[0] + ch;
1646
            sample_stride = s->nb_channels;
1647
        }
1648
        for (i = 0; i < nb_frames; i++) {
1649
            RENAME(ff_mpa_synth_filter)(&s->mpadsp, s->synth_buf[ch],
1650
                                        &(s->synth_buf_offset[ch]),
1651
                                        RENAME(ff_mpa_synth_window),
1652
                                        &s->dither_state, samples_ptr,
1653
                                        sample_stride, s->sb_samples[ch][i]);
1654
            samples_ptr += 32 * sample_stride;
1655
        }
1656
    }
1657
 
1658
    return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
1659
}
1660
 
1661
static int decode_frame(AVCodecContext * avctx, void *data, int *got_frame_ptr,
1662
                        AVPacket *avpkt)
1663
{
1664
    const uint8_t *buf  = avpkt->data;
1665
    int buf_size        = avpkt->size;
1666
    MPADecodeContext *s = avctx->priv_data;
1667
    uint32_t header;
1668
    int ret;
1669
 
1670
    while(buf_size && !*buf){
1671
        buf++;
1672
        buf_size--;
1673
    }
1674
 
1675
    if (buf_size < HEADER_SIZE)
1676
        return AVERROR_INVALIDDATA;
1677
 
1678
    header = AV_RB32(buf);
1679
    if (header>>8 == AV_RB32("TAG")>>8) {
1680
        av_log(avctx, AV_LOG_DEBUG, "discarding ID3 tag\n");
1681
        return buf_size;
1682
    }
1683
    if (ff_mpa_check_header(header) < 0) {
1684
        av_log(avctx, AV_LOG_ERROR, "Header missing\n");
1685
        return AVERROR_INVALIDDATA;
1686
    }
1687
 
1688
    if (avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
1689
        /* free format: prepare to compute frame size */
1690
        s->frame_size = -1;
1691
        return AVERROR_INVALIDDATA;
1692
    }
1693
    /* update codec info */
1694
    avctx->channels       = s->nb_channels;
1695
    avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
1696
    if (!avctx->bit_rate)
1697
        avctx->bit_rate = s->bit_rate;
1698
 
1699
    if (s->frame_size <= 0 || s->frame_size > buf_size) {
1700
        av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
1701
        return AVERROR_INVALIDDATA;
1702
    } else if (s->frame_size < buf_size) {
1703
        av_log(avctx, AV_LOG_DEBUG, "incorrect frame size - multiple frames in buffer?\n");
1704
        buf_size= s->frame_size;
1705
    }
1706
 
1707
    s->frame = data;
1708
 
1709
    ret = mp_decode_frame(s, NULL, buf, buf_size);
1710
    if (ret >= 0) {
1711
        s->frame->nb_samples = avctx->frame_size;
1712
        *got_frame_ptr       = 1;
1713
        avctx->sample_rate   = s->sample_rate;
1714
        //FIXME maybe move the other codec info stuff from above here too
1715
    } else {
1716
        av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
1717
        /* Only return an error if the bad frame makes up the whole packet or
1718
         * the error is related to buffer management.
1719
         * If there is more data in the packet, just consume the bad frame
1720
         * instead of returning an error, which would discard the whole
1721
         * packet. */
1722
        *got_frame_ptr = 0;
1723
        if (buf_size == avpkt->size || ret != AVERROR_INVALIDDATA)
1724
            return ret;
1725
    }
1726
    s->frame_size = 0;
1727
    return buf_size;
1728
}
1729
 
1730
static void mp_flush(MPADecodeContext *ctx)
1731
{
1732
    memset(ctx->synth_buf, 0, sizeof(ctx->synth_buf));
1733
    ctx->last_buf_size = 0;
1734
}
1735
 
1736
static void flush(AVCodecContext *avctx)
1737
{
1738
    mp_flush(avctx->priv_data);
1739
}
1740
 
1741
#if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
1742
static int decode_frame_adu(AVCodecContext *avctx, void *data,
1743
                            int *got_frame_ptr, AVPacket *avpkt)
1744
{
1745
    const uint8_t *buf  = avpkt->data;
1746
    int buf_size        = avpkt->size;
1747
    MPADecodeContext *s = avctx->priv_data;
1748
    uint32_t header;
1749
    int len, ret;
1750
    int av_unused out_size;
1751
 
1752
    len = buf_size;
1753
 
1754
    // Discard too short frames
1755
    if (buf_size < HEADER_SIZE) {
1756
        av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
1757
        return AVERROR_INVALIDDATA;
1758
    }
1759
 
1760
 
1761
    if (len > MPA_MAX_CODED_FRAME_SIZE)
1762
        len = MPA_MAX_CODED_FRAME_SIZE;
1763
 
1764
    // Get header and restore sync word
1765
    header = AV_RB32(buf) | 0xffe00000;
1766
 
1767
    if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
1768
        av_log(avctx, AV_LOG_ERROR, "Invalid frame header\n");
1769
        return AVERROR_INVALIDDATA;
1770
    }
1771
 
1772
    avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header);
1773
    /* update codec info */
1774
    avctx->sample_rate = s->sample_rate;
1775
    avctx->channels    = s->nb_channels;
1776
    if (!avctx->bit_rate)
1777
        avctx->bit_rate = s->bit_rate;
1778
 
1779
    s->frame_size = len;
1780
 
1781
    s->frame = data;
1782
 
1783
    ret = mp_decode_frame(s, NULL, buf, buf_size);
1784
    if (ret < 0) {
1785
        av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
1786
        return ret;
1787
    }
1788
 
1789
    *got_frame_ptr = 1;
1790
 
1791
    return buf_size;
1792
}
1793
#endif /* CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER */
1794
 
1795
#if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
1796
 
1797
/**
1798
 * Context for MP3On4 decoder
1799
 */
1800
typedef struct MP3On4DecodeContext {
1801
    int frames;                     ///< number of mp3 frames per block (number of mp3 decoder instances)
1802
    int syncword;                   ///< syncword patch
1803
    const uint8_t *coff;            ///< channel offsets in output buffer
1804
    MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
1805
} MP3On4DecodeContext;
1806
 
1807
#include "mpeg4audio.h"
1808
 
1809
/* Next 3 arrays are indexed by channel config number (passed via codecdata) */
1810
 
1811
/* number of mp3 decoder instances */
1812
static const uint8_t mp3Frames[8] = { 0, 1, 1, 2, 3, 3, 4, 5 };
1813
 
1814
/* offsets into output buffer, assume output order is FL FR C LFE BL BR SL SR */
1815
static const uint8_t chan_offset[8][5] = {
1816
    { 0             },
1817
    { 0             },  // C
1818
    { 0             },  // FLR
1819
    { 2, 0          },  // C FLR
1820
    { 2, 0, 3       },  // C FLR BS
1821
    { 2, 0, 3       },  // C FLR BLRS
1822
    { 2, 0, 4, 3    },  // C FLR BLRS LFE
1823
    { 2, 0, 6, 4, 3 },  // C FLR BLRS BLR LFE
1824
};
1825
 
1826
/* mp3on4 channel layouts */
1827
static const int16_t chan_layout[8] = {
1828
    0,
1829
    AV_CH_LAYOUT_MONO,
1830
    AV_CH_LAYOUT_STEREO,
1831
    AV_CH_LAYOUT_SURROUND,
1832
    AV_CH_LAYOUT_4POINT0,
1833
    AV_CH_LAYOUT_5POINT0,
1834
    AV_CH_LAYOUT_5POINT1,
1835
    AV_CH_LAYOUT_7POINT1
1836
};
1837
 
1838
static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
1839
{
1840
    MP3On4DecodeContext *s = avctx->priv_data;
1841
    int i;
1842
 
1843
    for (i = 0; i < s->frames; i++)
1844
        av_free(s->mp3decctx[i]);
1845
 
1846
    return 0;
1847
}
1848
 
1849
 
1850
static av_cold int decode_init_mp3on4(AVCodecContext * avctx)
1851
{
1852
    MP3On4DecodeContext *s = avctx->priv_data;
1853
    MPEG4AudioConfig cfg;
1854
    int i;
1855
 
1856
    if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
1857
        av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
1858
        return AVERROR_INVALIDDATA;
1859
    }
1860
 
1861
    avpriv_mpeg4audio_get_config(&cfg, avctx->extradata,
1862
                                 avctx->extradata_size * 8, 1);
1863
    if (!cfg.chan_config || cfg.chan_config > 7) {
1864
        av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
1865
        return AVERROR_INVALIDDATA;
1866
    }
1867
    s->frames             = mp3Frames[cfg.chan_config];
1868
    s->coff               = chan_offset[cfg.chan_config];
1869
    avctx->channels       = ff_mpeg4audio_channels[cfg.chan_config];
1870
    avctx->channel_layout = chan_layout[cfg.chan_config];
1871
 
1872
    if (cfg.sample_rate < 16000)
1873
        s->syncword = 0xffe00000;
1874
    else
1875
        s->syncword = 0xfff00000;
1876
 
1877
    /* Init the first mp3 decoder in standard way, so that all tables get builded
1878
     * We replace avctx->priv_data with the context of the first decoder so that
1879
     * decode_init() does not have to be changed.
1880
     * Other decoders will be initialized here copying data from the first context
1881
     */
1882
    // Allocate zeroed memory for the first decoder context
1883
    s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
1884
    if (!s->mp3decctx[0])
1885
        goto alloc_fail;
1886
    // Put decoder context in place to make init_decode() happy
1887
    avctx->priv_data = s->mp3decctx[0];
1888
    decode_init(avctx);
1889
    // Restore mp3on4 context pointer
1890
    avctx->priv_data = s;
1891
    s->mp3decctx[0]->adu_mode = 1; // Set adu mode
1892
 
1893
    /* Create a separate codec/context for each frame (first is already ok).
1894
     * Each frame is 1 or 2 channels - up to 5 frames allowed
1895
     */
1896
    for (i = 1; i < s->frames; i++) {
1897
        s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
1898
        if (!s->mp3decctx[i])
1899
            goto alloc_fail;
1900
        s->mp3decctx[i]->adu_mode = 1;
1901
        s->mp3decctx[i]->avctx = avctx;
1902
        s->mp3decctx[i]->mpadsp = s->mp3decctx[0]->mpadsp;
1903
    }
1904
 
1905
    return 0;
1906
alloc_fail:
1907
    decode_close_mp3on4(avctx);
1908
    return AVERROR(ENOMEM);
1909
}
1910
 
1911
 
1912
static void flush_mp3on4(AVCodecContext *avctx)
1913
{
1914
    int i;
1915
    MP3On4DecodeContext *s = avctx->priv_data;
1916
 
1917
    for (i = 0; i < s->frames; i++)
1918
        mp_flush(s->mp3decctx[i]);
1919
}
1920
 
1921
 
1922
static int decode_frame_mp3on4(AVCodecContext *avctx, void *data,
1923
                               int *got_frame_ptr, AVPacket *avpkt)
1924
{
1925
    AVFrame *frame         = data;
1926
    const uint8_t *buf     = avpkt->data;
1927
    int buf_size           = avpkt->size;
1928
    MP3On4DecodeContext *s = avctx->priv_data;
1929
    MPADecodeContext *m;
1930
    int fsize, len = buf_size, out_size = 0;
1931
    uint32_t header;
1932
    OUT_INT **out_samples;
1933
    OUT_INT *outptr[2];
1934
    int fr, ch, ret;
1935
 
1936
    /* get output buffer */
1937
    frame->nb_samples = MPA_FRAME_SIZE;
1938
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1939
        return ret;
1940
    out_samples = (OUT_INT **)frame->extended_data;
1941
 
1942
    // Discard too short frames
1943
    if (buf_size < HEADER_SIZE)
1944
        return AVERROR_INVALIDDATA;
1945
 
1946
    avctx->bit_rate = 0;
1947
 
1948
    ch = 0;
1949
    for (fr = 0; fr < s->frames; fr++) {
1950
        fsize = AV_RB16(buf) >> 4;
1951
        fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
1952
        m     = s->mp3decctx[fr];
1953
        av_assert1(m);
1954
 
1955
        if (fsize < HEADER_SIZE) {
1956
            av_log(avctx, AV_LOG_ERROR, "Frame size smaller than header size\n");
1957
            return AVERROR_INVALIDDATA;
1958
        }
1959
        header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
1960
 
1961
        if (ff_mpa_check_header(header) < 0) // Bad header, discard block
1962
            break;
1963
 
1964
        avpriv_mpegaudio_decode_header((MPADecodeHeader *)m, header);
1965
 
1966
        if (ch + m->nb_channels > avctx->channels ||
1967
            s->coff[fr] + m->nb_channels > avctx->channels) {
1968
            av_log(avctx, AV_LOG_ERROR, "frame channel count exceeds codec "
1969
                                        "channel count\n");
1970
            return AVERROR_INVALIDDATA;
1971
        }
1972
        ch += m->nb_channels;
1973
 
1974
        outptr[0] = out_samples[s->coff[fr]];
1975
        if (m->nb_channels > 1)
1976
            outptr[1] = out_samples[s->coff[fr] + 1];
1977
 
1978
        if ((ret = mp_decode_frame(m, outptr, buf, fsize)) < 0)
1979
            return ret;
1980
 
1981
        out_size += ret;
1982
        buf      += fsize;
1983
        len      -= fsize;
1984
 
1985
        avctx->bit_rate += m->bit_rate;
1986
    }
1987
 
1988
    /* update codec info */
1989
    avctx->sample_rate = s->mp3decctx[0]->sample_rate;
1990
 
1991
    frame->nb_samples = out_size / (avctx->channels * sizeof(OUT_INT));
1992
    *got_frame_ptr    = 1;
1993
 
1994
    return buf_size;
1995
}
1996
#endif /* CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER */
1997
 
1998
#if !CONFIG_FLOAT
1999
#if CONFIG_MP1_DECODER
2000
AVCodec ff_mp1_decoder = {
2001
    .name           = "mp1",
2002
    .long_name      = NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
2003
    .type           = AVMEDIA_TYPE_AUDIO,
2004
    .id             = AV_CODEC_ID_MP1,
2005
    .priv_data_size = sizeof(MPADecodeContext),
2006
    .init           = decode_init,
2007
    .decode         = decode_frame,
2008
    .capabilities   = CODEC_CAP_DR1,
2009
    .flush          = flush,
2010
    .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
2011
                                                      AV_SAMPLE_FMT_S16,
2012
                                                      AV_SAMPLE_FMT_NONE },
2013
};
2014
#endif
2015
#if CONFIG_MP2_DECODER
2016
AVCodec ff_mp2_decoder = {
2017
    .name           = "mp2",
2018
    .long_name      = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
2019
    .type           = AVMEDIA_TYPE_AUDIO,
2020
    .id             = AV_CODEC_ID_MP2,
2021
    .priv_data_size = sizeof(MPADecodeContext),
2022
    .init           = decode_init,
2023
    .decode         = decode_frame,
2024
    .capabilities   = CODEC_CAP_DR1,
2025
    .flush          = flush,
2026
    .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
2027
                                                      AV_SAMPLE_FMT_S16,
2028
                                                      AV_SAMPLE_FMT_NONE },
2029
};
2030
#endif
2031
#if CONFIG_MP3_DECODER
2032
AVCodec ff_mp3_decoder = {
2033
    .name           = "mp3",
2034
    .long_name      = NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
2035
    .type           = AVMEDIA_TYPE_AUDIO,
2036
    .id             = AV_CODEC_ID_MP3,
2037
    .priv_data_size = sizeof(MPADecodeContext),
2038
    .init           = decode_init,
2039
    .decode         = decode_frame,
2040
    .capabilities   = CODEC_CAP_DR1,
2041
    .flush          = flush,
2042
    .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
2043
                                                      AV_SAMPLE_FMT_S16,
2044
                                                      AV_SAMPLE_FMT_NONE },
2045
};
2046
#endif
2047
#if CONFIG_MP3ADU_DECODER
2048
AVCodec ff_mp3adu_decoder = {
2049
    .name           = "mp3adu",
2050
    .long_name      = NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
2051
    .type           = AVMEDIA_TYPE_AUDIO,
2052
    .id             = AV_CODEC_ID_MP3ADU,
2053
    .priv_data_size = sizeof(MPADecodeContext),
2054
    .init           = decode_init,
2055
    .decode         = decode_frame_adu,
2056
    .capabilities   = CODEC_CAP_DR1,
2057
    .flush          = flush,
2058
    .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
2059
                                                      AV_SAMPLE_FMT_S16,
2060
                                                      AV_SAMPLE_FMT_NONE },
2061
};
2062
#endif
2063
#if CONFIG_MP3ON4_DECODER
2064
AVCodec ff_mp3on4_decoder = {
2065
    .name           = "mp3on4",
2066
    .long_name      = NULL_IF_CONFIG_SMALL("MP3onMP4"),
2067
    .type           = AVMEDIA_TYPE_AUDIO,
2068
    .id             = AV_CODEC_ID_MP3ON4,
2069
    .priv_data_size = sizeof(MP3On4DecodeContext),
2070
    .init           = decode_init_mp3on4,
2071
    .close          = decode_close_mp3on4,
2072
    .decode         = decode_frame_mp3on4,
2073
    .capabilities   = CODEC_CAP_DR1,
2074
    .flush          = flush_mp3on4,
2075
    .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
2076
                                                      AV_SAMPLE_FMT_NONE },
2077
};
2078
#endif
2079
#endif