Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * IMC compatible decoder
3
 * Copyright (c) 2002-2004 Maxim Poliakovski
4
 * Copyright (c) 2006 Benjamin Larsson
5
 * Copyright (c) 2006 Konstantin Shishkov
6
 *
7
 * This file is part of FFmpeg.
8
 *
9
 * FFmpeg is free software; you can redistribute it and/or
10
 * modify it under the terms of the GNU Lesser General Public
11
 * License as published by the Free Software Foundation; either
12
 * version 2.1 of the License, or (at your option) any later version.
13
 *
14
 * FFmpeg is distributed in the hope that it will be useful,
15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17
 * Lesser General Public License for more details.
18
 *
19
 * You should have received a copy of the GNU Lesser General Public
20
 * License along with FFmpeg; if not, write to the Free Software
21
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22
 */
23
 
24
/**
25
 *  @file
26
 *  IMC - Intel Music Coder
27
 *  A mdct based codec using a 256 points large transform
28
 *  divided into 32 bands with some mix of scale factors.
29
 *  Only mono is supported.
30
 *
31
 */
32
 
33
 
34
#include 
35
#include 
36
#include 
37
 
38
#include "libavutil/channel_layout.h"
39
#include "libavutil/float_dsp.h"
40
#include "libavutil/internal.h"
41
#include "libavutil/libm.h"
42
#include "avcodec.h"
43
#include "get_bits.h"
44
#include "dsputil.h"
45
#include "fft.h"
46
#include "internal.h"
47
#include "sinewin.h"
48
 
49
#include "imcdata.h"
50
 
51
#define IMC_BLOCK_SIZE 64
52
#define IMC_FRAME_ID 0x21
53
#define BANDS 32
54
#define COEFFS 256
55
 
56
typedef struct IMCChannel {
57
    float old_floor[BANDS];
58
    float flcoeffs1[BANDS];
59
    float flcoeffs2[BANDS];
60
    float flcoeffs3[BANDS];
61
    float flcoeffs4[BANDS];
62
    float flcoeffs5[BANDS];
63
    float flcoeffs6[BANDS];
64
    float CWdecoded[COEFFS];
65
 
66
    int bandWidthT[BANDS];     ///< codewords per band
67
    int bitsBandT[BANDS];      ///< how many bits per codeword in band
68
    int CWlengthT[COEFFS];     ///< how many bits in each codeword
69
    int levlCoeffBuf[BANDS];
70
    int bandFlagsBuf[BANDS];   ///< flags for each band
71
    int sumLenArr[BANDS];      ///< bits for all coeffs in band
72
    int skipFlagRaw[BANDS];    ///< skip flags are stored in raw form or not
73
    int skipFlagBits[BANDS];   ///< bits used to code skip flags
74
    int skipFlagCount[BANDS];  ///< skipped coeffients per band
75
    int skipFlags[COEFFS];     ///< skip coefficient decoding or not
76
    int codewords[COEFFS];     ///< raw codewords read from bitstream
77
 
78
    float last_fft_im[COEFFS];
79
 
80
    int decoder_reset;
81
} IMCChannel;
82
 
83
typedef struct {
84
    IMCChannel chctx[2];
85
 
86
    /** MDCT tables */
87
    //@{
88
    float mdct_sine_window[COEFFS];
89
    float post_cos[COEFFS];
90
    float post_sin[COEFFS];
91
    float pre_coef1[COEFFS];
92
    float pre_coef2[COEFFS];
93
    //@}
94
 
95
    float sqrt_tab[30];
96
    GetBitContext gb;
97
 
98
    DSPContext dsp;
99
    AVFloatDSPContext fdsp;
100
    FFTContext fft;
101
    DECLARE_ALIGNED(32, FFTComplex, samples)[COEFFS / 2];
102
    float *out_samples;
103
 
104
    int coef0_pos;
105
 
106
    int8_t cyclTab[32], cyclTab2[32];
107
    float  weights1[31], weights2[31];
108
} IMCContext;
109
 
110
static VLC huffman_vlc[4][4];
111
 
112
#define VLC_TABLES_SIZE 9512
113
 
114
static const int vlc_offsets[17] = {
115
    0,     640, 1156, 1732, 2308, 2852, 3396, 3924,
116
    4452, 5220, 5860, 6628, 7268, 7908, 8424, 8936, VLC_TABLES_SIZE
117
};
118
 
119
static VLC_TYPE vlc_tables[VLC_TABLES_SIZE][2];
120
 
121
static inline double freq2bark(double freq)
122
{
123
    return 3.5 * atan((freq / 7500.0) * (freq / 7500.0)) + 13.0 * atan(freq * 0.00076);
124
}
125
 
126
static av_cold void iac_generate_tabs(IMCContext *q, int sampling_rate)
127
{
128
    double freqmin[32], freqmid[32], freqmax[32];
129
    double scale = sampling_rate / (256.0 * 2.0 * 2.0);
130
    double nyquist_freq = sampling_rate * 0.5;
131
    double freq, bark, prev_bark = 0, tf, tb;
132
    int i, j;
133
 
134
    for (i = 0; i < 32; i++) {
135
        freq = (band_tab[i] + band_tab[i + 1] - 1) * scale;
136
        bark = freq2bark(freq);
137
 
138
        if (i > 0) {
139
            tb = bark - prev_bark;
140
            q->weights1[i - 1] = pow(10.0, -1.0 * tb);
141
            q->weights2[i - 1] = pow(10.0, -2.7 * tb);
142
        }
143
        prev_bark = bark;
144
 
145
        freqmid[i] = freq;
146
 
147
        tf = freq;
148
        while (tf < nyquist_freq) {
149
            tf += 0.5;
150
            tb =  freq2bark(tf);
151
            if (tb > bark + 0.5)
152
                break;
153
        }
154
        freqmax[i] = tf;
155
 
156
        tf = freq;
157
        while (tf > 0.0) {
158
            tf -= 0.5;
159
            tb =  freq2bark(tf);
160
            if (tb <= bark - 0.5)
161
                break;
162
        }
163
        freqmin[i] = tf;
164
    }
165
 
166
    for (i = 0; i < 32; i++) {
167
        freq = freqmax[i];
168
        for (j = 31; j > 0 && freq <= freqmid[j]; j--);
169
        q->cyclTab[i] = j + 1;
170
 
171
        freq = freqmin[i];
172
        for (j = 0; j < 32 && freq >= freqmid[j]; j++);
173
        q->cyclTab2[i] = j - 1;
174
    }
175
}
176
 
177
static av_cold int imc_decode_init(AVCodecContext *avctx)
178
{
179
    int i, j, ret;
180
    IMCContext *q = avctx->priv_data;
181
    double r1, r2;
182
 
183
    if (avctx->codec_id == AV_CODEC_ID_IMC)
184
        avctx->channels = 1;
185
 
186
    if (avctx->channels > 2) {
187
        avpriv_request_sample(avctx, "Number of channels > 2");
188
        return AVERROR_PATCHWELCOME;
189
    }
190
 
191
    for (j = 0; j < avctx->channels; j++) {
192
        q->chctx[j].decoder_reset = 1;
193
 
194
        for (i = 0; i < BANDS; i++)
195
            q->chctx[j].old_floor[i] = 1.0;
196
 
197
        for (i = 0; i < COEFFS / 2; i++)
198
            q->chctx[j].last_fft_im[i] = 0;
199
    }
200
 
201
    /* Build mdct window, a simple sine window normalized with sqrt(2) */
202
    ff_sine_window_init(q->mdct_sine_window, COEFFS);
203
    for (i = 0; i < COEFFS; i++)
204
        q->mdct_sine_window[i] *= sqrt(2.0);
205
    for (i = 0; i < COEFFS / 2; i++) {
206
        q->post_cos[i] = (1.0f / 32768) * cos(i / 256.0 * M_PI);
207
        q->post_sin[i] = (1.0f / 32768) * sin(i / 256.0 * M_PI);
208
 
209
        r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI);
210
        r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI);
211
 
212
        if (i & 0x1) {
213
            q->pre_coef1[i] =  (r1 + r2) * sqrt(2.0);
214
            q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0);
215
        } else {
216
            q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0);
217
            q->pre_coef2[i] =  (r1 - r2) * sqrt(2.0);
218
        }
219
    }
220
 
221
    /* Generate a square root table */
222
 
223
    for (i = 0; i < 30; i++)
224
        q->sqrt_tab[i] = sqrt(i);
225
 
226
    /* initialize the VLC tables */
227
    for (i = 0; i < 4 ; i++) {
228
        for (j = 0; j < 4; j++) {
229
            huffman_vlc[i][j].table = &vlc_tables[vlc_offsets[i * 4 + j]];
230
            huffman_vlc[i][j].table_allocated = vlc_offsets[i * 4 + j + 1] - vlc_offsets[i * 4 + j];
231
            init_vlc(&huffman_vlc[i][j], 9, imc_huffman_sizes[i],
232
                     imc_huffman_lens[i][j], 1, 1,
233
                     imc_huffman_bits[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
234
        }
235
    }
236
 
237
    if (avctx->codec_id == AV_CODEC_ID_IAC) {
238
        iac_generate_tabs(q, avctx->sample_rate);
239
    } else {
240
        memcpy(q->cyclTab,  cyclTab,  sizeof(cyclTab));
241
        memcpy(q->cyclTab2, cyclTab2, sizeof(cyclTab2));
242
        memcpy(q->weights1, imc_weights1, sizeof(imc_weights1));
243
        memcpy(q->weights2, imc_weights2, sizeof(imc_weights2));
244
    }
245
 
246
    if ((ret = ff_fft_init(&q->fft, 7, 1))) {
247
        av_log(avctx, AV_LOG_INFO, "FFT init failed\n");
248
        return ret;
249
    }
250
    ff_dsputil_init(&q->dsp, avctx);
251
    avpriv_float_dsp_init(&q->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
252
    avctx->sample_fmt     = AV_SAMPLE_FMT_FLTP;
253
    avctx->channel_layout = avctx->channels == 1 ? AV_CH_LAYOUT_MONO
254
                                                 : AV_CH_LAYOUT_STEREO;
255
 
256
    return 0;
257
}
258
 
259
static void imc_calculate_coeffs(IMCContext *q, float *flcoeffs1,
260
                                 float *flcoeffs2, int *bandWidthT,
261
                                 float *flcoeffs3, float *flcoeffs5)
262
{
263
    float   workT1[BANDS];
264
    float   workT2[BANDS];
265
    float   workT3[BANDS];
266
    float   snr_limit = 1.e-30;
267
    float   accum = 0.0;
268
    int i, cnt2;
269
 
270
    for (i = 0; i < BANDS; i++) {
271
        flcoeffs5[i] = workT2[i] = 0.0;
272
        if (bandWidthT[i]) {
273
            workT1[i] = flcoeffs1[i] * flcoeffs1[i];
274
            flcoeffs3[i] = 2.0 * flcoeffs2[i];
275
        } else {
276
            workT1[i]    = 0.0;
277
            flcoeffs3[i] = -30000.0;
278
        }
279
        workT3[i] = bandWidthT[i] * workT1[i] * 0.01;
280
        if (workT3[i] <= snr_limit)
281
            workT3[i] = 0.0;
282
    }
283
 
284
    for (i = 0; i < BANDS; i++) {
285
        for (cnt2 = i; cnt2 < q->cyclTab[i]; cnt2++)
286
            flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i];
287
        workT2[cnt2 - 1] = workT2[cnt2 - 1] + workT3[i];
288
    }
289
 
290
    for (i = 1; i < BANDS; i++) {
291
        accum = (workT2[i - 1] + accum) * q->weights1[i - 1];
292
        flcoeffs5[i] += accum;
293
    }
294
 
295
    for (i = 0; i < BANDS; i++)
296
        workT2[i] = 0.0;
297
 
298
    for (i = 0; i < BANDS; i++) {
299
        for (cnt2 = i - 1; cnt2 > q->cyclTab2[i]; cnt2--)
300
            flcoeffs5[cnt2] += workT3[i];
301
        workT2[cnt2+1] += workT3[i];
302
    }
303
 
304
    accum = 0.0;
305
 
306
    for (i = BANDS-2; i >= 0; i--) {
307
        accum = (workT2[i+1] + accum) * q->weights2[i];
308
        flcoeffs5[i] += accum;
309
        // there is missing code here, but it seems to never be triggered
310
    }
311
}
312
 
313
 
314
static void imc_read_level_coeffs(IMCContext *q, int stream_format_code,
315
                                  int *levlCoeffs)
316
{
317
    int i;
318
    VLC *hufftab[4];
319
    int start = 0;
320
    const uint8_t *cb_sel;
321
    int s;
322
 
323
    s = stream_format_code >> 1;
324
    hufftab[0] = &huffman_vlc[s][0];
325
    hufftab[1] = &huffman_vlc[s][1];
326
    hufftab[2] = &huffman_vlc[s][2];
327
    hufftab[3] = &huffman_vlc[s][3];
328
    cb_sel = imc_cb_select[s];
329
 
330
    if (stream_format_code & 4)
331
        start = 1;
332
    if (start)
333
        levlCoeffs[0] = get_bits(&q->gb, 7);
334
    for (i = start; i < BANDS; i++) {
335
        levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table,
336
                                 hufftab[cb_sel[i]]->bits, 2);
337
        if (levlCoeffs[i] == 17)
338
            levlCoeffs[i] += get_bits(&q->gb, 4);
339
    }
340
}
341
 
342
static void imc_read_level_coeffs_raw(IMCContext *q, int stream_format_code,
343
                                      int *levlCoeffs)
344
{
345
    int i;
346
 
347
    q->coef0_pos  = get_bits(&q->gb, 5);
348
    levlCoeffs[0] = get_bits(&q->gb, 7);
349
    for (i = 1; i < BANDS; i++)
350
        levlCoeffs[i] = get_bits(&q->gb, 4);
351
}
352
 
353
static void imc_decode_level_coefficients(IMCContext *q, int *levlCoeffBuf,
354
                                          float *flcoeffs1, float *flcoeffs2)
355
{
356
    int i, level;
357
    float tmp, tmp2;
358
    // maybe some frequency division thingy
359
 
360
    flcoeffs1[0] = 20000.0 / exp2 (levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
361
    flcoeffs2[0] = log2f(flcoeffs1[0]);
362
    tmp  = flcoeffs1[0];
363
    tmp2 = flcoeffs2[0];
364
 
365
    for (i = 1; i < BANDS; i++) {
366
        level = levlCoeffBuf[i];
367
        if (level == 16) {
368
            flcoeffs1[i] = 1.0;
369
            flcoeffs2[i] = 0.0;
370
        } else {
371
            if (level < 17)
372
                level -= 7;
373
            else if (level <= 24)
374
                level -= 32;
375
            else
376
                level -= 16;
377
 
378
            tmp  *= imc_exp_tab[15 + level];
379
            tmp2 += 0.83048 * level;  // 0.83048 = log2(10) * 0.25
380
            flcoeffs1[i] = tmp;
381
            flcoeffs2[i] = tmp2;
382
        }
383
    }
384
}
385
 
386
 
387
static void imc_decode_level_coefficients2(IMCContext *q, int *levlCoeffBuf,
388
                                           float *old_floor, float *flcoeffs1,
389
                                           float *flcoeffs2)
390
{
391
    int i;
392
    /* FIXME maybe flag_buf = noise coding and flcoeffs1 = new scale factors
393
     *       and flcoeffs2 old scale factors
394
     *       might be incomplete due to a missing table that is in the binary code
395
     */
396
    for (i = 0; i < BANDS; i++) {
397
        flcoeffs1[i] = 0;
398
        if (levlCoeffBuf[i] < 16) {
399
            flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i];
400
            flcoeffs2[i] = (levlCoeffBuf[i] - 7) * 0.83048 + flcoeffs2[i]; // 0.83048 = log2(10) * 0.25
401
        } else {
402
            flcoeffs1[i] = old_floor[i];
403
        }
404
    }
405
}
406
 
407
static void imc_decode_level_coefficients_raw(IMCContext *q, int *levlCoeffBuf,
408
                                              float *flcoeffs1, float *flcoeffs2)
409
{
410
    int i, level, pos;
411
    float tmp, tmp2;
412
 
413
    pos = q->coef0_pos;
414
    flcoeffs1[pos] = 20000.0 / pow (2, levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
415
    flcoeffs2[pos] = log2f(flcoeffs1[0]);
416
    tmp  = flcoeffs1[pos];
417
    tmp2 = flcoeffs2[pos];
418
 
419
    levlCoeffBuf++;
420
    for (i = 0; i < BANDS; i++) {
421
        if (i == pos)
422
            continue;
423
        level = *levlCoeffBuf++;
424
        flcoeffs1[i] = tmp  * powf(10.0, -level * 0.4375); //todo tab
425
        flcoeffs2[i] = tmp2 - 1.4533435415 * level; // 1.4533435415 = log2(10) * 0.4375
426
    }
427
}
428
 
429
/**
430
 * Perform bit allocation depending on bits available
431
 */
432
static int bit_allocation(IMCContext *q, IMCChannel *chctx,
433
                          int stream_format_code, int freebits, int flag)
434
{
435
    int i, j;
436
    const float limit = -1.e20;
437
    float highest = 0.0;
438
    int indx;
439
    int t1 = 0;
440
    int t2 = 1;
441
    float summa = 0.0;
442
    int iacc = 0;
443
    int summer = 0;
444
    int rres, cwlen;
445
    float lowest = 1.e10;
446
    int low_indx = 0;
447
    float workT[32];
448
    int flg;
449
    int found_indx = 0;
450
 
451
    for (i = 0; i < BANDS; i++)
452
        highest = FFMAX(highest, chctx->flcoeffs1[i]);
453
 
454
    for (i = 0; i < BANDS - 1; i++) {
455
        if (chctx->flcoeffs5[i] <= 0) {
456
            av_log(NULL, AV_LOG_ERROR, "flcoeffs5 %f invalid\n", chctx->flcoeffs5[i]);
457
            return AVERROR_INVALIDDATA;
458
        }
459
        chctx->flcoeffs4[i] = chctx->flcoeffs3[i] - log2f(chctx->flcoeffs5[i]);
460
    }
461
    chctx->flcoeffs4[BANDS - 1] = limit;
462
 
463
    highest = highest * 0.25;
464
 
465
    for (i = 0; i < BANDS; i++) {
466
        indx = -1;
467
        if ((band_tab[i + 1] - band_tab[i]) == chctx->bandWidthT[i])
468
            indx = 0;
469
 
470
        if ((band_tab[i + 1] - band_tab[i]) > chctx->bandWidthT[i])
471
            indx = 1;
472
 
473
        if (((band_tab[i + 1] - band_tab[i]) / 2) >= chctx->bandWidthT[i])
474
            indx = 2;
475
 
476
        if (indx == -1)
477
            return AVERROR_INVALIDDATA;
478
 
479
        chctx->flcoeffs4[i] += xTab[(indx * 2 + (chctx->flcoeffs1[i] < highest)) * 2 + flag];
480
    }
481
 
482
    if (stream_format_code & 0x2) {
483
        chctx->flcoeffs4[0] = limit;
484
        chctx->flcoeffs4[1] = limit;
485
        chctx->flcoeffs4[2] = limit;
486
        chctx->flcoeffs4[3] = limit;
487
    }
488
 
489
    for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS - 1; i++) {
490
        iacc  += chctx->bandWidthT[i];
491
        summa += chctx->bandWidthT[i] * chctx->flcoeffs4[i];
492
    }
493
 
494
    if (!iacc)
495
        return AVERROR_INVALIDDATA;
496
 
497
    chctx->bandWidthT[BANDS - 1] = 0;
498
    summa = (summa * 0.5 - freebits) / iacc;
499
 
500
 
501
    for (i = 0; i < BANDS / 2; i++) {
502
        rres = summer - freebits;
503
        if ((rres >= -8) && (rres <= 8))
504
            break;
505
 
506
        summer = 0;
507
        iacc   = 0;
508
 
509
        for (j = (stream_format_code & 0x2) ? 4 : 0; j < BANDS; j++) {
510
            cwlen = av_clipf(((chctx->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
511
 
512
            chctx->bitsBandT[j] = cwlen;
513
            summer += chctx->bandWidthT[j] * cwlen;
514
 
515
            if (cwlen > 0)
516
                iacc += chctx->bandWidthT[j];
517
        }
518
 
519
        flg = t2;
520
        t2 = 1;
521
        if (freebits < summer)
522
            t2 = -1;
523
        if (i == 0)
524
            flg = t2;
525
        if (flg != t2)
526
            t1++;
527
 
528
        summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa;
529
    }
530
 
531
    for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS; i++) {
532
        for (j = band_tab[i]; j < band_tab[i + 1]; j++)
533
            chctx->CWlengthT[j] = chctx->bitsBandT[i];
534
    }
535
 
536
    if (freebits > summer) {
537
        for (i = 0; i < BANDS; i++) {
538
            workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
539
                                              : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
540
        }
541
 
542
        highest = 0.0;
543
 
544
        do {
545
            if (highest <= -1.e20)
546
                break;
547
 
548
            found_indx = 0;
549
            highest = -1.e20;
550
 
551
            for (i = 0; i < BANDS; i++) {
552
                if (workT[i] > highest) {
553
                    highest = workT[i];
554
                    found_indx = i;
555
                }
556
            }
557
 
558
            if (highest > -1.e20) {
559
                workT[found_indx] -= 2.0;
560
                if (++chctx->bitsBandT[found_indx] == 6)
561
                    workT[found_indx] = -1.e20;
562
 
563
                for (j = band_tab[found_indx]; j < band_tab[found_indx + 1] && (freebits > summer); j++) {
564
                    chctx->CWlengthT[j]++;
565
                    summer++;
566
                }
567
            }
568
        } while (freebits > summer);
569
    }
570
    if (freebits < summer) {
571
        for (i = 0; i < BANDS; i++) {
572
            workT[i] = chctx->bitsBandT[i] ? (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] + 1.585)
573
                                       : 1.e20;
574
        }
575
        if (stream_format_code & 0x2) {
576
            workT[0] = 1.e20;
577
            workT[1] = 1.e20;
578
            workT[2] = 1.e20;
579
            workT[3] = 1.e20;
580
        }
581
        while (freebits < summer) {
582
            lowest   = 1.e10;
583
            low_indx = 0;
584
            for (i = 0; i < BANDS; i++) {
585
                if (workT[i] < lowest) {
586
                    lowest   = workT[i];
587
                    low_indx = i;
588
                }
589
            }
590
            // if (lowest >= 1.e10)
591
            //     break;
592
            workT[low_indx] = lowest + 2.0;
593
 
594
            if (!--chctx->bitsBandT[low_indx])
595
                workT[low_indx] = 1.e20;
596
 
597
            for (j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++) {
598
                if (chctx->CWlengthT[j] > 0) {
599
                    chctx->CWlengthT[j]--;
600
                    summer--;
601
                }
602
            }
603
        }
604
    }
605
    return 0;
606
}
607
 
608
static void imc_get_skip_coeff(IMCContext *q, IMCChannel *chctx)
609
{
610
    int i, j;
611
 
612
    memset(chctx->skipFlagBits,  0, sizeof(chctx->skipFlagBits));
613
    memset(chctx->skipFlagCount, 0, sizeof(chctx->skipFlagCount));
614
    for (i = 0; i < BANDS; i++) {
615
        if (!chctx->bandFlagsBuf[i] || !chctx->bandWidthT[i])
616
            continue;
617
 
618
        if (!chctx->skipFlagRaw[i]) {
619
            chctx->skipFlagBits[i] = band_tab[i + 1] - band_tab[i];
620
 
621
            for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
622
                chctx->skipFlags[j] = get_bits1(&q->gb);
623
                if (chctx->skipFlags[j])
624
                    chctx->skipFlagCount[i]++;
625
            }
626
        } else {
627
            for (j = band_tab[i]; j < band_tab[i + 1] - 1; j += 2) {
628
                if (!get_bits1(&q->gb)) { // 0
629
                    chctx->skipFlagBits[i]++;
630
                    chctx->skipFlags[j]      = 1;
631
                    chctx->skipFlags[j + 1]  = 1;
632
                    chctx->skipFlagCount[i] += 2;
633
                } else {
634
                    if (get_bits1(&q->gb)) { // 11
635
                        chctx->skipFlagBits[i] += 2;
636
                        chctx->skipFlags[j]     = 0;
637
                        chctx->skipFlags[j + 1] = 1;
638
                        chctx->skipFlagCount[i]++;
639
                    } else {
640
                        chctx->skipFlagBits[i] += 3;
641
                        chctx->skipFlags[j + 1] = 0;
642
                        if (!get_bits1(&q->gb)) { // 100
643
                            chctx->skipFlags[j] = 1;
644
                            chctx->skipFlagCount[i]++;
645
                        } else { // 101
646
                            chctx->skipFlags[j] = 0;
647
                        }
648
                    }
649
                }
650
            }
651
 
652
            if (j < band_tab[i + 1]) {
653
                chctx->skipFlagBits[i]++;
654
                if ((chctx->skipFlags[j] = get_bits1(&q->gb)))
655
                    chctx->skipFlagCount[i]++;
656
            }
657
        }
658
    }
659
}
660
 
661
/**
662
 * Increase highest' band coefficient sizes as some bits won't be used
663
 */
664
static void imc_adjust_bit_allocation(IMCContext *q, IMCChannel *chctx,
665
                                      int summer)
666
{
667
    float workT[32];
668
    int corrected = 0;
669
    int i, j;
670
    float highest  = 0;
671
    int found_indx = 0;
672
 
673
    for (i = 0; i < BANDS; i++) {
674
        workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
675
                                          : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
676
    }
677
 
678
    while (corrected < summer) {
679
        if (highest <= -1.e20)
680
            break;
681
 
682
        highest = -1.e20;
683
 
684
        for (i = 0; i < BANDS; i++) {
685
            if (workT[i] > highest) {
686
                highest = workT[i];
687
                found_indx = i;
688
            }
689
        }
690
 
691
        if (highest > -1.e20) {
692
            workT[found_indx] -= 2.0;
693
            if (++(chctx->bitsBandT[found_indx]) == 6)
694
                workT[found_indx] = -1.e20;
695
 
696
            for (j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) {
697
                if (!chctx->skipFlags[j] && (chctx->CWlengthT[j] < 6)) {
698
                    chctx->CWlengthT[j]++;
699
                    corrected++;
700
                }
701
            }
702
        }
703
    }
704
}
705
 
706
static void imc_imdct256(IMCContext *q, IMCChannel *chctx, int channels)
707
{
708
    int i;
709
    float re, im;
710
    float *dst1 = q->out_samples;
711
    float *dst2 = q->out_samples + (COEFFS - 1);
712
 
713
    /* prerotation */
714
    for (i = 0; i < COEFFS / 2; i++) {
715
        q->samples[i].re = -(q->pre_coef1[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
716
                            (q->pre_coef2[i] * chctx->CWdecoded[i * 2]);
717
        q->samples[i].im =  (q->pre_coef2[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
718
                            (q->pre_coef1[i] * chctx->CWdecoded[i * 2]);
719
    }
720
 
721
    /* FFT */
722
    q->fft.fft_permute(&q->fft, q->samples);
723
    q->fft.fft_calc(&q->fft, q->samples);
724
 
725
    /* postrotation, window and reorder */
726
    for (i = 0; i < COEFFS / 2; i++) {
727
        re = ( q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]);
728
        im = (-q->samples[i].im * q->post_cos[i]) - ( q->samples[i].re * q->post_sin[i]);
729
        *dst1 =  (q->mdct_sine_window[COEFFS - 1 - i * 2] * chctx->last_fft_im[i])
730
               + (q->mdct_sine_window[i * 2] * re);
731
        *dst2 =  (q->mdct_sine_window[i * 2] * chctx->last_fft_im[i])
732
               - (q->mdct_sine_window[COEFFS - 1 - i * 2] * re);
733
        dst1 += 2;
734
        dst2 -= 2;
735
        chctx->last_fft_im[i] = im;
736
    }
737
}
738
 
739
static int inverse_quant_coeff(IMCContext *q, IMCChannel *chctx,
740
                               int stream_format_code)
741
{
742
    int i, j;
743
    int middle_value, cw_len, max_size;
744
    const float *quantizer;
745
 
746
    for (i = 0; i < BANDS; i++) {
747
        for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
748
            chctx->CWdecoded[j] = 0;
749
            cw_len = chctx->CWlengthT[j];
750
 
751
            if (cw_len <= 0 || chctx->skipFlags[j])
752
                continue;
753
 
754
            max_size     = 1 << cw_len;
755
            middle_value = max_size >> 1;
756
 
757
            if (chctx->codewords[j] >= max_size || chctx->codewords[j] < 0)
758
                return AVERROR_INVALIDDATA;
759
 
760
            if (cw_len >= 4) {
761
                quantizer = imc_quantizer2[(stream_format_code & 2) >> 1];
762
                if (chctx->codewords[j] >= middle_value)
763
                    chctx->CWdecoded[j] =  quantizer[chctx->codewords[j] - 8]                * chctx->flcoeffs6[i];
764
                else
765
                    chctx->CWdecoded[j] = -quantizer[max_size - chctx->codewords[j] - 8 - 1] * chctx->flcoeffs6[i];
766
            }else{
767
                quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (chctx->bandFlagsBuf[i] << 1)];
768
                if (chctx->codewords[j] >= middle_value)
769
                    chctx->CWdecoded[j] =  quantizer[chctx->codewords[j] - 1]            * chctx->flcoeffs6[i];
770
                else
771
                    chctx->CWdecoded[j] = -quantizer[max_size - 2 - chctx->codewords[j]] * chctx->flcoeffs6[i];
772
            }
773
        }
774
    }
775
    return 0;
776
}
777
 
778
 
779
static int imc_get_coeffs(IMCContext *q, IMCChannel *chctx)
780
{
781
    int i, j, cw_len, cw;
782
 
783
    for (i = 0; i < BANDS; i++) {
784
        if (!chctx->sumLenArr[i])
785
            continue;
786
        if (chctx->bandFlagsBuf[i] || chctx->bandWidthT[i]) {
787
            for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
788
                cw_len = chctx->CWlengthT[j];
789
                cw = 0;
790
 
791
                if (get_bits_count(&q->gb) + cw_len > 512) {
792
                    av_dlog(NULL, "Band %i coeff %i cw_len %i\n", i, j, cw_len);
793
                    return AVERROR_INVALIDDATA;
794
                }
795
 
796
                if (cw_len && (!chctx->bandFlagsBuf[i] || !chctx->skipFlags[j]))
797
                    cw = get_bits(&q->gb, cw_len);
798
 
799
                chctx->codewords[j] = cw;
800
            }
801
        }
802
    }
803
    return 0;
804
}
805
 
806
static void imc_refine_bit_allocation(IMCContext *q, IMCChannel *chctx)
807
{
808
    int i, j;
809
    int bits, summer;
810
 
811
    for (i = 0; i < BANDS; i++) {
812
        chctx->sumLenArr[i]   = 0;
813
        chctx->skipFlagRaw[i] = 0;
814
        for (j = band_tab[i]; j < band_tab[i + 1]; j++)
815
            chctx->sumLenArr[i] += chctx->CWlengthT[j];
816
        if (chctx->bandFlagsBuf[i])
817
            if ((((band_tab[i + 1] - band_tab[i]) * 1.5) > chctx->sumLenArr[i]) && (chctx->sumLenArr[i] > 0))
818
                chctx->skipFlagRaw[i] = 1;
819
    }
820
 
821
    imc_get_skip_coeff(q, chctx);
822
 
823
    for (i = 0; i < BANDS; i++) {
824
        chctx->flcoeffs6[i] = chctx->flcoeffs1[i];
825
        /* band has flag set and at least one coded coefficient */
826
        if (chctx->bandFlagsBuf[i] && (band_tab[i + 1] - band_tab[i]) != chctx->skipFlagCount[i]) {
827
            chctx->flcoeffs6[i] *= q->sqrt_tab[ band_tab[i + 1] - band_tab[i]] /
828
                                   q->sqrt_tab[(band_tab[i + 1] - band_tab[i] - chctx->skipFlagCount[i])];
829
        }
830
    }
831
 
832
    /* calculate bits left, bits needed and adjust bit allocation */
833
    bits = summer = 0;
834
 
835
    for (i = 0; i < BANDS; i++) {
836
        if (chctx->bandFlagsBuf[i]) {
837
            for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
838
                if (chctx->skipFlags[j]) {
839
                    summer += chctx->CWlengthT[j];
840
                    chctx->CWlengthT[j] = 0;
841
                }
842
            }
843
            bits   += chctx->skipFlagBits[i];
844
            summer -= chctx->skipFlagBits[i];
845
        }
846
    }
847
    imc_adjust_bit_allocation(q, chctx, summer);
848
}
849
 
850
static int imc_decode_block(AVCodecContext *avctx, IMCContext *q, int ch)
851
{
852
    int stream_format_code;
853
    int imc_hdr, i, j, ret;
854
    int flag;
855
    int bits;
856
    int counter, bitscount;
857
    IMCChannel *chctx = q->chctx + ch;
858
 
859
 
860
    /* Check the frame header */
861
    imc_hdr = get_bits(&q->gb, 9);
862
    if (imc_hdr & 0x18) {
863
        av_log(avctx, AV_LOG_ERROR, "frame header check failed!\n");
864
        av_log(avctx, AV_LOG_ERROR, "got %X.\n", imc_hdr);
865
        return AVERROR_INVALIDDATA;
866
    }
867
    stream_format_code = get_bits(&q->gb, 3);
868
 
869
    if (stream_format_code & 0x04)
870
        chctx->decoder_reset = 1;
871
 
872
    if (chctx->decoder_reset) {
873
        for (i = 0; i < BANDS; i++)
874
            chctx->old_floor[i] = 1.0;
875
        for (i = 0; i < COEFFS; i++)
876
            chctx->CWdecoded[i] = 0;
877
        chctx->decoder_reset = 0;
878
    }
879
 
880
    flag = get_bits1(&q->gb);
881
    if (stream_format_code & 0x1)
882
        imc_decode_level_coefficients_raw(q, chctx->levlCoeffBuf,
883
                                          chctx->flcoeffs1, chctx->flcoeffs2);
884
    else if (stream_format_code & 0x1)
885
        imc_read_level_coeffs_raw(q, stream_format_code, chctx->levlCoeffBuf);
886
    else
887
        imc_read_level_coeffs(q, stream_format_code, chctx->levlCoeffBuf);
888
 
889
    if (stream_format_code & 0x4)
890
        imc_decode_level_coefficients(q, chctx->levlCoeffBuf,
891
                                      chctx->flcoeffs1, chctx->flcoeffs2);
892
    else
893
        imc_decode_level_coefficients2(q, chctx->levlCoeffBuf, chctx->old_floor,
894
                                       chctx->flcoeffs1, chctx->flcoeffs2);
895
 
896
    for(i=0; i
897
        if(chctx->flcoeffs1[i] > INT_MAX) {
898
            av_log(avctx, AV_LOG_ERROR, "scalefactor out of range\n");
899
            return AVERROR_INVALIDDATA;
900
        }
901
    }
902
 
903
    memcpy(chctx->old_floor, chctx->flcoeffs1, 32 * sizeof(float));
904
 
905
    counter = 0;
906
    if (stream_format_code & 0x1) {
907
        for (i = 0; i < BANDS; i++) {
908
            chctx->bandWidthT[i]   = band_tab[i + 1] - band_tab[i];
909
            chctx->bandFlagsBuf[i] = 0;
910
            chctx->flcoeffs3[i]    = chctx->flcoeffs2[i] * 2;
911
            chctx->flcoeffs5[i]    = 1.0;
912
        }
913
    } else {
914
        for (i = 0; i < BANDS; i++) {
915
            if (chctx->levlCoeffBuf[i] == 16) {
916
                chctx->bandWidthT[i] = 0;
917
                counter++;
918
            } else
919
                chctx->bandWidthT[i] = band_tab[i + 1] - band_tab[i];
920
        }
921
 
922
        memset(chctx->bandFlagsBuf, 0, BANDS * sizeof(int));
923
        for (i = 0; i < BANDS - 1; i++)
924
            if (chctx->bandWidthT[i])
925
                chctx->bandFlagsBuf[i] = get_bits1(&q->gb);
926
 
927
        imc_calculate_coeffs(q, chctx->flcoeffs1, chctx->flcoeffs2,
928
                             chctx->bandWidthT, chctx->flcoeffs3,
929
                             chctx->flcoeffs5);
930
    }
931
 
932
    bitscount = 0;
933
    /* first 4 bands will be assigned 5 bits per coefficient */
934
    if (stream_format_code & 0x2) {
935
        bitscount += 15;
936
 
937
        chctx->bitsBandT[0] = 5;
938
        chctx->CWlengthT[0] = 5;
939
        chctx->CWlengthT[1] = 5;
940
        chctx->CWlengthT[2] = 5;
941
        for (i = 1; i < 4; i++) {
942
            if (stream_format_code & 0x1)
943
                bits = 5;
944
            else
945
                bits = (chctx->levlCoeffBuf[i] == 16) ? 0 : 5;
946
            chctx->bitsBandT[i] = bits;
947
            for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
948
                chctx->CWlengthT[j] = bits;
949
                bitscount      += bits;
950
            }
951
        }
952
    }
953
    if (avctx->codec_id == AV_CODEC_ID_IAC) {
954
        bitscount += !!chctx->bandWidthT[BANDS - 1];
955
        if (!(stream_format_code & 0x2))
956
            bitscount += 16;
957
    }
958
 
959
    if ((ret = bit_allocation(q, chctx, stream_format_code,
960
                              512 - bitscount - get_bits_count(&q->gb),
961
                              flag)) < 0) {
962
        av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
963
        chctx->decoder_reset = 1;
964
        return ret;
965
    }
966
 
967
    if (stream_format_code & 0x1) {
968
        for (i = 0; i < BANDS; i++)
969
            chctx->skipFlags[i] = 0;
970
    } else {
971
        imc_refine_bit_allocation(q, chctx);
972
    }
973
 
974
    for (i = 0; i < BANDS; i++) {
975
        chctx->sumLenArr[i] = 0;
976
 
977
        for (j = band_tab[i]; j < band_tab[i + 1]; j++)
978
            if (!chctx->skipFlags[j])
979
                chctx->sumLenArr[i] += chctx->CWlengthT[j];
980
    }
981
 
982
    memset(chctx->codewords, 0, sizeof(chctx->codewords));
983
 
984
    if (imc_get_coeffs(q, chctx) < 0) {
985
        av_log(avctx, AV_LOG_ERROR, "Read coefficients failed\n");
986
        chctx->decoder_reset = 1;
987
        return AVERROR_INVALIDDATA;
988
    }
989
 
990
    if (inverse_quant_coeff(q, chctx, stream_format_code) < 0) {
991
        av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
992
        chctx->decoder_reset = 1;
993
        return AVERROR_INVALIDDATA;
994
    }
995
 
996
    memset(chctx->skipFlags, 0, sizeof(chctx->skipFlags));
997
 
998
    imc_imdct256(q, chctx, avctx->channels);
999
 
1000
    return 0;
1001
}
1002
 
1003
static int imc_decode_frame(AVCodecContext *avctx, void *data,
1004
                            int *got_frame_ptr, AVPacket *avpkt)
1005
{
1006
    AVFrame *frame     = data;
1007
    const uint8_t *buf = avpkt->data;
1008
    int buf_size = avpkt->size;
1009
    int ret, i;
1010
 
1011
    IMCContext *q = avctx->priv_data;
1012
 
1013
    LOCAL_ALIGNED_16(uint16_t, buf16, [IMC_BLOCK_SIZE / 2]);
1014
 
1015
    if (buf_size < IMC_BLOCK_SIZE * avctx->channels) {
1016
        av_log(avctx, AV_LOG_ERROR, "frame too small!\n");
1017
        return AVERROR_INVALIDDATA;
1018
    }
1019
 
1020
    /* get output buffer */
1021
    frame->nb_samples = COEFFS;
1022
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1023
        return ret;
1024
 
1025
    for (i = 0; i < avctx->channels; i++) {
1026
        q->out_samples = (float *)frame->extended_data[i];
1027
 
1028
        q->dsp.bswap16_buf(buf16, (const uint16_t*)buf, IMC_BLOCK_SIZE / 2);
1029
 
1030
        init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
1031
 
1032
        buf += IMC_BLOCK_SIZE;
1033
 
1034
        if ((ret = imc_decode_block(avctx, q, i)) < 0)
1035
            return ret;
1036
    }
1037
 
1038
    if (avctx->channels == 2) {
1039
        q->fdsp.butterflies_float((float *)frame->extended_data[0],
1040
                                  (float *)frame->extended_data[1], COEFFS);
1041
    }
1042
 
1043
    *got_frame_ptr = 1;
1044
 
1045
    return IMC_BLOCK_SIZE * avctx->channels;
1046
}
1047
 
1048
 
1049
static av_cold int imc_decode_close(AVCodecContext * avctx)
1050
{
1051
    IMCContext *q = avctx->priv_data;
1052
 
1053
    ff_fft_end(&q->fft);
1054
 
1055
    return 0;
1056
}
1057
 
1058
static av_cold void flush(AVCodecContext *avctx)
1059
{
1060
    IMCContext *q = avctx->priv_data;
1061
 
1062
    q->chctx[0].decoder_reset =
1063
    q->chctx[1].decoder_reset = 1;
1064
}
1065
 
1066
#if CONFIG_IMC_DECODER
1067
AVCodec ff_imc_decoder = {
1068
    .name           = "imc",
1069
    .long_name      = NULL_IF_CONFIG_SMALL("IMC (Intel Music Coder)"),
1070
    .type           = AVMEDIA_TYPE_AUDIO,
1071
    .id             = AV_CODEC_ID_IMC,
1072
    .priv_data_size = sizeof(IMCContext),
1073
    .init           = imc_decode_init,
1074
    .close          = imc_decode_close,
1075
    .decode         = imc_decode_frame,
1076
    .flush          = flush,
1077
    .capabilities   = CODEC_CAP_DR1,
1078
    .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1079
                                                      AV_SAMPLE_FMT_NONE },
1080
};
1081
#endif
1082
#if CONFIG_IAC_DECODER
1083
AVCodec ff_iac_decoder = {
1084
    .name           = "iac",
1085
    .long_name      = NULL_IF_CONFIG_SMALL("IAC (Indeo Audio Coder)"),
1086
    .type           = AVMEDIA_TYPE_AUDIO,
1087
    .id             = AV_CODEC_ID_IAC,
1088
    .priv_data_size = sizeof(IMCContext),
1089
    .init           = imc_decode_init,
1090
    .close          = imc_decode_close,
1091
    .decode         = imc_decode_frame,
1092
    .flush          = flush,
1093
    .capabilities   = CODEC_CAP_DR1,
1094
    .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1095
                                                      AV_SAMPLE_FMT_NONE },
1096
};
1097
#endif