Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * Lagarith lossless decoder
3
 * Copyright (c) 2009 Nathan Caldwell 
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
 
22
/**
23
 * @file
24
 * Lagarith lossless decoder
25
 * @author Nathan Caldwell
26
 */
27
 
28
#include "avcodec.h"
29
#include "get_bits.h"
30
#include "mathops.h"
31
#include "dsputil.h"
32
#include "lagarithrac.h"
33
#include "thread.h"
34
 
35
enum LagarithFrameType {
36
    FRAME_RAW           = 1,    /**< uncompressed */
37
    FRAME_U_RGB24       = 2,    /**< unaligned RGB24 */
38
    FRAME_ARITH_YUY2    = 3,    /**< arithmetic coded YUY2 */
39
    FRAME_ARITH_RGB24   = 4,    /**< arithmetic coded RGB24 */
40
    FRAME_SOLID_GRAY    = 5,    /**< solid grayscale color frame */
41
    FRAME_SOLID_COLOR   = 6,    /**< solid non-grayscale color frame */
42
    FRAME_OLD_ARITH_RGB = 7,    /**< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */
43
    FRAME_ARITH_RGBA    = 8,    /**< arithmetic coded RGBA */
44
    FRAME_SOLID_RGBA    = 9,    /**< solid RGBA color frame */
45
    FRAME_ARITH_YV12    = 10,   /**< arithmetic coded YV12 */
46
    FRAME_REDUCED_RES   = 11,   /**< reduced resolution YV12 frame */
47
};
48
 
49
typedef struct LagarithContext {
50
    AVCodecContext *avctx;
51
    DSPContext dsp;
52
    int zeros;                  /**< number of consecutive zero bytes encountered */
53
    int zeros_rem;              /**< number of zero bytes remaining to output */
54
    uint8_t *rgb_planes;
55
    int rgb_stride;
56
} LagarithContext;
57
 
58
/**
59
 * Compute the 52bit mantissa of 1/(double)denom.
60
 * This crazy format uses floats in an entropy coder and we have to match x86
61
 * rounding exactly, thus ordinary floats aren't portable enough.
62
 * @param denom denominator
63
 * @return 52bit mantissa
64
 * @see softfloat_mul
65
 */
66
static uint64_t softfloat_reciprocal(uint32_t denom)
67
{
68
    int shift = av_log2(denom - 1) + 1;
69
    uint64_t ret = (1ULL << 52) / denom;
70
    uint64_t err = (1ULL << 52) - ret * denom;
71
    ret <<= shift;
72
    err <<= shift;
73
    err +=  denom / 2;
74
    return ret + err / denom;
75
}
76
 
77
/**
78
 * (uint32_t)(x*f), where f has the given mantissa, and exponent 0
79
 * Used in combination with softfloat_reciprocal computes x/(double)denom.
80
 * @param x 32bit integer factor
81
 * @param mantissa mantissa of f with exponent 0
82
 * @return 32bit integer value (x*f)
83
 * @see softfloat_reciprocal
84
 */
85
static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
86
{
87
    uint64_t l = x * (mantissa & 0xffffffff);
88
    uint64_t h = x * (mantissa >> 32);
89
    h += l >> 32;
90
    l &= 0xffffffff;
91
    l += 1 << av_log2(h >> 21);
92
    h += l >> 32;
93
    return h >> 20;
94
}
95
 
96
static uint8_t lag_calc_zero_run(int8_t x)
97
{
98
    return (x << 1) ^ (x >> 7);
99
}
100
 
101
static int lag_decode_prob(GetBitContext *gb, uint32_t *value)
102
{
103
    static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 };
104
    int i;
105
    int bit     = 0;
106
    int bits    = 0;
107
    int prevbit = 0;
108
    unsigned val;
109
 
110
    for (i = 0; i < 7; i++) {
111
        if (prevbit && bit)
112
            break;
113
        prevbit = bit;
114
        bit = get_bits1(gb);
115
        if (bit && !prevbit)
116
            bits += series[i];
117
    }
118
    bits--;
119
    if (bits < 0 || bits > 31) {
120
        *value = 0;
121
        return -1;
122
    } else if (bits == 0) {
123
        *value = 0;
124
        return 0;
125
    }
126
 
127
    val  = get_bits_long(gb, bits);
128
    val |= 1 << bits;
129
 
130
    *value = val - 1;
131
 
132
    return 0;
133
}
134
 
135
static int lag_read_prob_header(lag_rac *rac, GetBitContext *gb)
136
{
137
    int i, j, scale_factor;
138
    unsigned prob, cumulative_target;
139
    unsigned cumul_prob = 0;
140
    unsigned scaled_cumul_prob = 0;
141
 
142
    rac->prob[0] = 0;
143
    rac->prob[257] = UINT_MAX;
144
    /* Read probabilities from bitstream */
145
    for (i = 1; i < 257; i++) {
146
        if (lag_decode_prob(gb, &rac->prob[i]) < 0) {
147
            av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n");
148
            return -1;
149
        }
150
        if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) {
151
            av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n");
152
            return -1;
153
        }
154
        cumul_prob += rac->prob[i];
155
        if (!rac->prob[i]) {
156
            if (lag_decode_prob(gb, &prob)) {
157
                av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n");
158
                return -1;
159
            }
160
            if (prob > 256 - i)
161
                prob = 256 - i;
162
            for (j = 0; j < prob; j++)
163
                rac->prob[++i] = 0;
164
        }
165
    }
166
 
167
    if (!cumul_prob) {
168
        av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n");
169
        return -1;
170
    }
171
 
172
    /* Scale probabilities so cumulative probability is an even power of 2. */
173
    scale_factor = av_log2(cumul_prob);
174
 
175
    if (cumul_prob & (cumul_prob - 1)) {
176
        uint64_t mul = softfloat_reciprocal(cumul_prob);
177
        for (i = 1; i <= 128; i++) {
178
            rac->prob[i] = softfloat_mul(rac->prob[i], mul);
179
            scaled_cumul_prob += rac->prob[i];
180
        }
181
        if (scaled_cumul_prob <= 0) {
182
            av_log(rac->avctx, AV_LOG_ERROR, "Scaled probabilities invalid\n");
183
            return AVERROR_INVALIDDATA;
184
        }
185
        for (; i < 257; i++) {
186
            rac->prob[i] = softfloat_mul(rac->prob[i], mul);
187
            scaled_cumul_prob += rac->prob[i];
188
        }
189
 
190
        scale_factor++;
191
        cumulative_target = 1 << scale_factor;
192
 
193
        if (scaled_cumul_prob > cumulative_target) {
194
            av_log(rac->avctx, AV_LOG_ERROR,
195
                   "Scaled probabilities are larger than target!\n");
196
            return -1;
197
        }
198
 
199
        scaled_cumul_prob = cumulative_target - scaled_cumul_prob;
200
 
201
        for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) {
202
            if (rac->prob[i]) {
203
                rac->prob[i]++;
204
                scaled_cumul_prob--;
205
            }
206
            /* Comment from reference source:
207
             * if (b & 0x80 == 0) {     // order of operations is 'wrong'; it has been left this way
208
             *                          // since the compression change is negligible and fixing it
209
             *                          // breaks backwards compatibility
210
             *      b =- (signed int)b;
211
             *      b &= 0xFF;
212
             * } else {
213
             *      b++;
214
             *      b &= 0x7f;
215
             * }
216
             */
217
        }
218
    }
219
 
220
    rac->scale = scale_factor;
221
 
222
    /* Fill probability array with cumulative probability for each symbol. */
223
    for (i = 1; i < 257; i++)
224
        rac->prob[i] += rac->prob[i - 1];
225
 
226
    return 0;
227
}
228
 
229
static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1,
230
                                      uint8_t *diff, int w, int *left,
231
                                      int *left_top)
232
{
233
    /* This is almost identical to add_hfyu_median_prediction in dsputil.h.
234
     * However the &0xFF on the gradient predictor yealds incorrect output
235
     * for lagarith.
236
     */
237
    int i;
238
    uint8_t l, lt;
239
 
240
    l  = *left;
241
    lt = *left_top;
242
 
243
    for (i = 0; i < w; i++) {
244
        l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i];
245
        lt = src1[i];
246
        dst[i] = l;
247
    }
248
 
249
    *left     = l;
250
    *left_top = lt;
251
}
252
 
253
static void lag_pred_line(LagarithContext *l, uint8_t *buf,
254
                          int width, int stride, int line)
255
{
256
    int L, TL;
257
 
258
    if (!line) {
259
        /* Left prediction only for first line */
260
        L = l->dsp.add_hfyu_left_prediction(buf, buf,
261
                                            width, 0);
262
    } else {
263
        /* Left pixel is actually prev_row[width] */
264
        L = buf[width - stride - 1];
265
 
266
        if (line == 1) {
267
            /* Second line, left predict first pixel, the rest of the line is median predicted
268
             * NOTE: In the case of RGB this pixel is top predicted */
269
            TL = l->avctx->pix_fmt == AV_PIX_FMT_YUV420P ? buf[-stride] : L;
270
        } else {
271
            /* Top left is 2 rows back, last pixel */
272
            TL = buf[width - (2 * stride) - 1];
273
        }
274
 
275
        add_lag_median_prediction(buf, buf - stride, buf,
276
                                  width, &L, &TL);
277
    }
278
}
279
 
280
static void lag_pred_line_yuy2(LagarithContext *l, uint8_t *buf,
281
                               int width, int stride, int line,
282
                               int is_luma)
283
{
284
    int L, TL;
285
 
286
    if (!line) {
287
        L= buf[0];
288
        if (is_luma)
289
            buf[0] = 0;
290
        l->dsp.add_hfyu_left_prediction(buf, buf, width, 0);
291
        if (is_luma)
292
            buf[0] = L;
293
        return;
294
    }
295
    if (line == 1) {
296
        const int HEAD = is_luma ? 4 : 2;
297
        int i;
298
 
299
        L  = buf[width - stride - 1];
300
        TL = buf[HEAD  - stride - 1];
301
        for (i = 0; i < HEAD; i++) {
302
            L += buf[i];
303
            buf[i] = L;
304
        }
305
        for (; i
306
            L     = mid_pred(L&0xFF, buf[i-stride], (L + buf[i-stride] - TL)&0xFF) + buf[i];
307
            TL    = buf[i-stride];
308
            buf[i]= L;
309
        }
310
    } else {
311
        TL = buf[width - (2 * stride) - 1];
312
        L  = buf[width - stride - 1];
313
        l->dsp.add_hfyu_median_prediction(buf, buf - stride, buf, width,
314
                                        &L, &TL);
315
    }
316
}
317
 
318
static int lag_decode_line(LagarithContext *l, lag_rac *rac,
319
                           uint8_t *dst, int width, int stride,
320
                           int esc_count)
321
{
322
    int i = 0;
323
    int ret = 0;
324
 
325
    if (!esc_count)
326
        esc_count = -1;
327
 
328
    /* Output any zeros remaining from the previous run */
329
handle_zeros:
330
    if (l->zeros_rem) {
331
        int count = FFMIN(l->zeros_rem, width - i);
332
        memset(dst + i, 0, count);
333
        i += count;
334
        l->zeros_rem -= count;
335
    }
336
 
337
    while (i < width) {
338
        dst[i] = lag_get_rac(rac);
339
        ret++;
340
 
341
        if (dst[i])
342
            l->zeros = 0;
343
        else
344
            l->zeros++;
345
 
346
        i++;
347
        if (l->zeros == esc_count) {
348
            int index = lag_get_rac(rac);
349
            ret++;
350
 
351
            l->zeros = 0;
352
 
353
            l->zeros_rem = lag_calc_zero_run(index);
354
            goto handle_zeros;
355
        }
356
    }
357
    return ret;
358
}
359
 
360
static int lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst,
361
                                    const uint8_t *src, const uint8_t *src_end,
362
                                    int width, int esc_count)
363
{
364
    int i = 0;
365
    int count;
366
    uint8_t zero_run = 0;
367
    const uint8_t *src_start = src;
368
    uint8_t mask1 = -(esc_count < 2);
369
    uint8_t mask2 = -(esc_count < 3);
370
    uint8_t *end = dst + (width - 2);
371
 
372
output_zeros:
373
    if (l->zeros_rem) {
374
        count = FFMIN(l->zeros_rem, width - i);
375
        if (end - dst < count) {
376
            av_log(l->avctx, AV_LOG_ERROR, "Too many zeros remaining.\n");
377
            return AVERROR_INVALIDDATA;
378
        }
379
 
380
        memset(dst, 0, count);
381
        l->zeros_rem -= count;
382
        dst += count;
383
    }
384
 
385
    while (dst < end) {
386
        i = 0;
387
        while (!zero_run && dst + i < end) {
388
            i++;
389
            if (i+2 >= src_end - src)
390
                return AVERROR_INVALIDDATA;
391
            zero_run =
392
                !(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2));
393
        }
394
        if (zero_run) {
395
            zero_run = 0;
396
            i += esc_count;
397
            memcpy(dst, src, i);
398
            dst += i;
399
            l->zeros_rem = lag_calc_zero_run(src[i]);
400
 
401
            src += i + 1;
402
            goto output_zeros;
403
        } else {
404
            memcpy(dst, src, i);
405
            src += i;
406
            dst += i;
407
        }
408
    }
409
    return  src - src_start;
410
}
411
 
412
 
413
 
414
static int lag_decode_arith_plane(LagarithContext *l, uint8_t *dst,
415
                                  int width, int height, int stride,
416
                                  const uint8_t *src, int src_size)
417
{
418
    int i = 0;
419
    int read = 0;
420
    uint32_t length;
421
    uint32_t offset = 1;
422
    int esc_count;
423
    GetBitContext gb;
424
    lag_rac rac;
425
    const uint8_t *src_end = src + src_size;
426
 
427
    rac.avctx = l->avctx;
428
    l->zeros = 0;
429
 
430
    if(src_size < 2)
431
        return AVERROR_INVALIDDATA;
432
 
433
    esc_count = src[0];
434
    if (esc_count < 4) {
435
        length = width * height;
436
        if(src_size < 5)
437
            return AVERROR_INVALIDDATA;
438
        if (esc_count && AV_RL32(src + 1) < length) {
439
            length = AV_RL32(src + 1);
440
            offset += 4;
441
        }
442
 
443
        init_get_bits(&gb, src + offset, src_size * 8);
444
 
445
        if (lag_read_prob_header(&rac, &gb) < 0)
446
            return -1;
447
 
448
        ff_lag_rac_init(&rac, &gb, length - stride);
449
 
450
        for (i = 0; i < height; i++)
451
            read += lag_decode_line(l, &rac, dst + (i * stride), width,
452
                                    stride, esc_count);
453
 
454
        if (read > length)
455
            av_log(l->avctx, AV_LOG_WARNING,
456
                   "Output more bytes than length (%d of %d)\n", read,
457
                   length);
458
    } else if (esc_count < 8) {
459
        esc_count -= 4;
460
        if (esc_count > 0) {
461
            /* Zero run coding only, no range coding. */
462
            for (i = 0; i < height; i++) {
463
                int res = lag_decode_zero_run_line(l, dst + (i * stride), src,
464
                                                   src_end, width, esc_count);
465
                if (res < 0)
466
                    return res;
467
                src += res;
468
            }
469
        } else {
470
            if (src_size < width * height)
471
                return AVERROR_INVALIDDATA; // buffer not big enough
472
            /* Plane is stored uncompressed */
473
            for (i = 0; i < height; i++) {
474
                memcpy(dst + (i * stride), src, width);
475
                src += width;
476
            }
477
        }
478
    } else if (esc_count == 0xff) {
479
        /* Plane is a solid run of given value */
480
        for (i = 0; i < height; i++)
481
            memset(dst + i * stride, src[1], width);
482
        /* Do not apply prediction.
483
           Note: memset to 0 above, setting first value to src[1]
484
           and applying prediction gives the same result. */
485
        return 0;
486
    } else {
487
        av_log(l->avctx, AV_LOG_ERROR,
488
               "Invalid zero run escape code! (%#x)\n", esc_count);
489
        return -1;
490
    }
491
 
492
    if (l->avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
493
        for (i = 0; i < height; i++) {
494
            lag_pred_line(l, dst, width, stride, i);
495
            dst += stride;
496
        }
497
    } else {
498
        for (i = 0; i < height; i++) {
499
            lag_pred_line_yuy2(l, dst, width, stride, i,
500
                               width == l->avctx->width);
501
            dst += stride;
502
        }
503
    }
504
 
505
    return 0;
506
}
507
 
508
/**
509
 * Decode a frame.
510
 * @param avctx codec context
511
 * @param data output AVFrame
512
 * @param data_size size of output data or 0 if no picture is returned
513
 * @param avpkt input packet
514
 * @return number of consumed bytes on success or negative if decode fails
515
 */
516
static int lag_decode_frame(AVCodecContext *avctx,
517
                            void *data, int *got_frame, AVPacket *avpkt)
518
{
519
    const uint8_t *buf = avpkt->data;
520
    unsigned int buf_size = avpkt->size;
521
    LagarithContext *l = avctx->priv_data;
522
    ThreadFrame frame = { .f = data };
523
    AVFrame *const p  = data;
524
    uint8_t frametype = 0;
525
    uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9;
526
    uint32_t offs[4];
527
    uint8_t *srcs[4], *dst;
528
    int i, j, planes = 3;
529
    int ret;
530
 
531
    p->key_frame = 1;
532
 
533
    frametype = buf[0];
534
 
535
    offset_gu = AV_RL32(buf + 1);
536
    offset_bv = AV_RL32(buf + 5);
537
 
538
    switch (frametype) {
539
    case FRAME_SOLID_RGBA:
540
        avctx->pix_fmt = AV_PIX_FMT_RGB32;
541
    case FRAME_SOLID_GRAY:
542
        if (frametype == FRAME_SOLID_GRAY)
543
            if (avctx->bits_per_coded_sample == 24) {
544
                avctx->pix_fmt = AV_PIX_FMT_RGB24;
545
            } else {
546
                avctx->pix_fmt = AV_PIX_FMT_0RGB32;
547
                planes = 4;
548
            }
549
 
550
        if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
551
            return ret;
552
 
553
        dst = p->data[0];
554
        if (frametype == FRAME_SOLID_RGBA) {
555
        for (j = 0; j < avctx->height; j++) {
556
            for (i = 0; i < avctx->width; i++)
557
                AV_WN32(dst + i * 4, offset_gu);
558
            dst += p->linesize[0];
559
        }
560
        } else {
561
            for (j = 0; j < avctx->height; j++) {
562
                memset(dst, buf[1], avctx->width * planes);
563
                dst += p->linesize[0];
564
            }
565
        }
566
        break;
567
    case FRAME_SOLID_COLOR:
568
        if (avctx->bits_per_coded_sample == 24) {
569
            avctx->pix_fmt = AV_PIX_FMT_RGB24;
570
        } else {
571
            avctx->pix_fmt = AV_PIX_FMT_RGB32;
572
            offset_gu |= 0xFFU << 24;
573
        }
574
 
575
        if ((ret = ff_thread_get_buffer(avctx, &frame,0)) < 0)
576
            return ret;
577
 
578
        dst = p->data[0];
579
        for (j = 0; j < avctx->height; j++) {
580
            for (i = 0; i < avctx->width; i++)
581
                if (avctx->bits_per_coded_sample == 24) {
582
                    AV_WB24(dst + i * 3, offset_gu);
583
                } else {
584
                    AV_WN32(dst + i * 4, offset_gu);
585
                }
586
            dst += p->linesize[0];
587
        }
588
        break;
589
    case FRAME_ARITH_RGBA:
590
        avctx->pix_fmt = AV_PIX_FMT_RGB32;
591
        planes = 4;
592
        offset_ry += 4;
593
        offs[3] = AV_RL32(buf + 9);
594
    case FRAME_ARITH_RGB24:
595
    case FRAME_U_RGB24:
596
        if (frametype == FRAME_ARITH_RGB24 || frametype == FRAME_U_RGB24)
597
            avctx->pix_fmt = AV_PIX_FMT_RGB24;
598
 
599
        if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
600
            return ret;
601
 
602
        offs[0] = offset_bv;
603
        offs[1] = offset_gu;
604
        offs[2] = offset_ry;
605
 
606
        if (!l->rgb_planes) {
607
            l->rgb_stride = FFALIGN(avctx->width, 16);
608
            l->rgb_planes = av_malloc(l->rgb_stride * avctx->height * 4 + 16);
609
            if (!l->rgb_planes) {
610
                av_log(avctx, AV_LOG_ERROR, "cannot allocate temporary buffer\n");
611
                return AVERROR(ENOMEM);
612
            }
613
        }
614
        for (i = 0; i < planes; i++)
615
            srcs[i] = l->rgb_planes + (i + 1) * l->rgb_stride * avctx->height - l->rgb_stride;
616
        for (i = 0; i < planes; i++)
617
            if (buf_size <= offs[i]) {
618
                av_log(avctx, AV_LOG_ERROR,
619
                        "Invalid frame offsets\n");
620
                return AVERROR_INVALIDDATA;
621
            }
622
 
623
        for (i = 0; i < planes; i++)
624
            lag_decode_arith_plane(l, srcs[i],
625
                                   avctx->width, avctx->height,
626
                                   -l->rgb_stride, buf + offs[i],
627
                                   buf_size - offs[i]);
628
        dst = p->data[0];
629
        for (i = 0; i < planes; i++)
630
            srcs[i] = l->rgb_planes + i * l->rgb_stride * avctx->height;
631
        for (j = 0; j < avctx->height; j++) {
632
            for (i = 0; i < avctx->width; i++) {
633
                uint8_t r, g, b, a;
634
                r = srcs[0][i];
635
                g = srcs[1][i];
636
                b = srcs[2][i];
637
                r += g;
638
                b += g;
639
                if (frametype == FRAME_ARITH_RGBA) {
640
                    a = srcs[3][i];
641
                    AV_WN32(dst + i * 4, MKBETAG(a, r, g, b));
642
                } else {
643
                    dst[i * 3 + 0] = r;
644
                    dst[i * 3 + 1] = g;
645
                    dst[i * 3 + 2] = b;
646
                }
647
            }
648
            dst += p->linesize[0];
649
            for (i = 0; i < planes; i++)
650
                srcs[i] += l->rgb_stride;
651
        }
652
        break;
653
    case FRAME_ARITH_YUY2:
654
        avctx->pix_fmt = AV_PIX_FMT_YUV422P;
655
 
656
        if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
657
            return ret;
658
 
659
        if (offset_ry >= buf_size ||
660
            offset_gu >= buf_size ||
661
            offset_bv >= buf_size) {
662
            av_log(avctx, AV_LOG_ERROR,
663
                   "Invalid frame offsets\n");
664
            return AVERROR_INVALIDDATA;
665
        }
666
 
667
        lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
668
                               p->linesize[0], buf + offset_ry,
669
                               buf_size - offset_ry);
670
        lag_decode_arith_plane(l, p->data[1], avctx->width / 2,
671
                               avctx->height, p->linesize[1],
672
                               buf + offset_gu, buf_size - offset_gu);
673
        lag_decode_arith_plane(l, p->data[2], avctx->width / 2,
674
                               avctx->height, p->linesize[2],
675
                               buf + offset_bv, buf_size - offset_bv);
676
        break;
677
    case FRAME_ARITH_YV12:
678
        avctx->pix_fmt = AV_PIX_FMT_YUV420P;
679
 
680
        if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
681
            return ret;
682
        if (buf_size <= offset_ry || buf_size <= offset_gu || buf_size <= offset_bv) {
683
            return AVERROR_INVALIDDATA;
684
        }
685
 
686
        if (offset_ry >= buf_size ||
687
            offset_gu >= buf_size ||
688
            offset_bv >= buf_size) {
689
            av_log(avctx, AV_LOG_ERROR,
690
                   "Invalid frame offsets\n");
691
            return AVERROR_INVALIDDATA;
692
        }
693
 
694
        lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
695
                               p->linesize[0], buf + offset_ry,
696
                               buf_size - offset_ry);
697
        lag_decode_arith_plane(l, p->data[2], avctx->width / 2,
698
                               avctx->height / 2, p->linesize[2],
699
                               buf + offset_gu, buf_size - offset_gu);
700
        lag_decode_arith_plane(l, p->data[1], avctx->width / 2,
701
                               avctx->height / 2, p->linesize[1],
702
                               buf + offset_bv, buf_size - offset_bv);
703
        break;
704
    default:
705
        av_log(avctx, AV_LOG_ERROR,
706
               "Unsupported Lagarith frame type: %#x\n", frametype);
707
        return AVERROR_PATCHWELCOME;
708
    }
709
 
710
    *got_frame = 1;
711
 
712
    return buf_size;
713
}
714
 
715
static av_cold int lag_decode_init(AVCodecContext *avctx)
716
{
717
    LagarithContext *l = avctx->priv_data;
718
    l->avctx = avctx;
719
 
720
    ff_dsputil_init(&l->dsp, avctx);
721
 
722
    return 0;
723
}
724
 
725
static av_cold int lag_decode_end(AVCodecContext *avctx)
726
{
727
    LagarithContext *l = avctx->priv_data;
728
 
729
    av_freep(&l->rgb_planes);
730
 
731
    return 0;
732
}
733
 
734
AVCodec ff_lagarith_decoder = {
735
    .name           = "lagarith",
736
    .long_name      = NULL_IF_CONFIG_SMALL("Lagarith lossless"),
737
    .type           = AVMEDIA_TYPE_VIDEO,
738
    .id             = AV_CODEC_ID_LAGARITH,
739
    .priv_data_size = sizeof(LagarithContext),
740
    .init           = lag_decode_init,
741
    .close          = lag_decode_end,
742
    .decode         = lag_decode_frame,
743
    .capabilities   = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS,
744
};