Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
6148 serge 1
/*
2
 * Copyright (C) 2010 Georg Martius 
3
 * Copyright (C) 2010 Daniel G. Taylor 
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
 
22
/**
23
 * @file
24
 * transform input video
25
 */
26
 
27
#include "libavutil/common.h"
28
#include "libavutil/avassert.h"
29
 
30
#include "transform.h"
31
 
32
#define INTERPOLATE_METHOD(name) \
33
    static uint8_t name(float x, float y, const uint8_t *src, \
34
                        int width, int height, int stride, uint8_t def)
35
 
36
#define PIXEL(img, x, y, w, h, stride, def) \
37
    ((x) < 0 || (y) < 0) ? (def) : \
38
    (((x) >= (w) || (y) >= (h)) ? (def) : \
39
    img[(x) + (y) * (stride)])
40
 
41
/**
42
 * Nearest neighbor interpolation
43
 */
44
INTERPOLATE_METHOD(interpolate_nearest)
45
{
46
    return PIXEL(src, (int)(x + 0.5), (int)(y + 0.5), width, height, stride, def);
47
}
48
 
49
/**
50
 * Bilinear interpolation
51
 */
52
INTERPOLATE_METHOD(interpolate_bilinear)
53
{
54
    int x_c, x_f, y_c, y_f;
55
    int v1, v2, v3, v4;
56
 
57
    if (x < -1 || x > width || y < -1 || y > height) {
58
        return def;
59
    } else {
60
        x_f = (int)x;
61
        x_c = x_f + 1;
62
 
63
        y_f = (int)y;
64
        y_c = y_f + 1;
65
 
66
        v1 = PIXEL(src, x_c, y_c, width, height, stride, def);
67
        v2 = PIXEL(src, x_c, y_f, width, height, stride, def);
68
        v3 = PIXEL(src, x_f, y_c, width, height, stride, def);
69
        v4 = PIXEL(src, x_f, y_f, width, height, stride, def);
70
 
71
        return (v1*(x - x_f)*(y - y_f) + v2*((x - x_f)*(y_c - y)) +
72
                v3*(x_c - x)*(y - y_f) + v4*((x_c - x)*(y_c - y)));
73
    }
74
}
75
 
76
/**
77
 * Biquadratic interpolation
78
 */
79
INTERPOLATE_METHOD(interpolate_biquadratic)
80
{
81
    int     x_c, x_f, y_c, y_f;
82
    uint8_t v1,  v2,  v3,  v4;
83
    float   f1,  f2,  f3,  f4;
84
 
85
    if (x < - 1 || x > width || y < -1 || y > height)
86
        return def;
87
    else {
88
        x_f = (int)x;
89
        x_c = x_f + 1;
90
        y_f = (int)y;
91
        y_c = y_f + 1;
92
 
93
        v1 = PIXEL(src, x_c, y_c, width, height, stride, def);
94
        v2 = PIXEL(src, x_c, y_f, width, height, stride, def);
95
        v3 = PIXEL(src, x_f, y_c, width, height, stride, def);
96
        v4 = PIXEL(src, x_f, y_f, width, height, stride, def);
97
 
98
        f1 = 1 - sqrt((x_c - x) * (y_c - y));
99
        f2 = 1 - sqrt((x_c - x) * (y - y_f));
100
        f3 = 1 - sqrt((x - x_f) * (y_c - y));
101
        f4 = 1 - sqrt((x - x_f) * (y - y_f));
102
        return (v1 * f1 + v2 * f2 + v3 * f3 + v4 * f4) / (f1 + f2 + f3 + f4);
103
    }
104
}
105
 
106
void avfilter_get_matrix(float x_shift, float y_shift, float angle, float zoom, float *matrix) {
107
    matrix[0] = zoom * cos(angle);
108
    matrix[1] = -sin(angle);
109
    matrix[2] = x_shift;
110
    matrix[3] = -matrix[1];
111
    matrix[4] = matrix[0];
112
    matrix[5] = y_shift;
113
    matrix[6] = 0;
114
    matrix[7] = 0;
115
    matrix[8] = 1;
116
}
117
 
118
void avfilter_add_matrix(const float *m1, const float *m2, float *result)
119
{
120
    int i;
121
    for (i = 0; i < 9; i++)
122
        result[i] = m1[i] + m2[i];
123
}
124
 
125
void avfilter_sub_matrix(const float *m1, const float *m2, float *result)
126
{
127
    int i;
128
    for (i = 0; i < 9; i++)
129
        result[i] = m1[i] - m2[i];
130
}
131
 
132
void avfilter_mul_matrix(const float *m1, float scalar, float *result)
133
{
134
    int i;
135
    for (i = 0; i < 9; i++)
136
        result[i] = m1[i] * scalar;
137
}
138
 
139
static inline int mirror(int v, int m)
140
{
141
    while ((unsigned)v > (unsigned)m) {
142
        v = -v;
143
        if (v < 0)
144
            v += 2 * m;
145
    }
146
    return v;
147
}
148
 
149
int avfilter_transform(const uint8_t *src, uint8_t *dst,
150
                        int src_stride, int dst_stride,
151
                        int width, int height, const float *matrix,
152
                        enum InterpolateMethod interpolate,
153
                        enum FillMethod fill)
154
{
155
    int x, y;
156
    float x_s, y_s;
157
    uint8_t def = 0;
158
    uint8_t (*func)(float, float, const uint8_t *, int, int, int, uint8_t) = NULL;
159
 
160
    switch(interpolate) {
161
        case INTERPOLATE_NEAREST:
162
            func = interpolate_nearest;
163
            break;
164
        case INTERPOLATE_BILINEAR:
165
            func = interpolate_bilinear;
166
            break;
167
        case INTERPOLATE_BIQUADRATIC:
168
            func = interpolate_biquadratic;
169
            break;
170
        default:
171
            return AVERROR(EINVAL);
172
    }
173
 
174
    for (y = 0; y < height; y++) {
175
        for(x = 0; x < width; x++) {
176
            x_s = x * matrix[0] + y * matrix[1] + matrix[2];
177
            y_s = x * matrix[3] + y * matrix[4] + matrix[5];
178
 
179
            switch(fill) {
180
                case FILL_ORIGINAL:
181
                    def = src[y * src_stride + x];
182
                    break;
183
                case FILL_CLAMP:
184
                    y_s = av_clipf(y_s, 0, height - 1);
185
                    x_s = av_clipf(x_s, 0, width - 1);
186
                    def = src[(int)y_s * src_stride + (int)x_s];
187
                    break;
188
                case FILL_MIRROR:
189
                    x_s = mirror(x_s,  width-1);
190
                    y_s = mirror(y_s, height-1);
191
 
192
                    av_assert2(x_s >= 0 && y_s >= 0);
193
                    av_assert2(x_s < width && y_s < height);
194
                    def = src[(int)y_s * src_stride + (int)x_s];
195
            }
196
 
197
            dst[y * dst_stride + x] = func(x_s, y_s, src, width, height, src_stride, def);
198
        }
199
    }
200
    return 0;
201
}