Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * VC3/DNxHD encoder
3
 * Copyright (c) 2007 Baptiste Coudurier 
4
 * Copyright (c) 2011 MirriAd Ltd
5
 *
6
 * VC-3 encoder funded by the British Broadcasting Corporation
7
 * 10 bit support added by MirriAd Ltd, Joseph Artsimovich 
8
 *
9
 * This file is part of FFmpeg.
10
 *
11
 * FFmpeg is free software; you can redistribute it and/or
12
 * modify it under the terms of the GNU Lesser General Public
13
 * License as published by the Free Software Foundation; either
14
 * version 2.1 of the License, or (at your option) any later version.
15
 *
16
 * FFmpeg is distributed in the hope that it will be useful,
17
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19
 * Lesser General Public License for more details.
20
 *
21
 * You should have received a copy of the GNU Lesser General Public
22
 * License along with FFmpeg; if not, write to the Free Software
23
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24
 */
25
 
26
#define RC_VARIANCE 1 // use variance or ssd for fast rc
27
 
28
#include "libavutil/attributes.h"
29
#include "libavutil/internal.h"
30
#include "libavutil/opt.h"
31
#include "avcodec.h"
32
#include "dsputil.h"
33
#include "internal.h"
34
#include "mpegvideo.h"
35
#include "dnxhdenc.h"
36
 
37
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
38
#define DNX10BIT_QMAT_SHIFT 18 // The largest value that will not lead to overflow for 10bit samples.
39
 
40
static const AVOption options[]={
41
    {"nitris_compat", "encode with Avid Nitris compatibility", offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, VE},
42
{NULL}
43
};
44
 
45
static const AVClass dnxhd_class = {
46
    .class_name = "dnxhd",
47
    .item_name  = av_default_item_name,
48
    .option     = options,
49
    .version    = LIBAVUTIL_VERSION_INT,
50
};
51
 
52
#define LAMBDA_FRAC_BITS 10
53
 
54
static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block, const uint8_t *pixels, int line_size)
55
{
56
    int i;
57
    for (i = 0; i < 4; i++) {
58
        block[0] = pixels[0]; block[1] = pixels[1];
59
        block[2] = pixels[2]; block[3] = pixels[3];
60
        block[4] = pixels[4]; block[5] = pixels[5];
61
        block[6] = pixels[6]; block[7] = pixels[7];
62
        pixels += line_size;
63
        block += 8;
64
    }
65
    memcpy(block,      block -  8, sizeof(*block) * 8);
66
    memcpy(block +  8, block - 16, sizeof(*block) * 8);
67
    memcpy(block + 16, block - 24, sizeof(*block) * 8);
68
    memcpy(block + 24, block - 32, sizeof(*block) * 8);
69
}
70
 
71
static av_always_inline void dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block, const uint8_t *pixels, int line_size)
72
{
73
    int i;
74
    const uint16_t* pixels16 = (const uint16_t*)pixels;
75
    line_size >>= 1;
76
 
77
    for (i = 0; i < 4; i++) {
78
        block[0] = pixels16[0]; block[1] = pixels16[1];
79
        block[2] = pixels16[2]; block[3] = pixels16[3];
80
        block[4] = pixels16[4]; block[5] = pixels16[5];
81
        block[6] = pixels16[6]; block[7] = pixels16[7];
82
        pixels16 += line_size;
83
        block += 8;
84
    }
85
    memcpy(block,      block -  8, sizeof(*block) * 8);
86
    memcpy(block +  8, block - 16, sizeof(*block) * 8);
87
    memcpy(block + 16, block - 24, sizeof(*block) * 8);
88
    memcpy(block + 24, block - 32, sizeof(*block) * 8);
89
}
90
 
91
static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
92
                                    int n, int qscale, int *overflow)
93
{
94
    const uint8_t *scantable= ctx->intra_scantable.scantable;
95
    const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
96
    int last_non_zero = 0;
97
    int i;
98
 
99
    ctx->dsp.fdct(block);
100
 
101
    // Divide by 4 with rounding, to compensate scaling of DCT coefficients
102
    block[0] = (block[0] + 2) >> 2;
103
 
104
    for (i = 1; i < 64; ++i) {
105
        int j = scantable[i];
106
        int sign = block[j] >> 31;
107
        int level = (block[j] ^ sign) - sign;
108
        level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
109
        block[j] = (level ^ sign) - sign;
110
        if (level)
111
            last_non_zero = i;
112
    }
113
 
114
    return last_non_zero;
115
}
116
 
117
static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
118
{
119
    int i, j, level, run;
120
    int max_level = 1<<(ctx->cid_table->bit_depth+2);
121
 
122
    FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail);
123
    FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits,  max_level*4*sizeof(*ctx->vlc_bits) , fail);
124
    FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2,                                fail);
125
    FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits,  63,                                  fail);
126
 
127
    ctx->vlc_codes += max_level*2;
128
    ctx->vlc_bits  += max_level*2;
129
    for (level = -max_level; level < max_level; level++) {
130
        for (run = 0; run < 2; run++) {
131
            int index = (level<<1)|run;
132
            int sign, offset = 0, alevel = level;
133
 
134
            MASK_ABS(sign, alevel);
135
            if (alevel > 64) {
136
                offset = (alevel-1)>>6;
137
                alevel -= offset<<6;
138
            }
139
            for (j = 0; j < 257; j++) {
140
                if (ctx->cid_table->ac_level[j] >> 1 == alevel &&
141
                    (!offset || (ctx->cid_table->ac_flags[j] & 1) && offset) &&
142
                    (!run    || (ctx->cid_table->ac_flags[j] & 2) && run)) {
143
                    av_assert1(!ctx->vlc_codes[index]);
144
                    if (alevel) {
145
                        ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1);
146
                        ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1;
147
                    } else {
148
                        ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
149
                        ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j];
150
                    }
151
                    break;
152
                }
153
            }
154
            av_assert0(!alevel || j < 257);
155
            if (offset) {
156
                ctx->vlc_codes[index] = (ctx->vlc_codes[index]<cid_table->index_bits)|offset;
157
                ctx->vlc_bits [index]+= ctx->cid_table->index_bits;
158
            }
159
        }
160
    }
161
    for (i = 0; i < 62; i++) {
162
        int run = ctx->cid_table->run[i];
163
        av_assert0(run < 63);
164
        ctx->run_codes[run] = ctx->cid_table->run_codes[i];
165
        ctx->run_bits [run] = ctx->cid_table->run_bits[i];
166
    }
167
    return 0;
168
 fail:
169
    return -1;
170
}
171
 
172
static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
173
{
174
    // init first elem to 1 to avoid div by 0 in convert_matrix
175
    uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t*
176
    int qscale, i;
177
    const uint8_t *luma_weight_table   = ctx->cid_table->luma_weight;
178
    const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
179
 
180
    FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l,   (ctx->m.avctx->qmax+1) * 64 *     sizeof(int),      fail);
181
    FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c,   (ctx->m.avctx->qmax+1) * 64 *     sizeof(int),      fail);
182
    FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
183
    FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
184
 
185
    if (ctx->cid_table->bit_depth == 8) {
186
        for (i = 1; i < 64; i++) {
187
            int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
188
            weight_matrix[j] = ctx->cid_table->luma_weight[i];
189
        }
190
        ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix,
191
                          ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
192
        for (i = 1; i < 64; i++) {
193
            int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
194
            weight_matrix[j] = ctx->cid_table->chroma_weight[i];
195
        }
196
        ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix,
197
                          ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
198
 
199
        for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
200
            for (i = 0; i < 64; i++) {
201
                ctx->qmatrix_l  [qscale]   [i] <<= 2; ctx->qmatrix_c  [qscale]   [i] <<= 2;
202
                ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2;
203
                ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2;
204
            }
205
        }
206
    } else {
207
        // 10-bit
208
        for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
209
            for (i = 1; i < 64; i++) {
210
                int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
211
 
212
                // The quantization formula from the VC-3 standard is:
213
                // quantized = sign(block[i]) * floor(abs(block[i]/s) * p / (qscale * weight_table[i]))
214
                // Where p is 32 for 8-bit samples and 8 for 10-bit ones.
215
                // The s factor compensates scaling of DCT coefficients done by the DCT routines,
216
                // and therefore is not present in standard.  It's 8 for 8-bit samples and 4 for 10-bit ones.
217
                // We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
218
                // ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) / (qscale * weight_table[i])
219
                // For 10-bit samples, p / s == 2
220
                ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * luma_weight_table[i]);
221
                ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * chroma_weight_table[i]);
222
            }
223
        }
224
    }
225
 
226
    ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
227
    ctx->m.q_chroma_intra_matrix   = ctx->qmatrix_c;
228
    ctx->m.q_intra_matrix16        = ctx->qmatrix_l16;
229
    ctx->m.q_intra_matrix          = ctx->qmatrix_l;
230
 
231
    return 0;
232
 fail:
233
    return -1;
234
}
235
 
236
static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
237
{
238
    FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry), fail);
239
    if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
240
        FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail);
241
 
242
    ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4 - ctx->min_padding) * 8;
243
    ctx->qscale = 1;
244
    ctx->lambda = 2<
245
    return 0;
246
 fail:
247
    return -1;
248
}
249
 
250
static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
251
{
252
    DNXHDEncContext *ctx = avctx->priv_data;
253
    int i, index, bit_depth;
254
 
255
    switch (avctx->pix_fmt) {
256
    case AV_PIX_FMT_YUV422P:
257
        bit_depth = 8;
258
        break;
259
    case AV_PIX_FMT_YUV422P10:
260
        bit_depth = 10;
261
        break;
262
    default:
263
        av_log(avctx, AV_LOG_ERROR, "pixel format is incompatible with DNxHD\n");
264
        return -1;
265
    }
266
 
267
    ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
268
    if (!ctx->cid) {
269
        av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD. Valid DNxHD profiles:\n");
270
        ff_dnxhd_print_profiles(avctx, AV_LOG_ERROR);
271
        return -1;
272
    }
273
    av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
274
 
275
    index = ff_dnxhd_get_cid_table(ctx->cid);
276
    av_assert0(index >= 0);
277
    ctx->cid_table = &ff_dnxhd_cid_table[index];
278
 
279
    ctx->m.avctx = avctx;
280
    ctx->m.mb_intra = 1;
281
    ctx->m.h263_aic = 1;
282
 
283
    avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
284
 
285
    ff_dct_common_init(&ctx->m);
286
    ff_dct_encode_init(&ctx->m);
287
 
288
    if (!ctx->m.dct_quantize)
289
        ctx->m.dct_quantize = ff_dct_quantize_c;
290
 
291
    if (ctx->cid_table->bit_depth == 10) {
292
       ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
293
       ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
294
       ctx->block_width_l2 = 4;
295
    } else {
296
       ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
297
       ctx->block_width_l2 = 3;
298
    }
299
 
300
    if (ARCH_X86)
301
        ff_dnxhdenc_init_x86(ctx);
302
 
303
    ctx->m.mb_height = (avctx->height + 15) / 16;
304
    ctx->m.mb_width  = (avctx->width  + 15) / 16;
305
 
306
    if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
307
        ctx->interlaced = 1;
308
        ctx->m.mb_height /= 2;
309
    }
310
 
311
    ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
312
 
313
    if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
314
        ctx->m.intra_quant_bias = avctx->intra_quant_bias;
315
    if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias
316
        return -1;
317
 
318
    // Avid Nitris hardware decoder requires a minimum amount of padding in the coding unit payload
319
    if (ctx->nitris_compat)
320
        ctx->min_padding = 1600;
321
 
322
    if (dnxhd_init_vlc(ctx) < 0)
323
        return -1;
324
    if (dnxhd_init_rc(ctx) < 0)
325
        return -1;
326
 
327
    FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail);
328
    FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, ctx->m.mb_height*sizeof(uint32_t), fail);
329
    FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits,    ctx->m.mb_num   *sizeof(uint16_t), fail);
330
    FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale,  ctx->m.mb_num   *sizeof(uint8_t),  fail);
331
 
332
    ctx->frame.key_frame = 1;
333
    ctx->frame.pict_type = AV_PICTURE_TYPE_I;
334
    ctx->m.avctx->coded_frame = &ctx->frame;
335
 
336
    if (avctx->thread_count > MAX_THREADS) {
337
        av_log(avctx, AV_LOG_ERROR, "too many threads\n");
338
        return -1;
339
    }
340
 
341
    ctx->thread[0] = ctx;
342
    for (i = 1; i < avctx->thread_count; i++) {
343
        ctx->thread[i] =  av_malloc(sizeof(DNXHDEncContext));
344
        memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
345
    }
346
 
347
    return 0;
348
 fail: //for FF_ALLOCZ_OR_GOTO
349
    return -1;
350
}
351
 
352
static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
353
{
354
    DNXHDEncContext *ctx = avctx->priv_data;
355
    static const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 };
356
 
357
    memset(buf, 0, 640);
358
 
359
    memcpy(buf, header_prefix, 5);
360
    buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01;
361
    buf[6] = 0x80; // crc flag off
362
    buf[7] = 0xa0; // reserved
363
    AV_WB16(buf + 0x18, avctx->height>>ctx->interlaced); // ALPF
364
    AV_WB16(buf + 0x1a, avctx->width);  // SPL
365
    AV_WB16(buf + 0x1d, avctx->height>>ctx->interlaced); // NAL
366
 
367
    buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
368
    buf[0x22] = 0x88 + (ctx->interlaced<<2);
369
    AV_WB32(buf + 0x28, ctx->cid); // CID
370
    buf[0x2c] = ctx->interlaced ? 0 : 0x80;
371
 
372
    buf[0x5f] = 0x01; // UDL
373
 
374
    buf[0x167] = 0x02; // reserved
375
    AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
376
    buf[0x16d] = ctx->m.mb_height; // Ns
377
    buf[0x16f] = 0x10; // reserved
378
 
379
    ctx->msip = buf + 0x170;
380
    return 0;
381
}
382
 
383
static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
384
{
385
    int nbits;
386
    if (diff < 0) {
387
        nbits = av_log2_16bit(-2*diff);
388
        diff--;
389
    } else {
390
        nbits = av_log2_16bit(2*diff);
391
    }
392
    put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
393
             (ctx->cid_table->dc_codes[nbits]<
394
}
395
 
396
static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block, int last_index, int n)
397
{
398
    int last_non_zero = 0;
399
    int slevel, i, j;
400
 
401
    dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
402
    ctx->m.last_dc[n] = block[0];
403
 
404
    for (i = 1; i <= last_index; i++) {
405
        j = ctx->m.intra_scantable.permutated[i];
406
        slevel = block[j];
407
        if (slevel) {
408
            int run_level = i - last_non_zero - 1;
409
            int rlevel = (slevel<<1)|!!run_level;
410
            put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
411
            if (run_level)
412
                put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]);
413
            last_non_zero = i;
414
        }
415
    }
416
    put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
417
}
418
 
419
static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n, int qscale, int last_index)
420
{
421
    const uint8_t *weight_matrix;
422
    int level;
423
    int i;
424
 
425
    weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight;
426
 
427
    for (i = 1; i <= last_index; i++) {
428
        int j = ctx->m.intra_scantable.permutated[i];
429
        level = block[j];
430
        if (level) {
431
            if (level < 0) {
432
                level = (1-2*level) * qscale * weight_matrix[i];
433
                if (ctx->cid_table->bit_depth == 10) {
434
                    if (weight_matrix[i] != 8)
435
                        level += 8;
436
                    level >>= 4;
437
                } else {
438
                    if (weight_matrix[i] != 32)
439
                        level += 32;
440
                    level >>= 6;
441
                }
442
                level = -level;
443
            } else {
444
                level = (2*level+1) * qscale * weight_matrix[i];
445
                if (ctx->cid_table->bit_depth == 10) {
446
                    if (weight_matrix[i] != 8)
447
                        level += 8;
448
                    level >>= 4;
449
                } else {
450
                    if (weight_matrix[i] != 32)
451
                        level += 32;
452
                    level >>= 6;
453
                }
454
            }
455
            block[j] = level;
456
        }
457
    }
458
}
459
 
460
static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
461
{
462
    int score = 0;
463
    int i;
464
    for (i = 0; i < 64; i++)
465
        score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
466
    return score;
467
}
468
 
469
static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
470
{
471
    int last_non_zero = 0;
472
    int bits = 0;
473
    int i, j, level;
474
    for (i = 1; i <= last_index; i++) {
475
        j = ctx->m.intra_scantable.permutated[i];
476
        level = block[j];
477
        if (level) {
478
            int run_level = i - last_non_zero - 1;
479
            bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level];
480
            last_non_zero = i;
481
        }
482
    }
483
    return bits;
484
}
485
 
486
static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
487
{
488
    const int bs = ctx->block_width_l2;
489
    const int bw = 1 << bs;
490
    const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize)   + (mb_x << bs+1);
491
    const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
492
    const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
493
    DSPContext *dsp = &ctx->m.dsp;
494
 
495
    dsp->get_pixels(ctx->blocks[0], ptr_y,      ctx->m.linesize);
496
    dsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
497
    dsp->get_pixels(ctx->blocks[2], ptr_u,      ctx->m.uvlinesize);
498
    dsp->get_pixels(ctx->blocks[3], ptr_v,      ctx->m.uvlinesize);
499
 
500
    if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
501
        if (ctx->interlaced) {
502
            ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset,      ctx->m.linesize);
503
            ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
504
            ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset,     ctx->m.uvlinesize);
505
            ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset,     ctx->m.uvlinesize);
506
        } else {
507
            dsp->clear_block(ctx->blocks[4]);
508
            dsp->clear_block(ctx->blocks[5]);
509
            dsp->clear_block(ctx->blocks[6]);
510
            dsp->clear_block(ctx->blocks[7]);
511
        }
512
    } else {
513
        dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset,      ctx->m.linesize);
514
        dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
515
        dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset,     ctx->m.uvlinesize);
516
        dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset,     ctx->m.uvlinesize);
517
    }
518
}
519
 
520
static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
521
{
522
    const static uint8_t component[8]={0,0,1,2,0,0,1,2};
523
    return component[i];
524
}
525
 
526
static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
527
{
528
    DNXHDEncContext *ctx = avctx->priv_data;
529
    int mb_y = jobnr, mb_x;
530
    int qscale = ctx->qscale;
531
    LOCAL_ALIGNED_16(int16_t, block, [64]);
532
    ctx = ctx->thread[threadnr];
533
 
534
    ctx->m.last_dc[0] =
535
    ctx->m.last_dc[1] =
536
    ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
537
 
538
    for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
539
        unsigned mb = mb_y * ctx->m.mb_width + mb_x;
540
        int ssd     = 0;
541
        int ac_bits = 0;
542
        int dc_bits = 0;
543
        int i;
544
 
545
        dnxhd_get_blocks(ctx, mb_x, mb_y);
546
 
547
        for (i = 0; i < 8; i++) {
548
            int16_t *src_block = ctx->blocks[i];
549
            int overflow, nbits, diff, last_index;
550
            int n = dnxhd_switch_matrix(ctx, i);
551
 
552
            memcpy(block, src_block, 64*sizeof(*block));
553
            last_index = ctx->m.dct_quantize(&ctx->m, block, 4&(2*i), qscale, &overflow);
554
            ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
555
 
556
            diff = block[0] - ctx->m.last_dc[n];
557
            if (diff < 0) nbits = av_log2_16bit(-2*diff);
558
            else          nbits = av_log2_16bit( 2*diff);
559
 
560
            av_assert1(nbits < ctx->cid_table->bit_depth + 4);
561
            dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
562
 
563
            ctx->m.last_dc[n] = block[0];
564
 
565
            if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
566
                dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
567
                ctx->m.dsp.idct(block);
568
                ssd += dnxhd_ssd_block(block, src_block);
569
            }
570
        }
571
        ctx->mb_rc[qscale][mb].ssd = ssd;
572
        ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0];
573
    }
574
    return 0;
575
}
576
 
577
static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
578
{
579
    DNXHDEncContext *ctx = avctx->priv_data;
580
    int mb_y = jobnr, mb_x;
581
    ctx = ctx->thread[threadnr];
582
    init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr], ctx->slice_size[jobnr]);
583
 
584
    ctx->m.last_dc[0] =
585
    ctx->m.last_dc[1] =
586
    ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
587
    for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
588
        unsigned mb = mb_y * ctx->m.mb_width + mb_x;
589
        int qscale = ctx->mb_qscale[mb];
590
        int i;
591
 
592
        put_bits(&ctx->m.pb, 12, qscale<<1);
593
 
594
        dnxhd_get_blocks(ctx, mb_x, mb_y);
595
 
596
        for (i = 0; i < 8; i++) {
597
            int16_t *block = ctx->blocks[i];
598
            int overflow, n = dnxhd_switch_matrix(ctx, i);
599
            int last_index = ctx->m.dct_quantize(&ctx->m, block, 4&(2*i), qscale, &overflow);
600
            //START_TIMER;
601
            dnxhd_encode_block(ctx, block, last_index, n);
602
            //STOP_TIMER("encode_block");
603
        }
604
    }
605
    if (put_bits_count(&ctx->m.pb)&31)
606
        put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0);
607
    flush_put_bits(&ctx->m.pb);
608
    return 0;
609
}
610
 
611
static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
612
{
613
    int mb_y, mb_x;
614
    int offset = 0;
615
    for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
616
        int thread_size;
617
        ctx->slice_offs[mb_y] = offset;
618
        ctx->slice_size[mb_y] = 0;
619
        for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
620
            unsigned mb = mb_y * ctx->m.mb_width + mb_x;
621
            ctx->slice_size[mb_y] += ctx->mb_bits[mb];
622
        }
623
        ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31;
624
        ctx->slice_size[mb_y] >>= 3;
625
        thread_size = ctx->slice_size[mb_y];
626
        offset += thread_size;
627
    }
628
}
629
 
630
static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
631
{
632
    DNXHDEncContext *ctx = avctx->priv_data;
633
    int mb_y = jobnr, mb_x, x, y;
634
    int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
635
                           ((avctx->height >> ctx->interlaced) & 0xF);
636
 
637
    ctx = ctx->thread[threadnr];
638
    if (ctx->cid_table->bit_depth == 8) {
639
        uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize);
640
        for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
641
            unsigned mb  = mb_y * ctx->m.mb_width + mb_x;
642
            int sum;
643
            int varc;
644
 
645
            if (!partial_last_row && mb_x * 16 <= avctx->width - 16) {
646
                sum  = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
647
                varc = ctx->m.dsp.pix_norm1(pix, ctx->m.linesize);
648
            } else {
649
                int bw = FFMIN(avctx->width - 16 * mb_x, 16);
650
                int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
651
                sum = varc = 0;
652
                for (y = 0; y < bh; y++) {
653
                    for (x = 0; x < bw; x++) {
654
                        uint8_t val = pix[x + y * ctx->m.linesize];
655
                        sum  += val;
656
                        varc += val * val;
657
                    }
658
                }
659
            }
660
            varc = (varc - (((unsigned)sum * sum) >> 8) + 128) >> 8;
661
 
662
            ctx->mb_cmp[mb].value = varc;
663
            ctx->mb_cmp[mb].mb = mb;
664
        }
665
    } else { // 10-bit
666
        int const linesize = ctx->m.linesize >> 1;
667
        for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
668
            uint16_t *pix = (uint16_t*)ctx->thread[0]->src[0] + ((mb_y << 4) * linesize) + (mb_x << 4);
669
            unsigned mb  = mb_y * ctx->m.mb_width + mb_x;
670
            int sum = 0;
671
            int sqsum = 0;
672
            int mean, sqmean;
673
            int i, j;
674
            // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
675
            for (i = 0; i < 16; ++i) {
676
                for (j = 0; j < 16; ++j) {
677
                    // Turn 16-bit pixels into 10-bit ones.
678
                    int const sample = (unsigned)pix[j] >> 6;
679
                    sum += sample;
680
                    sqsum += sample * sample;
681
                    // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
682
                }
683
                pix += linesize;
684
            }
685
            mean = sum >> 8; // 16*16 == 2^8
686
            sqmean = sqsum >> 8;
687
            ctx->mb_cmp[mb].value = sqmean - mean * mean;
688
            ctx->mb_cmp[mb].mb = mb;
689
        }
690
    }
691
    return 0;
692
}
693
 
694
static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
695
{
696
    int lambda, up_step, down_step;
697
    int last_lower = INT_MAX, last_higher = 0;
698
    int x, y, q;
699
 
700
    for (q = 1; q < avctx->qmax; q++) {
701
        ctx->qscale = q;
702
        avctx->execute2(avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
703
    }
704
    up_step = down_step = 2<
705
    lambda = ctx->lambda;
706
 
707
    for (;;) {
708
        int bits = 0;
709
        int end = 0;
710
        if (lambda == last_higher) {
711
            lambda++;
712
            end = 1; // need to set final qscales/bits
713
        }
714
        for (y = 0; y < ctx->m.mb_height; y++) {
715
            for (x = 0; x < ctx->m.mb_width; x++) {
716
                unsigned min = UINT_MAX;
717
                int qscale = 1;
718
                int mb = y*ctx->m.mb_width+x;
719
                for (q = 1; q < avctx->qmax; q++) {
720
                    unsigned score = ctx->mb_rc[q][mb].bits*lambda+
721
                        ((unsigned)ctx->mb_rc[q][mb].ssd<
722
                    if (score < min) {
723
                        min = score;
724
                        qscale = q;
725
                    }
726
                }
727
                bits += ctx->mb_rc[qscale][mb].bits;
728
                ctx->mb_qscale[mb] = qscale;
729
                ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
730
            }
731
            bits = (bits+31)&~31; // padding
732
            if (bits > ctx->frame_bits)
733
                break;
734
        }
735
        //av_dlog(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n",
736
        //        lambda, last_higher, last_lower, bits, ctx->frame_bits);
737
        if (end) {
738
            if (bits > ctx->frame_bits)
739
                return -1;
740
            break;
741
        }
742
        if (bits < ctx->frame_bits) {
743
            last_lower = FFMIN(lambda, last_lower);
744
            if (last_higher != 0)
745
                lambda = (lambda+last_higher)>>1;
746
            else
747
                lambda -= down_step;
748
            down_step = FFMIN((int64_t)down_step*5, INT_MAX);
749
            up_step = 1<
750
            lambda = FFMAX(1, lambda);
751
            if (lambda == last_lower)
752
                break;
753
        } else {
754
            last_higher = FFMAX(lambda, last_higher);
755
            if (last_lower != INT_MAX)
756
                lambda = (lambda+last_lower)>>1;
757
            else if ((int64_t)lambda + up_step > INT_MAX)
758
                return -1;
759
            else
760
                lambda += up_step;
761
            up_step = FFMIN((int64_t)up_step*5, INT_MAX);
762
            down_step = 1<
763
        }
764
    }
765
    //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
766
    ctx->lambda = lambda;
767
    return 0;
768
}
769
 
770
static int dnxhd_find_qscale(DNXHDEncContext *ctx)
771
{
772
    int bits = 0;
773
    int up_step = 1;
774
    int down_step = 1;
775
    int last_higher = 0;
776
    int last_lower = INT_MAX;
777
    int qscale;
778
    int x, y;
779
 
780
    qscale = ctx->qscale;
781
    for (;;) {
782
        bits = 0;
783
        ctx->qscale = qscale;
784
        // XXX avoid recalculating bits
785
        ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
786
        for (y = 0; y < ctx->m.mb_height; y++) {
787
            for (x = 0; x < ctx->m.mb_width; x++)
788
                bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
789
            bits = (bits+31)&~31; // padding
790
            if (bits > ctx->frame_bits)
791
                break;
792
        }
793
        //av_dlog(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
794
        //        ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower);
795
        if (bits < ctx->frame_bits) {
796
            if (qscale == 1)
797
                return 1;
798
            if (last_higher == qscale - 1) {
799
                qscale = last_higher;
800
                break;
801
            }
802
            last_lower = FFMIN(qscale, last_lower);
803
            if (last_higher != 0)
804
                qscale = (qscale+last_higher)>>1;
805
            else
806
                qscale -= down_step++;
807
            if (qscale < 1)
808
                qscale = 1;
809
            up_step = 1;
810
        } else {
811
            if (last_lower == qscale + 1)
812
                break;
813
            last_higher = FFMAX(qscale, last_higher);
814
            if (last_lower != INT_MAX)
815
                qscale = (qscale+last_lower)>>1;
816
            else
817
                qscale += up_step++;
818
            down_step = 1;
819
            if (qscale >= ctx->m.avctx->qmax)
820
                return -1;
821
        }
822
    }
823
    //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
824
    ctx->qscale = qscale;
825
    return 0;
826
}
827
 
828
#define BUCKET_BITS 8
829
#define RADIX_PASSES 4
830
#define NBUCKETS (1 << BUCKET_BITS)
831
 
832
static inline int get_bucket(int value, int shift)
833
{
834
    value >>= shift;
835
    value &= NBUCKETS - 1;
836
    return NBUCKETS - 1 - value;
837
}
838
 
839
static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
840
{
841
    int i, j;
842
    memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
843
    for (i = 0; i < size; i++) {
844
        int v = data[i].value;
845
        for (j = 0; j < RADIX_PASSES; j++) {
846
            buckets[j][get_bucket(v, 0)]++;
847
            v >>= BUCKET_BITS;
848
        }
849
        av_assert1(!v);
850
    }
851
    for (j = 0; j < RADIX_PASSES; j++) {
852
        int offset = size;
853
        for (i = NBUCKETS - 1; i >= 0; i--)
854
            buckets[j][i] = offset -= buckets[j][i];
855
        av_assert1(!buckets[j][0]);
856
    }
857
}
858
 
859
static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
860
{
861
    int shift = pass * BUCKET_BITS;
862
    int i;
863
    for (i = 0; i < size; i++) {
864
        int v = get_bucket(data[i].value, shift);
865
        int pos = buckets[v]++;
866
        dst[pos] = data[i];
867
    }
868
}
869
 
870
static void radix_sort(RCCMPEntry *data, int size)
871
{
872
    int buckets[RADIX_PASSES][NBUCKETS];
873
    RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
874
    radix_count(data, size, buckets);
875
    radix_sort_pass(tmp, data, size, buckets[0], 0);
876
    radix_sort_pass(data, tmp, size, buckets[1], 1);
877
    if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
878
        radix_sort_pass(tmp, data, size, buckets[2], 2);
879
        radix_sort_pass(data, tmp, size, buckets[3], 3);
880
    }
881
    av_free(tmp);
882
}
883
 
884
static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
885
{
886
    int max_bits = 0;
887
    int ret, x, y;
888
    if ((ret = dnxhd_find_qscale(ctx)) < 0)
889
        return -1;
890
    for (y = 0; y < ctx->m.mb_height; y++) {
891
        for (x = 0; x < ctx->m.mb_width; x++) {
892
            int mb = y*ctx->m.mb_width+x;
893
            int delta_bits;
894
            ctx->mb_qscale[mb] = ctx->qscale;
895
            ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
896
            max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
897
            if (!RC_VARIANCE) {
898
                delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits;
899
                ctx->mb_cmp[mb].mb = mb;
900
                ctx->mb_cmp[mb].value = delta_bits ?
901
                    ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits
902
                    : INT_MIN; //avoid increasing qscale
903
            }
904
        }
905
        max_bits += 31; //worst padding
906
    }
907
    if (!ret) {
908
        if (RC_VARIANCE)
909
            avctx->execute2(avctx, dnxhd_mb_var_thread, NULL, NULL, ctx->m.mb_height);
910
        radix_sort(ctx->mb_cmp, ctx->m.mb_num);
911
        for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
912
            int mb = ctx->mb_cmp[x].mb;
913
            max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits;
914
            ctx->mb_qscale[mb] = ctx->qscale+1;
915
            ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits;
916
        }
917
    }
918
    return 0;
919
}
920
 
921
static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
922
{
923
    int i;
924
 
925
    for (i = 0; i < 3; i++) {
926
        ctx->frame.data[i]     = frame->data[i];
927
        ctx->frame.linesize[i] = frame->linesize[i];
928
    }
929
 
930
    for (i = 0; i < ctx->m.avctx->thread_count; i++) {
931
        ctx->thread[i]->m.linesize    = ctx->frame.linesize[0]<interlaced;
932
        ctx->thread[i]->m.uvlinesize  = ctx->frame.linesize[1]<interlaced;
933
        ctx->thread[i]->dct_y_offset  = ctx->m.linesize  *8;
934
        ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
935
    }
936
 
937
    ctx->frame.interlaced_frame = frame->interlaced_frame;
938
    ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
939
}
940
 
941
static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
942
                                const AVFrame *frame, int *got_packet)
943
{
944
    DNXHDEncContext *ctx = avctx->priv_data;
945
    int first_field = 1;
946
    int offset, i, ret;
947
    uint8_t *buf;
948
 
949
    if ((ret = ff_alloc_packet2(avctx, pkt, ctx->cid_table->frame_size)) < 0)
950
        return ret;
951
    buf = pkt->data;
952
 
953
    dnxhd_load_picture(ctx, frame);
954
 
955
 encode_coding_unit:
956
    for (i = 0; i < 3; i++) {
957
        ctx->src[i] = ctx->frame.data[i];
958
        if (ctx->interlaced && ctx->cur_field)
959
            ctx->src[i] += ctx->frame.linesize[i];
960
    }
961
 
962
    dnxhd_write_header(avctx, buf);
963
 
964
    if (avctx->mb_decision == FF_MB_DECISION_RD)
965
        ret = dnxhd_encode_rdo(avctx, ctx);
966
    else
967
        ret = dnxhd_encode_fast(avctx, ctx);
968
    if (ret < 0) {
969
        av_log(avctx, AV_LOG_ERROR,
970
               "picture could not fit ratecontrol constraints, increase qmax\n");
971
        return -1;
972
    }
973
 
974
    dnxhd_setup_threads_slices(ctx);
975
 
976
    offset = 0;
977
    for (i = 0; i < ctx->m.mb_height; i++) {
978
        AV_WB32(ctx->msip + i * 4, offset);
979
        offset += ctx->slice_size[i];
980
        av_assert1(!(ctx->slice_size[i] & 3));
981
    }
982
 
983
    avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
984
 
985
    av_assert1(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
986
    memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640);
987
 
988
    AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
989
 
990
    if (ctx->interlaced && first_field) {
991
        first_field     = 0;
992
        ctx->cur_field ^= 1;
993
        buf      += ctx->cid_table->coding_unit_size;
994
        goto encode_coding_unit;
995
    }
996
 
997
    ctx->frame.quality = ctx->qscale*FF_QP2LAMBDA;
998
 
999
    pkt->flags |= AV_PKT_FLAG_KEY;
1000
    *got_packet = 1;
1001
    return 0;
1002
}
1003
 
1004
static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
1005
{
1006
    DNXHDEncContext *ctx = avctx->priv_data;
1007
    int max_level = 1<<(ctx->cid_table->bit_depth+2);
1008
    int i;
1009
 
1010
    av_free(ctx->vlc_codes-max_level*2);
1011
    av_free(ctx->vlc_bits -max_level*2);
1012
    av_freep(&ctx->run_codes);
1013
    av_freep(&ctx->run_bits);
1014
 
1015
    av_freep(&ctx->mb_bits);
1016
    av_freep(&ctx->mb_qscale);
1017
    av_freep(&ctx->mb_rc);
1018
    av_freep(&ctx->mb_cmp);
1019
    av_freep(&ctx->slice_size);
1020
    av_freep(&ctx->slice_offs);
1021
 
1022
    av_freep(&ctx->qmatrix_c);
1023
    av_freep(&ctx->qmatrix_l);
1024
    av_freep(&ctx->qmatrix_c16);
1025
    av_freep(&ctx->qmatrix_l16);
1026
 
1027
    for (i = 1; i < avctx->thread_count; i++)
1028
        av_freep(&ctx->thread[i]);
1029
 
1030
    return 0;
1031
}
1032
 
1033
static const AVCodecDefault dnxhd_defaults[] = {
1034
    { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
1035
    { NULL },
1036
};
1037
 
1038
AVCodec ff_dnxhd_encoder = {
1039
    .name           = "dnxhd",
1040
    .long_name      = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
1041
    .type           = AVMEDIA_TYPE_VIDEO,
1042
    .id             = AV_CODEC_ID_DNXHD,
1043
    .priv_data_size = sizeof(DNXHDEncContext),
1044
    .init           = dnxhd_encode_init,
1045
    .encode2        = dnxhd_encode_picture,
1046
    .close          = dnxhd_encode_end,
1047
    .capabilities   = CODEC_CAP_SLICE_THREADS,
1048
    .pix_fmts       = (const enum AVPixelFormat[]){ AV_PIX_FMT_YUV422P,
1049
                                                  AV_PIX_FMT_YUV422P10,
1050
                                                  AV_PIX_FMT_NONE },
1051
    .priv_class     = &dnxhd_class,
1052
    .defaults       = dnxhd_defaults,
1053
};