Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4349 Serge 1
/*
2
 * MPEG-4 Parametric Stereo decoding functions
3
 * Copyright (c) 2010 Alex Converse 
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
 
22
#include 
23
#include "libavutil/common.h"
24
#include "libavutil/internal.h"
25
#include "libavutil/mathematics.h"
26
#include "avcodec.h"
27
#include "get_bits.h"
28
#include "aacps.h"
29
#include "aacps_tablegen.h"
30
#include "aacpsdata.c"
31
 
32
#define PS_BASELINE 0  ///< Operate in Baseline PS mode
33
                       ///< Baseline implies 10 or 20 stereo bands,
34
                       ///< mixing mode A, and no ipd/opd
35
 
36
#define numQMFSlots 32 //numTimeSlots * RATE
37
 
38
static const int8_t num_env_tab[2][4] = {
39
    { 0, 1, 2, 4, },
40
    { 1, 2, 3, 4, },
41
};
42
 
43
static const int8_t nr_iidicc_par_tab[] = {
44
    10, 20, 34, 10, 20, 34,
45
};
46
 
47
static const int8_t nr_iidopd_par_tab[] = {
48
     5, 11, 17,  5, 11, 17,
49
};
50
 
51
enum {
52
    huff_iid_df1,
53
    huff_iid_dt1,
54
    huff_iid_df0,
55
    huff_iid_dt0,
56
    huff_icc_df,
57
    huff_icc_dt,
58
    huff_ipd_df,
59
    huff_ipd_dt,
60
    huff_opd_df,
61
    huff_opd_dt,
62
};
63
 
64
static const int huff_iid[] = {
65
    huff_iid_df0,
66
    huff_iid_df1,
67
    huff_iid_dt0,
68
    huff_iid_dt1,
69
};
70
 
71
static VLC vlc_ps[10];
72
 
73
#define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION) \
74
/** \
75
 * Read Inter-channel Intensity Difference/Inter-Channel Coherence/ \
76
 * Inter-channel Phase Difference/Overall Phase Difference parameters from the \
77
 * bitstream. \
78
 * \
79
 * @param avctx contains the current codec context \
80
 * @param gb    pointer to the input bitstream \
81
 * @param ps    pointer to the Parametric Stereo context \
82
 * @param PAR   pointer to the parameter to be read \
83
 * @param e     envelope to decode \
84
 * @param dt    1: time delta-coded, 0: frequency delta-coded \
85
 */ \
86
static int read_ ## PAR ## _data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, \
87
                        int8_t (*PAR)[PS_MAX_NR_IIDICC], int table_idx, int e, int dt) \
88
{ \
89
    int b, num = ps->nr_ ## PAR ## _par; \
90
    VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table; \
91
    if (dt) { \
92
        int e_prev = e ? e - 1 : ps->num_env_old - 1; \
93
        e_prev = FFMAX(e_prev, 0); \
94
        for (b = 0; b < num; b++) { \
95
            int val = PAR[e_prev][b] + get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
96
            if (MASK) val &= MASK; \
97
            PAR[e][b] = val; \
98
            if (ERR_CONDITION) \
99
                goto err; \
100
        } \
101
    } else { \
102
        int val = 0; \
103
        for (b = 0; b < num; b++) { \
104
            val += get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
105
            if (MASK) val &= MASK; \
106
            PAR[e][b] = val; \
107
            if (ERR_CONDITION) \
108
                goto err; \
109
        } \
110
    } \
111
    return 0; \
112
err: \
113
    av_log(avctx, AV_LOG_ERROR, "illegal "#PAR"\n"); \
114
    return -1; \
115
}
116
 
117
READ_PAR_DATA(iid,    huff_offset[table_idx],    0, FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant)
118
READ_PAR_DATA(icc,    huff_offset[table_idx],    0, ps->icc_par[e][b] > 7U)
119
READ_PAR_DATA(ipdopd,                      0, 0x07, 0)
120
 
121
static int ps_read_extension_data(GetBitContext *gb, PSContext *ps, int ps_extension_id)
122
{
123
    int e;
124
    int count = get_bits_count(gb);
125
 
126
    if (ps_extension_id)
127
        return 0;
128
 
129
    ps->enable_ipdopd = get_bits1(gb);
130
    if (ps->enable_ipdopd) {
131
        for (e = 0; e < ps->num_env; e++) {
132
            int dt = get_bits1(gb);
133
            read_ipdopd_data(NULL, gb, ps, ps->ipd_par, dt ? huff_ipd_dt : huff_ipd_df, e, dt);
134
            dt = get_bits1(gb);
135
            read_ipdopd_data(NULL, gb, ps, ps->opd_par, dt ? huff_opd_dt : huff_opd_df, e, dt);
136
        }
137
    }
138
    skip_bits1(gb);      //reserved_ps
139
    return get_bits_count(gb) - count;
140
}
141
 
142
static void ipdopd_reset(int8_t *ipd_hist, int8_t *opd_hist)
143
{
144
    int i;
145
    for (i = 0; i < PS_MAX_NR_IPDOPD; i++) {
146
        opd_hist[i] = 0;
147
        ipd_hist[i] = 0;
148
    }
149
}
150
 
151
int ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
152
{
153
    int e;
154
    int bit_count_start = get_bits_count(gb_host);
155
    int header;
156
    int bits_consumed;
157
    GetBitContext gbc = *gb_host, *gb = &gbc;
158
 
159
    header = get_bits1(gb);
160
    if (header) {     //enable_ps_header
161
        ps->enable_iid = get_bits1(gb);
162
        if (ps->enable_iid) {
163
            int iid_mode = get_bits(gb, 3);
164
            if (iid_mode > 5) {
165
                av_log(avctx, AV_LOG_ERROR, "iid_mode %d is reserved.\n",
166
                       iid_mode);
167
                goto err;
168
            }
169
            ps->nr_iid_par    = nr_iidicc_par_tab[iid_mode];
170
            ps->iid_quant     = iid_mode > 2;
171
            ps->nr_ipdopd_par = nr_iidopd_par_tab[iid_mode];
172
        }
173
        ps->enable_icc = get_bits1(gb);
174
        if (ps->enable_icc) {
175
            ps->icc_mode = get_bits(gb, 3);
176
            if (ps->icc_mode > 5) {
177
                av_log(avctx, AV_LOG_ERROR, "icc_mode %d is reserved.\n",
178
                       ps->icc_mode);
179
                goto err;
180
            }
181
            ps->nr_icc_par = nr_iidicc_par_tab[ps->icc_mode];
182
        }
183
        ps->enable_ext = get_bits1(gb);
184
    }
185
 
186
    ps->frame_class = get_bits1(gb);
187
    ps->num_env_old = ps->num_env;
188
    ps->num_env     = num_env_tab[ps->frame_class][get_bits(gb, 2)];
189
 
190
    ps->border_position[0] = -1;
191
    if (ps->frame_class) {
192
        for (e = 1; e <= ps->num_env; e++)
193
            ps->border_position[e] = get_bits(gb, 5);
194
    } else
195
        for (e = 1; e <= ps->num_env; e++)
196
            ps->border_position[e] = (e * numQMFSlots >> ff_log2_tab[ps->num_env]) - 1;
197
 
198
    if (ps->enable_iid) {
199
        for (e = 0; e < ps->num_env; e++) {
200
            int dt = get_bits1(gb);
201
            if (read_iid_data(avctx, gb, ps, ps->iid_par, huff_iid[2*dt+ps->iid_quant], e, dt))
202
                goto err;
203
        }
204
    } else
205
        memset(ps->iid_par, 0, sizeof(ps->iid_par));
206
 
207
    if (ps->enable_icc)
208
        for (e = 0; e < ps->num_env; e++) {
209
            int dt = get_bits1(gb);
210
            if (read_icc_data(avctx, gb, ps, ps->icc_par, dt ? huff_icc_dt : huff_icc_df, e, dt))
211
                goto err;
212
        }
213
    else
214
        memset(ps->icc_par, 0, sizeof(ps->icc_par));
215
 
216
    if (ps->enable_ext) {
217
        int cnt = get_bits(gb, 4);
218
        if (cnt == 15) {
219
            cnt += get_bits(gb, 8);
220
        }
221
        cnt *= 8;
222
        while (cnt > 7) {
223
            int ps_extension_id = get_bits(gb, 2);
224
            cnt -= 2 + ps_read_extension_data(gb, ps, ps_extension_id);
225
        }
226
        if (cnt < 0) {
227
            av_log(avctx, AV_LOG_ERROR, "ps extension overflow %d\n", cnt);
228
            goto err;
229
        }
230
        skip_bits(gb, cnt);
231
    }
232
 
233
    ps->enable_ipdopd &= !PS_BASELINE;
234
 
235
    //Fix up envelopes
236
    if (!ps->num_env || ps->border_position[ps->num_env] < numQMFSlots - 1) {
237
        //Create a fake envelope
238
        int source = ps->num_env ? ps->num_env - 1 : ps->num_env_old - 1;
239
        int b;
240
        if (source >= 0 && source != ps->num_env) {
241
            if (ps->enable_iid) {
242
                memcpy(ps->iid_par+ps->num_env, ps->iid_par+source, sizeof(ps->iid_par[0]));
243
            }
244
            if (ps->enable_icc) {
245
                memcpy(ps->icc_par+ps->num_env, ps->icc_par+source, sizeof(ps->icc_par[0]));
246
            }
247
            if (ps->enable_ipdopd) {
248
                memcpy(ps->ipd_par+ps->num_env, ps->ipd_par+source, sizeof(ps->ipd_par[0]));
249
                memcpy(ps->opd_par+ps->num_env, ps->opd_par+source, sizeof(ps->opd_par[0]));
250
            }
251
        }
252
        if (ps->enable_iid){
253
            for (b = 0; b < ps->nr_iid_par; b++) {
254
                if (FFABS(ps->iid_par[ps->num_env][b]) > 7 + 8 * ps->iid_quant) {
255
                    av_log(avctx, AV_LOG_ERROR, "iid_par invalid\n");
256
                    goto err;
257
                }
258
            }
259
        }
260
        if (ps->enable_icc){
261
            for (b = 0; b < ps->nr_iid_par; b++) {
262
                if (ps->icc_par[ps->num_env][b] > 7U) {
263
                    av_log(avctx, AV_LOG_ERROR, "icc_par invalid\n");
264
                    goto err;
265
                }
266
            }
267
        }
268
        ps->num_env++;
269
        ps->border_position[ps->num_env] = numQMFSlots - 1;
270
    }
271
 
272
 
273
    ps->is34bands_old = ps->is34bands;
274
    if (!PS_BASELINE && (ps->enable_iid || ps->enable_icc))
275
        ps->is34bands = (ps->enable_iid && ps->nr_iid_par == 34) ||
276
                        (ps->enable_icc && ps->nr_icc_par == 34);
277
 
278
    //Baseline
279
    if (!ps->enable_ipdopd) {
280
        memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
281
        memset(ps->opd_par, 0, sizeof(ps->opd_par));
282
    }
283
 
284
    if (header)
285
        ps->start = 1;
286
 
287
    bits_consumed = get_bits_count(gb) - bit_count_start;
288
    if (bits_consumed <= bits_left) {
289
        skip_bits_long(gb_host, bits_consumed);
290
        return bits_consumed;
291
    }
292
    av_log(avctx, AV_LOG_ERROR, "Expected to read %d PS bits actually read %d.\n", bits_left, bits_consumed);
293
err:
294
    ps->start = 0;
295
    skip_bits_long(gb_host, bits_left);
296
    memset(ps->iid_par, 0, sizeof(ps->iid_par));
297
    memset(ps->icc_par, 0, sizeof(ps->icc_par));
298
    memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
299
    memset(ps->opd_par, 0, sizeof(ps->opd_par));
300
    return bits_left;
301
}
302
 
303
/** Split one subband into 2 subsubbands with a symmetric real filter.
304
 * The filter must have its non-center even coefficients equal to zero. */
305
static void hybrid2_re(float (*in)[2], float (*out)[32][2], const float filter[8], int len, int reverse)
306
{
307
    int i, j;
308
    for (i = 0; i < len; i++, in++) {
309
        float re_in = filter[6] * in[6][0];          //real inphase
310
        float re_op = 0.0f;                          //real out of phase
311
        float im_in = filter[6] * in[6][1];          //imag inphase
312
        float im_op = 0.0f;                          //imag out of phase
313
        for (j = 0; j < 6; j += 2) {
314
            re_op += filter[j+1] * (in[j+1][0] + in[12-j-1][0]);
315
            im_op += filter[j+1] * (in[j+1][1] + in[12-j-1][1]);
316
        }
317
        out[ reverse][i][0] = re_in + re_op;
318
        out[ reverse][i][1] = im_in + im_op;
319
        out[!reverse][i][0] = re_in - re_op;
320
        out[!reverse][i][1] = im_in - im_op;
321
    }
322
}
323
 
324
/** Split one subband into 6 subsubbands with a complex filter */
325
static void hybrid6_cx(PSDSPContext *dsp, float (*in)[2], float (*out)[32][2], const float (*filter)[8][2], int len)
326
{
327
    int i;
328
    int N = 8;
329
    LOCAL_ALIGNED_16(float, temp, [8], [2]);
330
 
331
    for (i = 0; i < len; i++, in++) {
332
        dsp->hybrid_analysis(temp, in, filter, 1, N);
333
        out[0][i][0] = temp[6][0];
334
        out[0][i][1] = temp[6][1];
335
        out[1][i][0] = temp[7][0];
336
        out[1][i][1] = temp[7][1];
337
        out[2][i][0] = temp[0][0];
338
        out[2][i][1] = temp[0][1];
339
        out[3][i][0] = temp[1][0];
340
        out[3][i][1] = temp[1][1];
341
        out[4][i][0] = temp[2][0] + temp[5][0];
342
        out[4][i][1] = temp[2][1] + temp[5][1];
343
        out[5][i][0] = temp[3][0] + temp[4][0];
344
        out[5][i][1] = temp[3][1] + temp[4][1];
345
    }
346
}
347
 
348
static void hybrid4_8_12_cx(PSDSPContext *dsp, float (*in)[2], float (*out)[32][2], const float (*filter)[8][2], int N, int len)
349
{
350
    int i;
351
 
352
    for (i = 0; i < len; i++, in++) {
353
        dsp->hybrid_analysis(out[0] + i, in, filter, 32, N);
354
    }
355
}
356
 
357
static void hybrid_analysis(PSDSPContext *dsp, float out[91][32][2],
358
                            float in[5][44][2], float L[2][38][64],
359
                            int is34, int len)
360
{
361
    int i, j;
362
    for (i = 0; i < 5; i++) {
363
        for (j = 0; j < 38; j++) {
364
            in[i][j+6][0] = L[0][j][i];
365
            in[i][j+6][1] = L[1][j][i];
366
        }
367
    }
368
    if (is34) {
369
        hybrid4_8_12_cx(dsp, in[0], out,    f34_0_12, 12, len);
370
        hybrid4_8_12_cx(dsp, in[1], out+12, f34_1_8,   8, len);
371
        hybrid4_8_12_cx(dsp, in[2], out+20, f34_2_4,   4, len);
372
        hybrid4_8_12_cx(dsp, in[3], out+24, f34_2_4,   4, len);
373
        hybrid4_8_12_cx(dsp, in[4], out+28, f34_2_4,   4, len);
374
        dsp->hybrid_analysis_ileave(out + 27, L, 5, len);
375
    } else {
376
        hybrid6_cx(dsp, in[0], out, f20_0_8, len);
377
        hybrid2_re(in[1], out+6, g1_Q2, len, 1);
378
        hybrid2_re(in[2], out+8, g1_Q2, len, 0);
379
        dsp->hybrid_analysis_ileave(out + 7, L, 3, len);
380
    }
381
    //update in_buf
382
    for (i = 0; i < 5; i++) {
383
        memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0]));
384
    }
385
}
386
 
387
static void hybrid_synthesis(PSDSPContext *dsp, float out[2][38][64],
388
                             float in[91][32][2], int is34, int len)
389
{
390
    int i, n;
391
    if (is34) {
392
        for (n = 0; n < len; n++) {
393
            memset(out[0][n], 0, 5*sizeof(out[0][n][0]));
394
            memset(out[1][n], 0, 5*sizeof(out[1][n][0]));
395
            for (i = 0; i < 12; i++) {
396
                out[0][n][0] += in[   i][n][0];
397
                out[1][n][0] += in[   i][n][1];
398
            }
399
            for (i = 0; i < 8; i++) {
400
                out[0][n][1] += in[12+i][n][0];
401
                out[1][n][1] += in[12+i][n][1];
402
            }
403
            for (i = 0; i < 4; i++) {
404
                out[0][n][2] += in[20+i][n][0];
405
                out[1][n][2] += in[20+i][n][1];
406
                out[0][n][3] += in[24+i][n][0];
407
                out[1][n][3] += in[24+i][n][1];
408
                out[0][n][4] += in[28+i][n][0];
409
                out[1][n][4] += in[28+i][n][1];
410
            }
411
        }
412
        dsp->hybrid_synthesis_deint(out, in + 27, 5, len);
413
    } else {
414
        for (n = 0; n < len; n++) {
415
            out[0][n][0] = in[0][n][0] + in[1][n][0] + in[2][n][0] +
416
                           in[3][n][0] + in[4][n][0] + in[5][n][0];
417
            out[1][n][0] = in[0][n][1] + in[1][n][1] + in[2][n][1] +
418
                           in[3][n][1] + in[4][n][1] + in[5][n][1];
419
            out[0][n][1] = in[6][n][0] + in[7][n][0];
420
            out[1][n][1] = in[6][n][1] + in[7][n][1];
421
            out[0][n][2] = in[8][n][0] + in[9][n][0];
422
            out[1][n][2] = in[8][n][1] + in[9][n][1];
423
        }
424
        dsp->hybrid_synthesis_deint(out, in + 7, 3, len);
425
    }
426
}
427
 
428
/// All-pass filter decay slope
429
#define DECAY_SLOPE      0.05f
430
/// Number of frequency bands that can be addressed by the parameter index, b(k)
431
static const int   NR_PAR_BANDS[]      = { 20, 34 };
432
/// Number of frequency bands that can be addressed by the sub subband index, k
433
static const int   NR_BANDS[]          = { 71, 91 };
434
/// Start frequency band for the all-pass filter decay slope
435
static const int   DECAY_CUTOFF[]      = { 10, 32 };
436
/// Number of all-pass filer bands
437
static const int   NR_ALLPASS_BANDS[]  = { 30, 50 };
438
/// First stereo band using the short one sample delay
439
static const int   SHORT_DELAY_BAND[]  = { 42, 62 };
440
 
441
/** Table 8.46 */
442
static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
443
{
444
    int b;
445
    if (full)
446
        b = 9;
447
    else {
448
        b = 4;
449
        par_mapped[10] = 0;
450
    }
451
    for (; b >= 0; b--) {
452
        par_mapped[2*b+1] = par_mapped[2*b] = par[b];
453
    }
454
}
455
 
456
static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
457
{
458
    par_mapped[ 0] = (2*par[ 0] +   par[ 1]) / 3;
459
    par_mapped[ 1] = (  par[ 1] + 2*par[ 2]) / 3;
460
    par_mapped[ 2] = (2*par[ 3] +   par[ 4]) / 3;
461
    par_mapped[ 3] = (  par[ 4] + 2*par[ 5]) / 3;
462
    par_mapped[ 4] = (  par[ 6] +   par[ 7]) / 2;
463
    par_mapped[ 5] = (  par[ 8] +   par[ 9]) / 2;
464
    par_mapped[ 6] =    par[10];
465
    par_mapped[ 7] =    par[11];
466
    par_mapped[ 8] = (  par[12] +   par[13]) / 2;
467
    par_mapped[ 9] = (  par[14] +   par[15]) / 2;
468
    par_mapped[10] =    par[16];
469
    if (full) {
470
        par_mapped[11] =    par[17];
471
        par_mapped[12] =    par[18];
472
        par_mapped[13] =    par[19];
473
        par_mapped[14] = (  par[20] +   par[21]) / 2;
474
        par_mapped[15] = (  par[22] +   par[23]) / 2;
475
        par_mapped[16] = (  par[24] +   par[25]) / 2;
476
        par_mapped[17] = (  par[26] +   par[27]) / 2;
477
        par_mapped[18] = (  par[28] +   par[29] +   par[30] +   par[31]) / 4;
478
        par_mapped[19] = (  par[32] +   par[33]) / 2;
479
    }
480
}
481
 
482
static void map_val_34_to_20(float par[PS_MAX_NR_IIDICC])
483
{
484
    par[ 0] = (2*par[ 0] +   par[ 1]) * 0.33333333f;
485
    par[ 1] = (  par[ 1] + 2*par[ 2]) * 0.33333333f;
486
    par[ 2] = (2*par[ 3] +   par[ 4]) * 0.33333333f;
487
    par[ 3] = (  par[ 4] + 2*par[ 5]) * 0.33333333f;
488
    par[ 4] = (  par[ 6] +   par[ 7]) * 0.5f;
489
    par[ 5] = (  par[ 8] +   par[ 9]) * 0.5f;
490
    par[ 6] =    par[10];
491
    par[ 7] =    par[11];
492
    par[ 8] = (  par[12] +   par[13]) * 0.5f;
493
    par[ 9] = (  par[14] +   par[15]) * 0.5f;
494
    par[10] =    par[16];
495
    par[11] =    par[17];
496
    par[12] =    par[18];
497
    par[13] =    par[19];
498
    par[14] = (  par[20] +   par[21]) * 0.5f;
499
    par[15] = (  par[22] +   par[23]) * 0.5f;
500
    par[16] = (  par[24] +   par[25]) * 0.5f;
501
    par[17] = (  par[26] +   par[27]) * 0.5f;
502
    par[18] = (  par[28] +   par[29] +   par[30] +   par[31]) * 0.25f;
503
    par[19] = (  par[32] +   par[33]) * 0.5f;
504
}
505
 
506
static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
507
{
508
    if (full) {
509
        par_mapped[33] = par[9];
510
        par_mapped[32] = par[9];
511
        par_mapped[31] = par[9];
512
        par_mapped[30] = par[9];
513
        par_mapped[29] = par[9];
514
        par_mapped[28] = par[9];
515
        par_mapped[27] = par[8];
516
        par_mapped[26] = par[8];
517
        par_mapped[25] = par[8];
518
        par_mapped[24] = par[8];
519
        par_mapped[23] = par[7];
520
        par_mapped[22] = par[7];
521
        par_mapped[21] = par[7];
522
        par_mapped[20] = par[7];
523
        par_mapped[19] = par[6];
524
        par_mapped[18] = par[6];
525
        par_mapped[17] = par[5];
526
        par_mapped[16] = par[5];
527
    } else {
528
        par_mapped[16] =      0;
529
    }
530
    par_mapped[15] = par[4];
531
    par_mapped[14] = par[4];
532
    par_mapped[13] = par[4];
533
    par_mapped[12] = par[4];
534
    par_mapped[11] = par[3];
535
    par_mapped[10] = par[3];
536
    par_mapped[ 9] = par[2];
537
    par_mapped[ 8] = par[2];
538
    par_mapped[ 7] = par[2];
539
    par_mapped[ 6] = par[2];
540
    par_mapped[ 5] = par[1];
541
    par_mapped[ 4] = par[1];
542
    par_mapped[ 3] = par[1];
543
    par_mapped[ 2] = par[0];
544
    par_mapped[ 1] = par[0];
545
    par_mapped[ 0] = par[0];
546
}
547
 
548
static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
549
{
550
    if (full) {
551
        par_mapped[33] =  par[19];
552
        par_mapped[32] =  par[19];
553
        par_mapped[31] =  par[18];
554
        par_mapped[30] =  par[18];
555
        par_mapped[29] =  par[18];
556
        par_mapped[28] =  par[18];
557
        par_mapped[27] =  par[17];
558
        par_mapped[26] =  par[17];
559
        par_mapped[25] =  par[16];
560
        par_mapped[24] =  par[16];
561
        par_mapped[23] =  par[15];
562
        par_mapped[22] =  par[15];
563
        par_mapped[21] =  par[14];
564
        par_mapped[20] =  par[14];
565
        par_mapped[19] =  par[13];
566
        par_mapped[18] =  par[12];
567
        par_mapped[17] =  par[11];
568
    }
569
    par_mapped[16] =  par[10];
570
    par_mapped[15] =  par[ 9];
571
    par_mapped[14] =  par[ 9];
572
    par_mapped[13] =  par[ 8];
573
    par_mapped[12] =  par[ 8];
574
    par_mapped[11] =  par[ 7];
575
    par_mapped[10] =  par[ 6];
576
    par_mapped[ 9] =  par[ 5];
577
    par_mapped[ 8] =  par[ 5];
578
    par_mapped[ 7] =  par[ 4];
579
    par_mapped[ 6] =  par[ 4];
580
    par_mapped[ 5] =  par[ 3];
581
    par_mapped[ 4] = (par[ 2] + par[ 3]) / 2;
582
    par_mapped[ 3] =  par[ 2];
583
    par_mapped[ 2] =  par[ 1];
584
    par_mapped[ 1] = (par[ 0] + par[ 1]) / 2;
585
    par_mapped[ 0] =  par[ 0];
586
}
587
 
588
static void map_val_20_to_34(float par[PS_MAX_NR_IIDICC])
589
{
590
    par[33] =  par[19];
591
    par[32] =  par[19];
592
    par[31] =  par[18];
593
    par[30] =  par[18];
594
    par[29] =  par[18];
595
    par[28] =  par[18];
596
    par[27] =  par[17];
597
    par[26] =  par[17];
598
    par[25] =  par[16];
599
    par[24] =  par[16];
600
    par[23] =  par[15];
601
    par[22] =  par[15];
602
    par[21] =  par[14];
603
    par[20] =  par[14];
604
    par[19] =  par[13];
605
    par[18] =  par[12];
606
    par[17] =  par[11];
607
    par[16] =  par[10];
608
    par[15] =  par[ 9];
609
    par[14] =  par[ 9];
610
    par[13] =  par[ 8];
611
    par[12] =  par[ 8];
612
    par[11] =  par[ 7];
613
    par[10] =  par[ 6];
614
    par[ 9] =  par[ 5];
615
    par[ 8] =  par[ 5];
616
    par[ 7] =  par[ 4];
617
    par[ 6] =  par[ 4];
618
    par[ 5] =  par[ 3];
619
    par[ 4] = (par[ 2] + par[ 3]) * 0.5f;
620
    par[ 3] =  par[ 2];
621
    par[ 2] =  par[ 1];
622
    par[ 1] = (par[ 0] + par[ 1]) * 0.5f;
623
}
624
 
625
static void decorrelation(PSContext *ps, float (*out)[32][2], const float (*s)[32][2], int is34)
626
{
627
    LOCAL_ALIGNED_16(float, power, [34], [PS_QMF_TIME_SLOTS]);
628
    LOCAL_ALIGNED_16(float, transient_gain, [34], [PS_QMF_TIME_SLOTS]);
629
    float *peak_decay_nrg = ps->peak_decay_nrg;
630
    float *power_smooth = ps->power_smooth;
631
    float *peak_decay_diff_smooth = ps->peak_decay_diff_smooth;
632
    float (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay;
633
    float (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay;
634
    const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
635
    const float peak_decay_factor = 0.76592833836465f;
636
    const float transient_impact  = 1.5f;
637
    const float a_smooth          = 0.25f; ///< Smoothing coefficient
638
    int i, k, m, n;
639
    int n0 = 0, nL = 32;
640
 
641
    memset(power, 0, 34 * sizeof(*power));
642
 
643
    if (is34 != ps->is34bands_old) {
644
        memset(ps->peak_decay_nrg,         0, sizeof(ps->peak_decay_nrg));
645
        memset(ps->power_smooth,           0, sizeof(ps->power_smooth));
646
        memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth));
647
        memset(ps->delay,                  0, sizeof(ps->delay));
648
        memset(ps->ap_delay,               0, sizeof(ps->ap_delay));
649
    }
650
 
651
    for (k = 0; k < NR_BANDS[is34]; k++) {
652
        int i = k_to_i[k];
653
        ps->dsp.add_squares(power[i], s[k], nL - n0);
654
    }
655
 
656
    //Transient detection
657
    for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
658
        for (n = n0; n < nL; n++) {
659
            float decayed_peak = peak_decay_factor * peak_decay_nrg[i];
660
            float denom;
661
            peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
662
            power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]);
663
            peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]);
664
            denom = transient_impact * peak_decay_diff_smooth[i];
665
            transient_gain[i][n]   = (denom > power_smooth[i]) ?
666
                                         power_smooth[i] / denom : 1.0f;
667
        }
668
    }
669
 
670
    //Decorrelation and transient reduction
671
    //                         PS_AP_LINKS - 1
672
    //                               -----
673
    //                                | |  Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k]
674
    //H[k][z] = z^-2 * phi_fract[k] * | | ----------------------------------------------------------------
675
    //                                | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m]
676
    //                               m = 0
677
    //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z]
678
    for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) {
679
        int b = k_to_i[k];
680
        float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
681
        g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f);
682
        memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
683
        memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
684
        for (m = 0; m < PS_AP_LINKS; m++) {
685
            memcpy(ap_delay[k][m],   ap_delay[k][m]+numQMFSlots,           5*sizeof(ap_delay[k][m][0]));
686
        }
687
        ps->dsp.decorrelate(out[k], delay[k] + PS_MAX_DELAY - 2, ap_delay[k],
688
                            phi_fract[is34][k], Q_fract_allpass[is34][k],
689
                            transient_gain[b], g_decay_slope, nL - n0);
690
    }
691
    for (; k < SHORT_DELAY_BAND[is34]; k++) {
692
        int i = k_to_i[k];
693
        memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
694
        memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
695
        //H = delay 14
696
        ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 14,
697
                                transient_gain[i], nL - n0);
698
    }
699
    for (; k < NR_BANDS[is34]; k++) {
700
        int i = k_to_i[k];
701
        memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
702
        memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
703
        //H = delay 1
704
        ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 1,
705
                                transient_gain[i], nL - n0);
706
    }
707
}
708
 
709
static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
710
                    int8_t           (*par)[PS_MAX_NR_IIDICC],
711
                    int num_par, int num_env, int full)
712
{
713
    int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
714
    int e;
715
    if (num_par == 20 || num_par == 11) {
716
        for (e = 0; e < num_env; e++) {
717
            map_idx_20_to_34(par_mapped[e], par[e], full);
718
        }
719
    } else if (num_par == 10 || num_par == 5) {
720
        for (e = 0; e < num_env; e++) {
721
            map_idx_10_to_34(par_mapped[e], par[e], full);
722
        }
723
    } else {
724
        *p_par_mapped = par;
725
    }
726
}
727
 
728
static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
729
                    int8_t           (*par)[PS_MAX_NR_IIDICC],
730
                    int num_par, int num_env, int full)
731
{
732
    int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
733
    int e;
734
    if (num_par == 34 || num_par == 17) {
735
        for (e = 0; e < num_env; e++) {
736
            map_idx_34_to_20(par_mapped[e], par[e], full);
737
        }
738
    } else if (num_par == 10 || num_par == 5) {
739
        for (e = 0; e < num_env; e++) {
740
            map_idx_10_to_20(par_mapped[e], par[e], full);
741
        }
742
    } else {
743
        *p_par_mapped = par;
744
    }
745
}
746
 
747
static void stereo_processing(PSContext *ps, float (*l)[32][2], float (*r)[32][2], int is34)
748
{
749
    int e, b, k;
750
 
751
    float (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11;
752
    float (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12;
753
    float (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21;
754
    float (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22;
755
    int8_t *opd_hist = ps->opd_hist;
756
    int8_t *ipd_hist = ps->ipd_hist;
757
    int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
758
    int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
759
    int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
760
    int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
761
    int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf;
762
    int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf;
763
    int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf;
764
    int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf;
765
    const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
766
    const float (*H_LUT)[8][4] = (PS_BASELINE || ps->icc_mode < 3) ? HA : HB;
767
 
768
    //Remapping
769
    if (ps->num_env_old) {
770
        memcpy(H11[0][0], H11[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[0][0][0]));
771
        memcpy(H11[1][0], H11[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[1][0][0]));
772
        memcpy(H12[0][0], H12[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[0][0][0]));
773
        memcpy(H12[1][0], H12[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[1][0][0]));
774
        memcpy(H21[0][0], H21[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[0][0][0]));
775
        memcpy(H21[1][0], H21[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[1][0][0]));
776
        memcpy(H22[0][0], H22[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[0][0][0]));
777
        memcpy(H22[1][0], H22[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[1][0][0]));
778
    }
779
 
780
    if (is34) {
781
        remap34(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
782
        remap34(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
783
        if (ps->enable_ipdopd) {
784
            remap34(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
785
            remap34(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
786
        }
787
        if (!ps->is34bands_old) {
788
            map_val_20_to_34(H11[0][0]);
789
            map_val_20_to_34(H11[1][0]);
790
            map_val_20_to_34(H12[0][0]);
791
            map_val_20_to_34(H12[1][0]);
792
            map_val_20_to_34(H21[0][0]);
793
            map_val_20_to_34(H21[1][0]);
794
            map_val_20_to_34(H22[0][0]);
795
            map_val_20_to_34(H22[1][0]);
796
            ipdopd_reset(ipd_hist, opd_hist);
797
        }
798
    } else {
799
        remap20(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
800
        remap20(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
801
        if (ps->enable_ipdopd) {
802
            remap20(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
803
            remap20(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
804
        }
805
        if (ps->is34bands_old) {
806
            map_val_34_to_20(H11[0][0]);
807
            map_val_34_to_20(H11[1][0]);
808
            map_val_34_to_20(H12[0][0]);
809
            map_val_34_to_20(H12[1][0]);
810
            map_val_34_to_20(H21[0][0]);
811
            map_val_34_to_20(H21[1][0]);
812
            map_val_34_to_20(H22[0][0]);
813
            map_val_34_to_20(H22[1][0]);
814
            ipdopd_reset(ipd_hist, opd_hist);
815
        }
816
    }
817
 
818
    //Mixing
819
    for (e = 0; e < ps->num_env; e++) {
820
        for (b = 0; b < NR_PAR_BANDS[is34]; b++) {
821
            float h11, h12, h21, h22;
822
            h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][0];
823
            h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][1];
824
            h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][2];
825
            h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][3];
826
 
827
            if (!PS_BASELINE && ps->enable_ipdopd && 2*b <= NR_PAR_BANDS[is34]) {
828
                //The spec say says to only run this smoother when enable_ipdopd
829
                //is set but the reference decoder appears to run it constantly
830
                float h11i, h12i, h21i, h22i;
831
                float ipd_adj_re, ipd_adj_im;
832
                int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b];
833
                int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b];
834
                float opd_re = pd_re_smooth[opd_idx];
835
                float opd_im = pd_im_smooth[opd_idx];
836
                float ipd_re = pd_re_smooth[ipd_idx];
837
                float ipd_im = pd_im_smooth[ipd_idx];
838
                opd_hist[b] = opd_idx & 0x3F;
839
                ipd_hist[b] = ipd_idx & 0x3F;
840
 
841
                ipd_adj_re = opd_re*ipd_re + opd_im*ipd_im;
842
                ipd_adj_im = opd_im*ipd_re - opd_re*ipd_im;
843
                h11i = h11 * opd_im;
844
                h11  = h11 * opd_re;
845
                h12i = h12 * ipd_adj_im;
846
                h12  = h12 * ipd_adj_re;
847
                h21i = h21 * opd_im;
848
                h21  = h21 * opd_re;
849
                h22i = h22 * ipd_adj_im;
850
                h22  = h22 * ipd_adj_re;
851
                H11[1][e+1][b] = h11i;
852
                H12[1][e+1][b] = h12i;
853
                H21[1][e+1][b] = h21i;
854
                H22[1][e+1][b] = h22i;
855
            }
856
            H11[0][e+1][b] = h11;
857
            H12[0][e+1][b] = h12;
858
            H21[0][e+1][b] = h21;
859
            H22[0][e+1][b] = h22;
860
        }
861
        for (k = 0; k < NR_BANDS[is34]; k++) {
862
            float h[2][4];
863
            float h_step[2][4];
864
            int start = ps->border_position[e];
865
            int stop  = ps->border_position[e+1];
866
            float width = 1.f / (stop - start);
867
            b = k_to_i[k];
868
            h[0][0] = H11[0][e][b];
869
            h[0][1] = H12[0][e][b];
870
            h[0][2] = H21[0][e][b];
871
            h[0][3] = H22[0][e][b];
872
            if (!PS_BASELINE && ps->enable_ipdopd) {
873
            //Is this necessary? ps_04_new seems unchanged
874
            if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) {
875
                h[1][0] = -H11[1][e][b];
876
                h[1][1] = -H12[1][e][b];
877
                h[1][2] = -H21[1][e][b];
878
                h[1][3] = -H22[1][e][b];
879
            } else {
880
                h[1][0] = H11[1][e][b];
881
                h[1][1] = H12[1][e][b];
882
                h[1][2] = H21[1][e][b];
883
                h[1][3] = H22[1][e][b];
884
            }
885
            }
886
            //Interpolation
887
            h_step[0][0] = (H11[0][e+1][b] - h[0][0]) * width;
888
            h_step[0][1] = (H12[0][e+1][b] - h[0][1]) * width;
889
            h_step[0][2] = (H21[0][e+1][b] - h[0][2]) * width;
890
            h_step[0][3] = (H22[0][e+1][b] - h[0][3]) * width;
891
            if (!PS_BASELINE && ps->enable_ipdopd) {
892
                h_step[1][0] = (H11[1][e+1][b] - h[1][0]) * width;
893
                h_step[1][1] = (H12[1][e+1][b] - h[1][1]) * width;
894
                h_step[1][2] = (H21[1][e+1][b] - h[1][2]) * width;
895
                h_step[1][3] = (H22[1][e+1][b] - h[1][3]) * width;
896
            }
897
            ps->dsp.stereo_interpolate[!PS_BASELINE && ps->enable_ipdopd](
898
                l[k] + start + 1, r[k] + start + 1,
899
                h, h_step, stop - start);
900
        }
901
    }
902
}
903
 
904
int ff_ps_apply(AVCodecContext *avctx, PSContext *ps, float L[2][38][64], float R[2][38][64], int top)
905
{
906
    LOCAL_ALIGNED_16(float, Lbuf, [91], [32][2]);
907
    LOCAL_ALIGNED_16(float, Rbuf, [91], [32][2]);
908
    const int len = 32;
909
    int is34 = ps->is34bands;
910
 
911
    top += NR_BANDS[is34] - 64;
912
    memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0]));
913
    if (top < NR_ALLPASS_BANDS[is34])
914
        memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0]));
915
 
916
    hybrid_analysis(&ps->dsp, Lbuf, ps->in_buf, L, is34, len);
917
    decorrelation(ps, Rbuf, Lbuf, is34);
918
    stereo_processing(ps, Lbuf, Rbuf, is34);
919
    hybrid_synthesis(&ps->dsp, L, Lbuf, is34, len);
920
    hybrid_synthesis(&ps->dsp, R, Rbuf, is34, len);
921
 
922
    return 0;
923
}
924
 
925
#define PS_INIT_VLC_STATIC(num, size) \
926
    INIT_VLC_STATIC(&vlc_ps[num], 9, ps_tmp[num].table_size / ps_tmp[num].elem_size,    \
927
                    ps_tmp[num].ps_bits, 1, 1,                                          \
928
                    ps_tmp[num].ps_codes, ps_tmp[num].elem_size, ps_tmp[num].elem_size, \
929
                    size);
930
 
931
#define PS_VLC_ROW(name) \
932
    { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
933
 
934
av_cold void ff_ps_init(void) {
935
    // Syntax initialization
936
    static const struct {
937
        const void *ps_codes, *ps_bits;
938
        const unsigned int table_size, elem_size;
939
    } ps_tmp[] = {
940
        PS_VLC_ROW(huff_iid_df1),
941
        PS_VLC_ROW(huff_iid_dt1),
942
        PS_VLC_ROW(huff_iid_df0),
943
        PS_VLC_ROW(huff_iid_dt0),
944
        PS_VLC_ROW(huff_icc_df),
945
        PS_VLC_ROW(huff_icc_dt),
946
        PS_VLC_ROW(huff_ipd_df),
947
        PS_VLC_ROW(huff_ipd_dt),
948
        PS_VLC_ROW(huff_opd_df),
949
        PS_VLC_ROW(huff_opd_dt),
950
    };
951
 
952
    PS_INIT_VLC_STATIC(0, 1544);
953
    PS_INIT_VLC_STATIC(1,  832);
954
    PS_INIT_VLC_STATIC(2, 1024);
955
    PS_INIT_VLC_STATIC(3, 1036);
956
    PS_INIT_VLC_STATIC(4,  544);
957
    PS_INIT_VLC_STATIC(5,  544);
958
    PS_INIT_VLC_STATIC(6,  512);
959
    PS_INIT_VLC_STATIC(7,  512);
960
    PS_INIT_VLC_STATIC(8,  512);
961
    PS_INIT_VLC_STATIC(9,  512);
962
 
963
    ps_tableinit();
964
}
965
 
966
av_cold void ff_ps_ctx_init(PSContext *ps)
967
{
968
    ff_psdsp_init(&ps->dsp);
969
}