Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * FFT/IFFT transforms
3
 * Copyright (c) 2008 Loren Merritt
4
 * Copyright (c) 2002 Fabrice Bellard
5
 * Partly based on libdjbfft by D. J. Bernstein
6
 *
7
 * This file is part of FFmpeg.
8
 *
9
 * FFmpeg is free software; you can redistribute it and/or
10
 * modify it under the terms of the GNU Lesser General Public
11
 * License as published by the Free Software Foundation; either
12
 * version 2.1 of the License, or (at your option) any later version.
13
 *
14
 * FFmpeg is distributed in the hope that it will be useful,
15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17
 * Lesser General Public License for more details.
18
 *
19
 * You should have received a copy of the GNU Lesser General Public
20
 * License along with FFmpeg; if not, write to the Free Software
21
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22
 */
23
 
24
/**
25
 * @file
26
 * FFT/IFFT transforms.
27
 */
28
 
29
#include 
30
#include 
31
#include "libavutil/mathematics.h"
32
#include "fft.h"
33
#include "fft-internal.h"
34
 
35
#if CONFIG_FFT_FIXED_32
36
#include "fft_table.h"
37
#else /* CONFIG_FFT_FIXED_32 */
38
 
39
/* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
40
#if !CONFIG_HARDCODED_TABLES
41
COSTABLE(16);
42
COSTABLE(32);
43
COSTABLE(64);
44
COSTABLE(128);
45
COSTABLE(256);
46
COSTABLE(512);
47
COSTABLE(1024);
48
COSTABLE(2048);
49
COSTABLE(4096);
50
COSTABLE(8192);
51
COSTABLE(16384);
52
COSTABLE(32768);
53
COSTABLE(65536);
54
#endif
55
COSTABLE_CONST FFTSample * const FFT_NAME(ff_cos_tabs)[] = {
56
    NULL, NULL, NULL, NULL,
57
    FFT_NAME(ff_cos_16),
58
    FFT_NAME(ff_cos_32),
59
    FFT_NAME(ff_cos_64),
60
    FFT_NAME(ff_cos_128),
61
    FFT_NAME(ff_cos_256),
62
    FFT_NAME(ff_cos_512),
63
    FFT_NAME(ff_cos_1024),
64
    FFT_NAME(ff_cos_2048),
65
    FFT_NAME(ff_cos_4096),
66
    FFT_NAME(ff_cos_8192),
67
    FFT_NAME(ff_cos_16384),
68
    FFT_NAME(ff_cos_32768),
69
    FFT_NAME(ff_cos_65536),
70
};
71
 
72
#endif /* CONFIG_FFT_FIXED_32 */
73
 
74
static void fft_permute_c(FFTContext *s, FFTComplex *z);
75
static void fft_calc_c(FFTContext *s, FFTComplex *z);
76
 
77
static int split_radix_permutation(int i, int n, int inverse)
78
{
79
    int m;
80
    if(n <= 2) return i&1;
81
    m = n >> 1;
82
    if(!(i&m))            return split_radix_permutation(i, m, inverse)*2;
83
    m >>= 1;
84
    if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
85
    else                  return split_radix_permutation(i, m, inverse)*4 - 1;
86
}
87
 
88
av_cold void ff_init_ff_cos_tabs(int index)
89
{
90
#if (!CONFIG_HARDCODED_TABLES) && (!CONFIG_FFT_FIXED_32)
91
    int i;
92
    int m = 1<
93
    double freq = 2*M_PI/m;
94
    FFTSample *tab = FFT_NAME(ff_cos_tabs)[index];
95
    for(i=0; i<=m/4; i++)
96
        tab[i] = FIX15(cos(i*freq));
97
    for(i=1; i
98
        tab[m/2-i] = tab[i];
99
#endif
100
}
101
 
102
static const int avx_tab[] = {
103
    0, 4, 1, 5, 8, 12, 9, 13, 2, 6, 3, 7, 10, 14, 11, 15
104
};
105
 
106
static int is_second_half_of_fft32(int i, int n)
107
{
108
    if (n <= 32)
109
        return i >= 16;
110
    else if (i < n/2)
111
        return is_second_half_of_fft32(i, n/2);
112
    else if (i < 3*n/4)
113
        return is_second_half_of_fft32(i - n/2, n/4);
114
    else
115
        return is_second_half_of_fft32(i - 3*n/4, n/4);
116
}
117
 
118
static av_cold void fft_perm_avx(FFTContext *s)
119
{
120
    int i;
121
    int n = 1 << s->nbits;
122
 
123
    for (i = 0; i < n; i += 16) {
124
        int k;
125
        if (is_second_half_of_fft32(i, n)) {
126
            for (k = 0; k < 16; k++)
127
                s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] =
128
                    i + avx_tab[k];
129
 
130
        } else {
131
            for (k = 0; k < 16; k++) {
132
                int j = i + k;
133
                j = (j & ~7) | ((j >> 1) & 3) | ((j << 2) & 4);
134
                s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] = j;
135
            }
136
        }
137
    }
138
}
139
 
140
av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
141
{
142
    int i, j, n;
143
 
144
    if (nbits < 2 || nbits > 16)
145
        goto fail;
146
    s->nbits = nbits;
147
    n = 1 << nbits;
148
 
149
    s->revtab = av_malloc(n * sizeof(uint16_t));
150
    if (!s->revtab)
151
        goto fail;
152
    s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
153
    if (!s->tmp_buf)
154
        goto fail;
155
    s->inverse = inverse;
156
    s->fft_permutation = FF_FFT_PERM_DEFAULT;
157
 
158
    s->fft_permute = fft_permute_c;
159
    s->fft_calc    = fft_calc_c;
160
#if CONFIG_MDCT
161
    s->imdct_calc  = ff_imdct_calc_c;
162
    s->imdct_half  = ff_imdct_half_c;
163
    s->mdct_calc   = ff_mdct_calc_c;
164
#endif
165
 
166
#if CONFIG_FFT_FIXED_32
167
    {
168
        int n=0;
169
        ff_fft_lut_init(fft_offsets_lut, 0, 1 << 16, &n);
170
    }
171
#else /* CONFIG_FFT_FIXED_32 */
172
#if CONFIG_FFT_FLOAT
173
    if (ARCH_ARM)     ff_fft_init_arm(s);
174
    if (ARCH_PPC)     ff_fft_init_ppc(s);
175
    if (ARCH_X86)     ff_fft_init_x86(s);
176
    if (CONFIG_MDCT)  s->mdct_calcw = s->mdct_calc;
177
    if (HAVE_MIPSFPU) ff_fft_init_mips(s);
178
#else
179
    if (CONFIG_MDCT)  s->mdct_calcw = ff_mdct_calcw_c;
180
    if (ARCH_ARM)     ff_fft_fixed_init_arm(s);
181
#endif
182
    for(j=4; j<=nbits; j++) {
183
        ff_init_ff_cos_tabs(j);
184
    }
185
#endif /* CONFIG_FFT_FIXED_32 */
186
 
187
 
188
    if (s->fft_permutation == FF_FFT_PERM_AVX) {
189
        fft_perm_avx(s);
190
    } else {
191
        for(i=0; i
192
            j = i;
193
            if (s->fft_permutation == FF_FFT_PERM_SWAP_LSBS)
194
                j = (j&~3) | ((j>>1)&1) | ((j<<1)&2);
195
            s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = j;
196
        }
197
    }
198
 
199
    return 0;
200
 fail:
201
    av_freep(&s->revtab);
202
    av_freep(&s->tmp_buf);
203
    return -1;
204
}
205
 
206
static void fft_permute_c(FFTContext *s, FFTComplex *z)
207
{
208
    int j, np;
209
    const uint16_t *revtab = s->revtab;
210
    np = 1 << s->nbits;
211
    /* TODO: handle split-radix permute in a more optimal way, probably in-place */
212
    for(j=0;jtmp_buf[revtab[j]] = z[j];
213
    memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
214
}
215
 
216
av_cold void ff_fft_end(FFTContext *s)
217
{
218
    av_freep(&s->revtab);
219
    av_freep(&s->tmp_buf);
220
}
221
 
222
#if CONFIG_FFT_FIXED_32
223
 
224
static void fft_calc_c(FFTContext *s, FFTComplex *z) {
225
 
226
    int nbits, i, n, num_transforms, offset, step;
227
    int n4, n2, n34;
228
    FFTSample tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
229
    FFTComplex *tmpz;
230
    FFTSample w_re, w_im;
231
    FFTSample *w_re_ptr, *w_im_ptr;
232
    const int fft_size = (1 << s->nbits);
233
    int64_t accu;
234
 
235
    num_transforms = (0x2aab >> (16 - s->nbits)) | 1;
236
 
237
    for (n=0; n
238
        offset = fft_offsets_lut[n] << 2;
239
        tmpz = z + offset;
240
 
241
        tmp1 = tmpz[0].re + tmpz[1].re;
242
        tmp5 = tmpz[2].re + tmpz[3].re;
243
        tmp2 = tmpz[0].im + tmpz[1].im;
244
        tmp6 = tmpz[2].im + tmpz[3].im;
245
        tmp3 = tmpz[0].re - tmpz[1].re;
246
        tmp8 = tmpz[2].im - tmpz[3].im;
247
        tmp4 = tmpz[0].im - tmpz[1].im;
248
        tmp7 = tmpz[2].re - tmpz[3].re;
249
 
250
        tmpz[0].re = tmp1 + tmp5;
251
        tmpz[2].re = tmp1 - tmp5;
252
        tmpz[0].im = tmp2 + tmp6;
253
        tmpz[2].im = tmp2 - tmp6;
254
        tmpz[1].re = tmp3 + tmp8;
255
        tmpz[3].re = tmp3 - tmp8;
256
        tmpz[1].im = tmp4 - tmp7;
257
        tmpz[3].im = tmp4 + tmp7;
258
    }
259
 
260
    if (fft_size < 8)
261
        return;
262
 
263
    num_transforms = (num_transforms >> 1) | 1;
264
 
265
    for (n=0; n
266
        offset = fft_offsets_lut[n] << 3;
267
        tmpz = z + offset;
268
 
269
        tmp1 = tmpz[4].re + tmpz[5].re;
270
        tmp3 = tmpz[6].re + tmpz[7].re;
271
        tmp2 = tmpz[4].im + tmpz[5].im;
272
        tmp4 = tmpz[6].im + tmpz[7].im;
273
        tmp5 = tmp1 + tmp3;
274
        tmp7 = tmp1 - tmp3;
275
        tmp6 = tmp2 + tmp4;
276
        tmp8 = tmp2 - tmp4;
277
 
278
        tmp1 = tmpz[4].re - tmpz[5].re;
279
        tmp2 = tmpz[4].im - tmpz[5].im;
280
        tmp3 = tmpz[6].re - tmpz[7].re;
281
        tmp4 = tmpz[6].im - tmpz[7].im;
282
 
283
        tmpz[4].re = tmpz[0].re - tmp5;
284
        tmpz[0].re = tmpz[0].re + tmp5;
285
        tmpz[4].im = tmpz[0].im - tmp6;
286
        tmpz[0].im = tmpz[0].im + tmp6;
287
        tmpz[6].re = tmpz[2].re - tmp8;
288
        tmpz[2].re = tmpz[2].re + tmp8;
289
        tmpz[6].im = tmpz[2].im + tmp7;
290
        tmpz[2].im = tmpz[2].im - tmp7;
291
 
292
        accu = (int64_t)Q31(M_SQRT1_2)*(tmp1 + tmp2);
293
        tmp5 = (int32_t)((accu + 0x40000000) >> 31);
294
        accu = (int64_t)Q31(M_SQRT1_2)*(tmp3 - tmp4);
295
        tmp7 = (int32_t)((accu + 0x40000000) >> 31);
296
        accu = (int64_t)Q31(M_SQRT1_2)*(tmp2 - tmp1);
297
        tmp6 = (int32_t)((accu + 0x40000000) >> 31);
298
        accu = (int64_t)Q31(M_SQRT1_2)*(tmp3 + tmp4);
299
        tmp8 = (int32_t)((accu + 0x40000000) >> 31);
300
        tmp1 = tmp5 + tmp7;
301
        tmp3 = tmp5 - tmp7;
302
        tmp2 = tmp6 + tmp8;
303
        tmp4 = tmp6 - tmp8;
304
 
305
        tmpz[5].re = tmpz[1].re - tmp1;
306
        tmpz[1].re = tmpz[1].re + tmp1;
307
        tmpz[5].im = tmpz[1].im - tmp2;
308
        tmpz[1].im = tmpz[1].im + tmp2;
309
        tmpz[7].re = tmpz[3].re - tmp4;
310
        tmpz[3].re = tmpz[3].re + tmp4;
311
        tmpz[7].im = tmpz[3].im + tmp3;
312
        tmpz[3].im = tmpz[3].im - tmp3;
313
    }
314
 
315
    step = 1 << ((MAX_LOG2_NFFT-4) - 4);
316
    n4 = 4;
317
 
318
    for (nbits=4; nbits<=s->nbits; nbits++){
319
        n2  = 2*n4;
320
        n34 = 3*n4;
321
        num_transforms = (num_transforms >> 1) | 1;
322
 
323
        for (n=0; n
324
            offset = fft_offsets_lut[n] << nbits;
325
            tmpz = z + offset;
326
 
327
            tmp5 = tmpz[ n2].re + tmpz[n34].re;
328
            tmp1 = tmpz[ n2].re - tmpz[n34].re;
329
            tmp6 = tmpz[ n2].im + tmpz[n34].im;
330
            tmp2 = tmpz[ n2].im - tmpz[n34].im;
331
 
332
            tmpz[ n2].re = tmpz[ 0].re - tmp5;
333
            tmpz[  0].re = tmpz[ 0].re + tmp5;
334
            tmpz[ n2].im = tmpz[ 0].im - tmp6;
335
            tmpz[  0].im = tmpz[ 0].im + tmp6;
336
            tmpz[n34].re = tmpz[n4].re - tmp2;
337
            tmpz[ n4].re = tmpz[n4].re + tmp2;
338
            tmpz[n34].im = tmpz[n4].im + tmp1;
339
            tmpz[ n4].im = tmpz[n4].im - tmp1;
340
 
341
            w_re_ptr = w_tab_sr + step;
342
            w_im_ptr = w_tab_sr + MAX_FFT_SIZE/(4*16) - step;
343
 
344
            for (i=1; i
345
                w_re = w_re_ptr[0];
346
                w_im = w_im_ptr[0];
347
                accu  = (int64_t)w_re*tmpz[ n2+i].re;
348
                accu += (int64_t)w_im*tmpz[ n2+i].im;
349
                tmp1 = (int32_t)((accu + 0x40000000) >> 31);
350
                accu  = (int64_t)w_re*tmpz[ n2+i].im;
351
                accu -= (int64_t)w_im*tmpz[ n2+i].re;
352
                tmp2 = (int32_t)((accu + 0x40000000) >> 31);
353
                accu  = (int64_t)w_re*tmpz[n34+i].re;
354
                accu -= (int64_t)w_im*tmpz[n34+i].im;
355
                tmp3 = (int32_t)((accu + 0x40000000) >> 31);
356
                accu  = (int64_t)w_re*tmpz[n34+i].im;
357
                accu += (int64_t)w_im*tmpz[n34+i].re;
358
                tmp4 = (int32_t)((accu + 0x40000000) >> 31);
359
 
360
                tmp5 = tmp1 + tmp3;
361
                tmp1 = tmp1 - tmp3;
362
                tmp6 = tmp2 + tmp4;
363
                tmp2 = tmp2 - tmp4;
364
 
365
                tmpz[ n2+i].re = tmpz[   i].re - tmp5;
366
                tmpz[    i].re = tmpz[   i].re + tmp5;
367
                tmpz[ n2+i].im = tmpz[   i].im - tmp6;
368
                tmpz[    i].im = tmpz[   i].im + tmp6;
369
                tmpz[n34+i].re = tmpz[n4+i].re - tmp2;
370
                tmpz[ n4+i].re = tmpz[n4+i].re + tmp2;
371
                tmpz[n34+i].im = tmpz[n4+i].im + tmp1;
372
                tmpz[ n4+i].im = tmpz[n4+i].im - tmp1;
373
 
374
                w_re_ptr += step;
375
                w_im_ptr -= step;
376
            }
377
        }
378
        step >>= 1;
379
        n4   <<= 1;
380
    }
381
}
382
 
383
#else /* CONFIG_FFT_FIXED_32 */
384
 
385
#define BUTTERFLIES(a0,a1,a2,a3) {\
386
    BF(t3, t5, t5, t1);\
387
    BF(a2.re, a0.re, a0.re, t5);\
388
    BF(a3.im, a1.im, a1.im, t3);\
389
    BF(t4, t6, t2, t6);\
390
    BF(a3.re, a1.re, a1.re, t4);\
391
    BF(a2.im, a0.im, a0.im, t6);\
392
}
393
 
394
// force loading all the inputs before storing any.
395
// this is slightly slower for small data, but avoids store->load aliasing
396
// for addresses separated by large powers of 2.
397
#define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
398
    FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
399
    BF(t3, t5, t5, t1);\
400
    BF(a2.re, a0.re, r0, t5);\
401
    BF(a3.im, a1.im, i1, t3);\
402
    BF(t4, t6, t2, t6);\
403
    BF(a3.re, a1.re, r1, t4);\
404
    BF(a2.im, a0.im, i0, t6);\
405
}
406
 
407
#define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
408
    CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
409
    CMUL(t5, t6, a3.re, a3.im, wre,  wim);\
410
    BUTTERFLIES(a0,a1,a2,a3)\
411
}
412
 
413
#define TRANSFORM_ZERO(a0,a1,a2,a3) {\
414
    t1 = a2.re;\
415
    t2 = a2.im;\
416
    t5 = a3.re;\
417
    t6 = a3.im;\
418
    BUTTERFLIES(a0,a1,a2,a3)\
419
}
420
 
421
/* z[0...8n-1], w[1...2n-1] */
422
#define PASS(name)\
423
static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
424
{\
425
    FFTDouble t1, t2, t3, t4, t5, t6;\
426
    int o1 = 2*n;\
427
    int o2 = 4*n;\
428
    int o3 = 6*n;\
429
    const FFTSample *wim = wre+o1;\
430
    n--;\
431
\
432
    TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
433
    TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
434
    do {\
435
        z += 2;\
436
        wre += 2;\
437
        wim -= 2;\
438
        TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
439
        TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
440
    } while(--n);\
441
}
442
 
443
PASS(pass)
444
#undef BUTTERFLIES
445
#define BUTTERFLIES BUTTERFLIES_BIG
446
PASS(pass_big)
447
 
448
#define DECL_FFT(n,n2,n4)\
449
static void fft##n(FFTComplex *z)\
450
{\
451
    fft##n2(z);\
452
    fft##n4(z+n4*2);\
453
    fft##n4(z+n4*3);\
454
    pass(z,FFT_NAME(ff_cos_##n),n4/2);\
455
}
456
 
457
static void fft4(FFTComplex *z)
458
{
459
    FFTDouble t1, t2, t3, t4, t5, t6, t7, t8;
460
 
461
    BF(t3, t1, z[0].re, z[1].re);
462
    BF(t8, t6, z[3].re, z[2].re);
463
    BF(z[2].re, z[0].re, t1, t6);
464
    BF(t4, t2, z[0].im, z[1].im);
465
    BF(t7, t5, z[2].im, z[3].im);
466
    BF(z[3].im, z[1].im, t4, t8);
467
    BF(z[3].re, z[1].re, t3, t7);
468
    BF(z[2].im, z[0].im, t2, t5);
469
}
470
 
471
static void fft8(FFTComplex *z)
472
{
473
    FFTDouble t1, t2, t3, t4, t5, t6;
474
 
475
    fft4(z);
476
 
477
    BF(t1, z[5].re, z[4].re, -z[5].re);
478
    BF(t2, z[5].im, z[4].im, -z[5].im);
479
    BF(t5, z[7].re, z[6].re, -z[7].re);
480
    BF(t6, z[7].im, z[6].im, -z[7].im);
481
 
482
    BUTTERFLIES(z[0],z[2],z[4],z[6]);
483
    TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
484
}
485
 
486
#if !CONFIG_SMALL
487
static void fft16(FFTComplex *z)
488
{
489
    FFTDouble t1, t2, t3, t4, t5, t6;
490
    FFTSample cos_16_1 = FFT_NAME(ff_cos_16)[1];
491
    FFTSample cos_16_3 = FFT_NAME(ff_cos_16)[3];
492
 
493
    fft8(z);
494
    fft4(z+8);
495
    fft4(z+12);
496
 
497
    TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
498
    TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
499
    TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
500
    TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
501
}
502
#else
503
DECL_FFT(16,8,4)
504
#endif
505
DECL_FFT(32,16,8)
506
DECL_FFT(64,32,16)
507
DECL_FFT(128,64,32)
508
DECL_FFT(256,128,64)
509
DECL_FFT(512,256,128)
510
#if !CONFIG_SMALL
511
#define pass pass_big
512
#endif
513
DECL_FFT(1024,512,256)
514
DECL_FFT(2048,1024,512)
515
DECL_FFT(4096,2048,1024)
516
DECL_FFT(8192,4096,2048)
517
DECL_FFT(16384,8192,4096)
518
DECL_FFT(32768,16384,8192)
519
DECL_FFT(65536,32768,16384)
520
 
521
static void (* const fft_dispatch[])(FFTComplex*) = {
522
    fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
523
    fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
524
};
525
 
526
static void fft_calc_c(FFTContext *s, FFTComplex *z)
527
{
528
    fft_dispatch[s->nbits-2](z);
529
}
530
#endif /* CONFIG_FFT_FIXED_32 */