Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
6148 serge 1
/*
2
 * Copyright (c) 2012 Pavel Koshevoy 
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 */
20
 
21
/**
22
 * @file
23
 * tempo scaling audio filter -- an implementation of WSOLA algorithm
24
 *
25
 * Based on MIT licensed yaeAudioTempoFilter.h and yaeAudioFragment.h
26
 * from Apprentice Video player by Pavel Koshevoy.
27
 * https://sourceforge.net/projects/apprenticevideo/
28
 *
29
 * An explanation of SOLA algorithm is available at
30
 * http://www.surina.net/article/time-and-pitch-scaling.html
31
 *
32
 * WSOLA is very similar to SOLA, only one major difference exists between
33
 * these algorithms.  SOLA shifts audio fragments along the output stream,
34
 * where as WSOLA shifts audio fragments along the input stream.
35
 *
36
 * The advantage of WSOLA algorithm is that the overlap region size is
37
 * always the same, therefore the blending function is constant and
38
 * can be precomputed.
39
 */
40
 
41
#include 
42
#include "libavcodec/avfft.h"
43
#include "libavutil/avassert.h"
44
#include "libavutil/avstring.h"
45
#include "libavutil/channel_layout.h"
46
#include "libavutil/eval.h"
47
#include "libavutil/opt.h"
48
#include "libavutil/samplefmt.h"
49
#include "avfilter.h"
50
#include "audio.h"
51
#include "internal.h"
52
 
53
/**
54
 * A fragment of audio waveform
55
 */
56
typedef struct {
57
    // index of the first sample of this fragment in the overall waveform;
58
    // 0: input sample position
59
    // 1: output sample position
60
    int64_t position[2];
61
 
62
    // original packed multi-channel samples:
63
    uint8_t *data;
64
 
65
    // number of samples in this fragment:
66
    int nsamples;
67
 
68
    // rDFT transform of the down-mixed mono fragment, used for
69
    // fast waveform alignment via correlation in frequency domain:
70
    FFTSample *xdat;
71
} AudioFragment;
72
 
73
/**
74
 * Filter state machine states
75
 */
76
typedef enum {
77
    YAE_LOAD_FRAGMENT,
78
    YAE_ADJUST_POSITION,
79
    YAE_RELOAD_FRAGMENT,
80
    YAE_OUTPUT_OVERLAP_ADD,
81
    YAE_FLUSH_OUTPUT,
82
} FilterState;
83
 
84
/**
85
 * Filter state machine
86
 */
87
typedef struct {
88
    const AVClass *class;
89
 
90
    // ring-buffer of input samples, necessary because some times
91
    // input fragment position may be adjusted backwards:
92
    uint8_t *buffer;
93
 
94
    // ring-buffer maximum capacity, expressed in sample rate time base:
95
    int ring;
96
 
97
    // ring-buffer house keeping:
98
    int size;
99
    int head;
100
    int tail;
101
 
102
    // 0: input sample position corresponding to the ring buffer tail
103
    // 1: output sample position
104
    int64_t position[2];
105
 
106
    // sample format:
107
    enum AVSampleFormat format;
108
 
109
    // number of channels:
110
    int channels;
111
 
112
    // row of bytes to skip from one sample to next, across multple channels;
113
    // stride = (number-of-channels * bits-per-sample-per-channel) / 8
114
    int stride;
115
 
116
    // fragment window size, power-of-two integer:
117
    int window;
118
 
119
    // Hann window coefficients, for feathering
120
    // (blending) the overlapping fragment region:
121
    float *hann;
122
 
123
    // tempo scaling factor:
124
    double tempo;
125
 
126
    // a snapshot of previous fragment input and output position values
127
    // captured when the tempo scale factor was set most recently:
128
    int64_t origin[2];
129
 
130
    // current/previous fragment ring-buffer:
131
    AudioFragment frag[2];
132
 
133
    // current fragment index:
134
    uint64_t nfrag;
135
 
136
    // current state:
137
    FilterState state;
138
 
139
    // for fast correlation calculation in frequency domain:
140
    RDFTContext *real_to_complex;
141
    RDFTContext *complex_to_real;
142
    FFTSample *correlation;
143
 
144
    // for managing AVFilterPad.request_frame and AVFilterPad.filter_frame
145
    AVFrame *dst_buffer;
146
    uint8_t *dst;
147
    uint8_t *dst_end;
148
    uint64_t nsamples_in;
149
    uint64_t nsamples_out;
150
} ATempoContext;
151
 
152
#define OFFSET(x) offsetof(ATempoContext, x)
153
 
154
static const AVOption atempo_options[] = {
155
    { "tempo", "set tempo scale factor",
156
      OFFSET(tempo), AV_OPT_TYPE_DOUBLE, { .dbl = 1.0 }, 0.5, 2.0,
157
      AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_FILTERING_PARAM },
158
    { NULL }
159
};
160
 
161
AVFILTER_DEFINE_CLASS(atempo);
162
 
163
inline static AudioFragment *yae_curr_frag(ATempoContext *atempo)
164
{
165
    return &atempo->frag[atempo->nfrag % 2];
166
}
167
 
168
inline static AudioFragment *yae_prev_frag(ATempoContext *atempo)
169
{
170
    return &atempo->frag[(atempo->nfrag + 1) % 2];
171
}
172
 
173
/**
174
 * Reset filter to initial state, do not deallocate existing local buffers.
175
 */
176
static void yae_clear(ATempoContext *atempo)
177
{
178
    atempo->size = 0;
179
    atempo->head = 0;
180
    atempo->tail = 0;
181
 
182
    atempo->nfrag = 0;
183
    atempo->state = YAE_LOAD_FRAGMENT;
184
 
185
    atempo->position[0] = 0;
186
    atempo->position[1] = 0;
187
 
188
    atempo->origin[0] = 0;
189
    atempo->origin[1] = 0;
190
 
191
    atempo->frag[0].position[0] = 0;
192
    atempo->frag[0].position[1] = 0;
193
    atempo->frag[0].nsamples    = 0;
194
 
195
    atempo->frag[1].position[0] = 0;
196
    atempo->frag[1].position[1] = 0;
197
    atempo->frag[1].nsamples    = 0;
198
 
199
    // shift left position of 1st fragment by half a window
200
    // so that no re-normalization would be required for
201
    // the left half of the 1st fragment:
202
    atempo->frag[0].position[0] = -(int64_t)(atempo->window / 2);
203
    atempo->frag[0].position[1] = -(int64_t)(atempo->window / 2);
204
 
205
    av_frame_free(&atempo->dst_buffer);
206
    atempo->dst     = NULL;
207
    atempo->dst_end = NULL;
208
 
209
    atempo->nsamples_in       = 0;
210
    atempo->nsamples_out      = 0;
211
}
212
 
213
/**
214
 * Reset filter to initial state and deallocate all buffers.
215
 */
216
static void yae_release_buffers(ATempoContext *atempo)
217
{
218
    yae_clear(atempo);
219
 
220
    av_freep(&atempo->frag[0].data);
221
    av_freep(&atempo->frag[1].data);
222
    av_freep(&atempo->frag[0].xdat);
223
    av_freep(&atempo->frag[1].xdat);
224
 
225
    av_freep(&atempo->buffer);
226
    av_freep(&atempo->hann);
227
    av_freep(&atempo->correlation);
228
 
229
    av_rdft_end(atempo->real_to_complex);
230
    atempo->real_to_complex = NULL;
231
 
232
    av_rdft_end(atempo->complex_to_real);
233
    atempo->complex_to_real = NULL;
234
}
235
 
236
/* av_realloc is not aligned enough; fortunately, the data does not need to
237
 * be preserved */
238
#define RE_MALLOC_OR_FAIL(field, field_size)                    \
239
    do {                                                        \
240
        av_freep(&field);                                       \
241
        field = av_malloc(field_size);                          \
242
        if (!field) {                                           \
243
            yae_release_buffers(atempo);                        \
244
            return AVERROR(ENOMEM);                             \
245
        }                                                       \
246
    } while (0)
247
 
248
/**
249
 * Prepare filter for processing audio data of given format,
250
 * sample rate and number of channels.
251
 */
252
static int yae_reset(ATempoContext *atempo,
253
                     enum AVSampleFormat format,
254
                     int sample_rate,
255
                     int channels)
256
{
257
    const int sample_size = av_get_bytes_per_sample(format);
258
    uint32_t nlevels  = 0;
259
    uint32_t pot;
260
    int i;
261
 
262
    atempo->format   = format;
263
    atempo->channels = channels;
264
    atempo->stride   = sample_size * channels;
265
 
266
    // pick a segment window size:
267
    atempo->window = sample_rate / 24;
268
 
269
    // adjust window size to be a power-of-two integer:
270
    nlevels = av_log2(atempo->window);
271
    pot = 1 << nlevels;
272
    av_assert0(pot <= atempo->window);
273
 
274
    if (pot < atempo->window) {
275
        atempo->window = pot * 2;
276
        nlevels++;
277
    }
278
 
279
    // initialize audio fragment buffers:
280
    RE_MALLOC_OR_FAIL(atempo->frag[0].data, atempo->window * atempo->stride);
281
    RE_MALLOC_OR_FAIL(atempo->frag[1].data, atempo->window * atempo->stride);
282
    RE_MALLOC_OR_FAIL(atempo->frag[0].xdat, atempo->window * sizeof(FFTComplex));
283
    RE_MALLOC_OR_FAIL(atempo->frag[1].xdat, atempo->window * sizeof(FFTComplex));
284
 
285
    // initialize rDFT contexts:
286
    av_rdft_end(atempo->real_to_complex);
287
    atempo->real_to_complex = NULL;
288
 
289
    av_rdft_end(atempo->complex_to_real);
290
    atempo->complex_to_real = NULL;
291
 
292
    atempo->real_to_complex = av_rdft_init(nlevels + 1, DFT_R2C);
293
    if (!atempo->real_to_complex) {
294
        yae_release_buffers(atempo);
295
        return AVERROR(ENOMEM);
296
    }
297
 
298
    atempo->complex_to_real = av_rdft_init(nlevels + 1, IDFT_C2R);
299
    if (!atempo->complex_to_real) {
300
        yae_release_buffers(atempo);
301
        return AVERROR(ENOMEM);
302
    }
303
 
304
    RE_MALLOC_OR_FAIL(atempo->correlation, atempo->window * sizeof(FFTComplex));
305
 
306
    atempo->ring = atempo->window * 3;
307
    RE_MALLOC_OR_FAIL(atempo->buffer, atempo->ring * atempo->stride);
308
 
309
    // initialize the Hann window function:
310
    RE_MALLOC_OR_FAIL(atempo->hann, atempo->window * sizeof(float));
311
 
312
    for (i = 0; i < atempo->window; i++) {
313
        double t = (double)i / (double)(atempo->window - 1);
314
        double h = 0.5 * (1.0 - cos(2.0 * M_PI * t));
315
        atempo->hann[i] = (float)h;
316
    }
317
 
318
    yae_clear(atempo);
319
    return 0;
320
}
321
 
322
static int yae_set_tempo(AVFilterContext *ctx, const char *arg_tempo)
323
{
324
    const AudioFragment *prev;
325
    ATempoContext *atempo = ctx->priv;
326
    char   *tail = NULL;
327
    double tempo = av_strtod(arg_tempo, &tail);
328
 
329
    if (tail && *tail) {
330
        av_log(ctx, AV_LOG_ERROR, "Invalid tempo value '%s'\n", arg_tempo);
331
        return AVERROR(EINVAL);
332
    }
333
 
334
    if (tempo < 0.5 || tempo > 2.0) {
335
        av_log(ctx, AV_LOG_ERROR, "Tempo value %f exceeds [0.5, 2.0] range\n",
336
               tempo);
337
        return AVERROR(EINVAL);
338
    }
339
 
340
    prev = yae_prev_frag(atempo);
341
    atempo->origin[0] = prev->position[0] + atempo->window / 2;
342
    atempo->origin[1] = prev->position[1] + atempo->window / 2;
343
    atempo->tempo = tempo;
344
    return 0;
345
}
346
 
347
/**
348
 * A helper macro for initializing complex data buffer with scalar data
349
 * of a given type.
350
 */
351
#define yae_init_xdat(scalar_type, scalar_max)                          \
352
    do {                                                                \
353
        const uint8_t *src_end = src +                                  \
354
            frag->nsamples * atempo->channels * sizeof(scalar_type);    \
355
                                                                        \
356
        FFTSample *xdat = frag->xdat;                                   \
357
        scalar_type tmp;                                                \
358
                                                                        \
359
        if (atempo->channels == 1) {                                    \
360
            for (; src < src_end; xdat++) {                             \
361
                tmp = *(const scalar_type *)src;                        \
362
                src += sizeof(scalar_type);                             \
363
                                                                        \
364
                *xdat = (FFTSample)tmp;                                 \
365
            }                                                           \
366
        } else {                                                        \
367
            FFTSample s, max, ti, si;                                   \
368
            int i;                                                      \
369
                                                                        \
370
            for (; src < src_end; xdat++) {                             \
371
                tmp = *(const scalar_type *)src;                        \
372
                src += sizeof(scalar_type);                             \
373
                                                                        \
374
                max = (FFTSample)tmp;                                   \
375
                s = FFMIN((FFTSample)scalar_max,                        \
376
                          (FFTSample)fabsf(max));                       \
377
                                                                        \
378
                for (i = 1; i < atempo->channels; i++) {                \
379
                    tmp = *(const scalar_type *)src;                    \
380
                    src += sizeof(scalar_type);                         \
381
                                                                        \
382
                    ti = (FFTSample)tmp;                                \
383
                    si = FFMIN((FFTSample)scalar_max,                   \
384
                               (FFTSample)fabsf(ti));                   \
385
                                                                        \
386
                    if (s < si) {                                       \
387
                        s   = si;                                       \
388
                        max = ti;                                       \
389
                    }                                                   \
390
                }                                                       \
391
                                                                        \
392
                *xdat = max;                                            \
393
            }                                                           \
394
        }                                                               \
395
    } while (0)
396
 
397
/**
398
 * Initialize complex data buffer of a given audio fragment
399
 * with down-mixed mono data of appropriate scalar type.
400
 */
401
static void yae_downmix(ATempoContext *atempo, AudioFragment *frag)
402
{
403
    // shortcuts:
404
    const uint8_t *src = frag->data;
405
 
406
    // init complex data buffer used for FFT and Correlation:
407
    memset(frag->xdat, 0, sizeof(FFTComplex) * atempo->window);
408
 
409
    if (atempo->format == AV_SAMPLE_FMT_U8) {
410
        yae_init_xdat(uint8_t, 127);
411
    } else if (atempo->format == AV_SAMPLE_FMT_S16) {
412
        yae_init_xdat(int16_t, 32767);
413
    } else if (atempo->format == AV_SAMPLE_FMT_S32) {
414
        yae_init_xdat(int, 2147483647);
415
    } else if (atempo->format == AV_SAMPLE_FMT_FLT) {
416
        yae_init_xdat(float, 1);
417
    } else if (atempo->format == AV_SAMPLE_FMT_DBL) {
418
        yae_init_xdat(double, 1);
419
    }
420
}
421
 
422
/**
423
 * Populate the internal data buffer on as-needed basis.
424
 *
425
 * @return
426
 *   0 if requested data was already available or was successfully loaded,
427
 *   AVERROR(EAGAIN) if more input data is required.
428
 */
429
static int yae_load_data(ATempoContext *atempo,
430
                         const uint8_t **src_ref,
431
                         const uint8_t *src_end,
432
                         int64_t stop_here)
433
{
434
    // shortcut:
435
    const uint8_t *src = *src_ref;
436
    const int read_size = stop_here - atempo->position[0];
437
 
438
    if (stop_here <= atempo->position[0]) {
439
        return 0;
440
    }
441
 
442
    // samples are not expected to be skipped:
443
    av_assert0(read_size <= atempo->ring);
444
 
445
    while (atempo->position[0] < stop_here && src < src_end) {
446
        int src_samples = (src_end - src) / atempo->stride;
447
 
448
        // load data piece-wise, in order to avoid complicating the logic:
449
        int nsamples = FFMIN(read_size, src_samples);
450
        int na;
451
        int nb;
452
 
453
        nsamples = FFMIN(nsamples, atempo->ring);
454
        na = FFMIN(nsamples, atempo->ring - atempo->tail);
455
        nb = FFMIN(nsamples - na, atempo->ring);
456
 
457
        if (na) {
458
            uint8_t *a = atempo->buffer + atempo->tail * atempo->stride;
459
            memcpy(a, src, na * atempo->stride);
460
 
461
            src += na * atempo->stride;
462
            atempo->position[0] += na;
463
 
464
            atempo->size = FFMIN(atempo->size + na, atempo->ring);
465
            atempo->tail = (atempo->tail + na) % atempo->ring;
466
            atempo->head =
467
                atempo->size < atempo->ring ?
468
                atempo->tail - atempo->size :
469
                atempo->tail;
470
        }
471
 
472
        if (nb) {
473
            uint8_t *b = atempo->buffer;
474
            memcpy(b, src, nb * atempo->stride);
475
 
476
            src += nb * atempo->stride;
477
            atempo->position[0] += nb;
478
 
479
            atempo->size = FFMIN(atempo->size + nb, atempo->ring);
480
            atempo->tail = (atempo->tail + nb) % atempo->ring;
481
            atempo->head =
482
                atempo->size < atempo->ring ?
483
                atempo->tail - atempo->size :
484
                atempo->tail;
485
        }
486
    }
487
 
488
    // pass back the updated source buffer pointer:
489
    *src_ref = src;
490
 
491
    // sanity check:
492
    av_assert0(atempo->position[0] <= stop_here);
493
 
494
    return atempo->position[0] == stop_here ? 0 : AVERROR(EAGAIN);
495
}
496
 
497
/**
498
 * Populate current audio fragment data buffer.
499
 *
500
 * @return
501
 *   0 when the fragment is ready,
502
 *   AVERROR(EAGAIN) if more input data is required.
503
 */
504
static int yae_load_frag(ATempoContext *atempo,
505
                         const uint8_t **src_ref,
506
                         const uint8_t *src_end)
507
{
508
    // shortcuts:
509
    AudioFragment *frag = yae_curr_frag(atempo);
510
    uint8_t *dst;
511
    int64_t missing, start, zeros;
512
    uint32_t nsamples;
513
    const uint8_t *a, *b;
514
    int i0, i1, n0, n1, na, nb;
515
 
516
    int64_t stop_here = frag->position[0] + atempo->window;
517
    if (src_ref && yae_load_data(atempo, src_ref, src_end, stop_here) != 0) {
518
        return AVERROR(EAGAIN);
519
    }
520
 
521
    // calculate the number of samples we don't have:
522
    missing =
523
        stop_here > atempo->position[0] ?
524
        stop_here - atempo->position[0] : 0;
525
 
526
    nsamples =
527
        missing < (int64_t)atempo->window ?
528
        (uint32_t)(atempo->window - missing) : 0;
529
 
530
    // setup the output buffer:
531
    frag->nsamples = nsamples;
532
    dst = frag->data;
533
 
534
    start = atempo->position[0] - atempo->size;
535
    zeros = 0;
536
 
537
    if (frag->position[0] < start) {
538
        // what we don't have we substitute with zeros:
539
        zeros = FFMIN(start - frag->position[0], (int64_t)nsamples);
540
        av_assert0(zeros != nsamples);
541
 
542
        memset(dst, 0, zeros * atempo->stride);
543
        dst += zeros * atempo->stride;
544
    }
545
 
546
    if (zeros == nsamples) {
547
        return 0;
548
    }
549
 
550
    // get the remaining data from the ring buffer:
551
    na = (atempo->head < atempo->tail ?
552
          atempo->tail - atempo->head :
553
          atempo->ring - atempo->head);
554
 
555
    nb = atempo->head < atempo->tail ? 0 : atempo->tail;
556
 
557
    // sanity check:
558
    av_assert0(nsamples <= zeros + na + nb);
559
 
560
    a = atempo->buffer + atempo->head * atempo->stride;
561
    b = atempo->buffer;
562
 
563
    i0 = frag->position[0] + zeros - start;
564
    i1 = i0 < na ? 0 : i0 - na;
565
 
566
    n0 = i0 < na ? FFMIN(na - i0, (int)(nsamples - zeros)) : 0;
567
    n1 = nsamples - zeros - n0;
568
 
569
    if (n0) {
570
        memcpy(dst, a + i0 * atempo->stride, n0 * atempo->stride);
571
        dst += n0 * atempo->stride;
572
    }
573
 
574
    if (n1) {
575
        memcpy(dst, b + i1 * atempo->stride, n1 * atempo->stride);
576
    }
577
 
578
    return 0;
579
}
580
 
581
/**
582
 * Prepare for loading next audio fragment.
583
 */
584
static void yae_advance_to_next_frag(ATempoContext *atempo)
585
{
586
    const double fragment_step = atempo->tempo * (double)(atempo->window / 2);
587
 
588
    const AudioFragment *prev;
589
    AudioFragment       *frag;
590
 
591
    atempo->nfrag++;
592
    prev = yae_prev_frag(atempo);
593
    frag = yae_curr_frag(atempo);
594
 
595
    frag->position[0] = prev->position[0] + (int64_t)fragment_step;
596
    frag->position[1] = prev->position[1] + atempo->window / 2;
597
    frag->nsamples    = 0;
598
}
599
 
600
/**
601
 * Calculate cross-correlation via rDFT.
602
 *
603
 * Multiply two vectors of complex numbers (result of real_to_complex rDFT)
604
 * and transform back via complex_to_real rDFT.
605
 */
606
static void yae_xcorr_via_rdft(FFTSample *xcorr,
607
                               RDFTContext *complex_to_real,
608
                               const FFTComplex *xa,
609
                               const FFTComplex *xb,
610
                               const int window)
611
{
612
    FFTComplex *xc = (FFTComplex *)xcorr;
613
    int i;
614
 
615
    // NOTE: first element requires special care -- Given Y = rDFT(X),
616
    // Im(Y[0]) and Im(Y[N/2]) are always zero, therefore av_rdft_calc
617
    // stores Re(Y[N/2]) in place of Im(Y[0]).
618
 
619
    xc->re = xa->re * xb->re;
620
    xc->im = xa->im * xb->im;
621
    xa++;
622
    xb++;
623
    xc++;
624
 
625
    for (i = 1; i < window; i++, xa++, xb++, xc++) {
626
        xc->re = (xa->re * xb->re + xa->im * xb->im);
627
        xc->im = (xa->im * xb->re - xa->re * xb->im);
628
    }
629
 
630
    // apply inverse rDFT:
631
    av_rdft_calc(complex_to_real, xcorr);
632
}
633
 
634
/**
635
 * Calculate alignment offset for given fragment
636
 * relative to the previous fragment.
637
 *
638
 * @return alignment offset of current fragment relative to previous.
639
 */
640
static int yae_align(AudioFragment *frag,
641
                     const AudioFragment *prev,
642
                     const int window,
643
                     const int delta_max,
644
                     const int drift,
645
                     FFTSample *correlation,
646
                     RDFTContext *complex_to_real)
647
{
648
    int       best_offset = -drift;
649
    FFTSample best_metric = -FLT_MAX;
650
    FFTSample *xcorr;
651
 
652
    int i0;
653
    int i1;
654
    int i;
655
 
656
    yae_xcorr_via_rdft(correlation,
657
                       complex_to_real,
658
                       (const FFTComplex *)prev->xdat,
659
                       (const FFTComplex *)frag->xdat,
660
                       window);
661
 
662
    // identify search window boundaries:
663
    i0 = FFMAX(window / 2 - delta_max - drift, 0);
664
    i0 = FFMIN(i0, window);
665
 
666
    i1 = FFMIN(window / 2 + delta_max - drift, window - window / 16);
667
    i1 = FFMAX(i1, 0);
668
 
669
    // identify cross-correlation peaks within search window:
670
    xcorr = correlation + i0;
671
 
672
    for (i = i0; i < i1; i++, xcorr++) {
673
        FFTSample metric = *xcorr;
674
 
675
        // normalize:
676
        FFTSample drifti = (FFTSample)(drift + i);
677
        metric *= drifti * (FFTSample)(i - i0) * (FFTSample)(i1 - i);
678
 
679
        if (metric > best_metric) {
680
            best_metric = metric;
681
            best_offset = i - window / 2;
682
        }
683
    }
684
 
685
    return best_offset;
686
}
687
 
688
/**
689
 * Adjust current fragment position for better alignment
690
 * with previous fragment.
691
 *
692
 * @return alignment correction.
693
 */
694
static int yae_adjust_position(ATempoContext *atempo)
695
{
696
    const AudioFragment *prev = yae_prev_frag(atempo);
697
    AudioFragment       *frag = yae_curr_frag(atempo);
698
 
699
    const double prev_output_position =
700
        (double)(prev->position[1] - atempo->origin[1] + atempo->window / 2);
701
 
702
    const double ideal_output_position =
703
        (double)(prev->position[0] - atempo->origin[0] + atempo->window / 2) /
704
        atempo->tempo;
705
 
706
    const int drift = (int)(prev_output_position - ideal_output_position);
707
 
708
    const int delta_max  = atempo->window / 2;
709
    const int correction = yae_align(frag,
710
                                     prev,
711
                                     atempo->window,
712
                                     delta_max,
713
                                     drift,
714
                                     atempo->correlation,
715
                                     atempo->complex_to_real);
716
 
717
    if (correction) {
718
        // adjust fragment position:
719
        frag->position[0] -= correction;
720
 
721
        // clear so that the fragment can be reloaded:
722
        frag->nsamples = 0;
723
    }
724
 
725
    return correction;
726
}
727
 
728
/**
729
 * A helper macro for blending the overlap region of previous
730
 * and current audio fragment.
731
 */
732
#define yae_blend(scalar_type)                                          \
733
    do {                                                                \
734
        const scalar_type *aaa = (const scalar_type *)a;                \
735
        const scalar_type *bbb = (const scalar_type *)b;                \
736
                                                                        \
737
        scalar_type *out     = (scalar_type *)dst;                      \
738
        scalar_type *out_end = (scalar_type *)dst_end;                  \
739
        int64_t i;                                                      \
740
                                                                        \
741
        for (i = 0; i < overlap && out < out_end;                       \
742
             i++, atempo->position[1]++, wa++, wb++) {                  \
743
            float w0 = *wa;                                             \
744
            float w1 = *wb;                                             \
745
            int j;                                                      \
746
                                                                        \
747
            for (j = 0; j < atempo->channels;                           \
748
                 j++, aaa++, bbb++, out++) {                            \
749
                float t0 = (float)*aaa;                                 \
750
                float t1 = (float)*bbb;                                 \
751
                                                                        \
752
                *out =                                                  \
753
                    frag->position[0] + i < 0 ?                         \
754
                    *aaa :                                              \
755
                    (scalar_type)(t0 * w0 + t1 * w1);                   \
756
            }                                                           \
757
        }                                                               \
758
        dst = (uint8_t *)out;                                           \
759
    } while (0)
760
 
761
/**
762
 * Blend the overlap region of previous and current audio fragment
763
 * and output the results to the given destination buffer.
764
 *
765
 * @return
766
 *   0 if the overlap region was completely stored in the dst buffer,
767
 *   AVERROR(EAGAIN) if more destination buffer space is required.
768
 */
769
static int yae_overlap_add(ATempoContext *atempo,
770
                           uint8_t **dst_ref,
771
                           uint8_t *dst_end)
772
{
773
    // shortcuts:
774
    const AudioFragment *prev = yae_prev_frag(atempo);
775
    const AudioFragment *frag = yae_curr_frag(atempo);
776
 
777
    const int64_t start_here = FFMAX(atempo->position[1],
778
                                     frag->position[1]);
779
 
780
    const int64_t stop_here = FFMIN(prev->position[1] + prev->nsamples,
781
                                    frag->position[1] + frag->nsamples);
782
 
783
    const int64_t overlap = stop_here - start_here;
784
 
785
    const int64_t ia = start_here - prev->position[1];
786
    const int64_t ib = start_here - frag->position[1];
787
 
788
    const float *wa = atempo->hann + ia;
789
    const float *wb = atempo->hann + ib;
790
 
791
    const uint8_t *a = prev->data + ia * atempo->stride;
792
    const uint8_t *b = frag->data + ib * atempo->stride;
793
 
794
    uint8_t *dst = *dst_ref;
795
 
796
    av_assert0(start_here <= stop_here &&
797
               frag->position[1] <= start_here &&
798
               overlap <= frag->nsamples);
799
 
800
    if (atempo->format == AV_SAMPLE_FMT_U8) {
801
        yae_blend(uint8_t);
802
    } else if (atempo->format == AV_SAMPLE_FMT_S16) {
803
        yae_blend(int16_t);
804
    } else if (atempo->format == AV_SAMPLE_FMT_S32) {
805
        yae_blend(int);
806
    } else if (atempo->format == AV_SAMPLE_FMT_FLT) {
807
        yae_blend(float);
808
    } else if (atempo->format == AV_SAMPLE_FMT_DBL) {
809
        yae_blend(double);
810
    }
811
 
812
    // pass-back the updated destination buffer pointer:
813
    *dst_ref = dst;
814
 
815
    return atempo->position[1] == stop_here ? 0 : AVERROR(EAGAIN);
816
}
817
 
818
/**
819
 * Feed as much data to the filter as it is able to consume
820
 * and receive as much processed data in the destination buffer
821
 * as it is able to produce or store.
822
 */
823
static void
824
yae_apply(ATempoContext *atempo,
825
          const uint8_t **src_ref,
826
          const uint8_t *src_end,
827
          uint8_t **dst_ref,
828
          uint8_t *dst_end)
829
{
830
    while (1) {
831
        if (atempo->state == YAE_LOAD_FRAGMENT) {
832
            // load additional data for the current fragment:
833
            if (yae_load_frag(atempo, src_ref, src_end) != 0) {
834
                break;
835
            }
836
 
837
            // down-mix to mono:
838
            yae_downmix(atempo, yae_curr_frag(atempo));
839
 
840
            // apply rDFT:
841
            av_rdft_calc(atempo->real_to_complex, yae_curr_frag(atempo)->xdat);
842
 
843
            // must load the second fragment before alignment can start:
844
            if (!atempo->nfrag) {
845
                yae_advance_to_next_frag(atempo);
846
                continue;
847
            }
848
 
849
            atempo->state = YAE_ADJUST_POSITION;
850
        }
851
 
852
        if (atempo->state == YAE_ADJUST_POSITION) {
853
            // adjust position for better alignment:
854
            if (yae_adjust_position(atempo)) {
855
                // reload the fragment at the corrected position, so that the
856
                // Hann window blending would not require normalization:
857
                atempo->state = YAE_RELOAD_FRAGMENT;
858
            } else {
859
                atempo->state = YAE_OUTPUT_OVERLAP_ADD;
860
            }
861
        }
862
 
863
        if (atempo->state == YAE_RELOAD_FRAGMENT) {
864
            // load additional data if necessary due to position adjustment:
865
            if (yae_load_frag(atempo, src_ref, src_end) != 0) {
866
                break;
867
            }
868
 
869
            // down-mix to mono:
870
            yae_downmix(atempo, yae_curr_frag(atempo));
871
 
872
            // apply rDFT:
873
            av_rdft_calc(atempo->real_to_complex, yae_curr_frag(atempo)->xdat);
874
 
875
            atempo->state = YAE_OUTPUT_OVERLAP_ADD;
876
        }
877
 
878
        if (atempo->state == YAE_OUTPUT_OVERLAP_ADD) {
879
            // overlap-add and output the result:
880
            if (yae_overlap_add(atempo, dst_ref, dst_end) != 0) {
881
                break;
882
            }
883
 
884
            // advance to the next fragment, repeat:
885
            yae_advance_to_next_frag(atempo);
886
            atempo->state = YAE_LOAD_FRAGMENT;
887
        }
888
    }
889
}
890
 
891
/**
892
 * Flush any buffered data from the filter.
893
 *
894
 * @return
895
 *   0 if all data was completely stored in the dst buffer,
896
 *   AVERROR(EAGAIN) if more destination buffer space is required.
897
 */
898
static int yae_flush(ATempoContext *atempo,
899
                     uint8_t **dst_ref,
900
                     uint8_t *dst_end)
901
{
902
    AudioFragment *frag = yae_curr_frag(atempo);
903
    int64_t overlap_end;
904
    int64_t start_here;
905
    int64_t stop_here;
906
    int64_t offset;
907
 
908
    const uint8_t *src;
909
    uint8_t *dst;
910
 
911
    int src_size;
912
    int dst_size;
913
    int nbytes;
914
 
915
    atempo->state = YAE_FLUSH_OUTPUT;
916
 
917
    if (atempo->position[0] == frag->position[0] + frag->nsamples &&
918
        atempo->position[1] == frag->position[1] + frag->nsamples) {
919
        // the current fragment is already flushed:
920
        return 0;
921
    }
922
 
923
    if (frag->position[0] + frag->nsamples < atempo->position[0]) {
924
        // finish loading the current (possibly partial) fragment:
925
        yae_load_frag(atempo, NULL, NULL);
926
 
927
        if (atempo->nfrag) {
928
            // down-mix to mono:
929
            yae_downmix(atempo, frag);
930
 
931
            // apply rDFT:
932
            av_rdft_calc(atempo->real_to_complex, frag->xdat);
933
 
934
            // align current fragment to previous fragment:
935
            if (yae_adjust_position(atempo)) {
936
                // reload the current fragment due to adjusted position:
937
                yae_load_frag(atempo, NULL, NULL);
938
            }
939
        }
940
    }
941
 
942
    // flush the overlap region:
943
    overlap_end = frag->position[1] + FFMIN(atempo->window / 2,
944
                                            frag->nsamples);
945
 
946
    while (atempo->position[1] < overlap_end) {
947
        if (yae_overlap_add(atempo, dst_ref, dst_end) != 0) {
948
            return AVERROR(EAGAIN);
949
        }
950
    }
951
 
952
    // flush the remaininder of the current fragment:
953
    start_here = FFMAX(atempo->position[1], overlap_end);
954
    stop_here  = frag->position[1] + frag->nsamples;
955
    offset     = start_here - frag->position[1];
956
    av_assert0(start_here <= stop_here && frag->position[1] <= start_here);
957
 
958
    src = frag->data + offset * atempo->stride;
959
    dst = (uint8_t *)*dst_ref;
960
 
961
    src_size = (int)(stop_here - start_here) * atempo->stride;
962
    dst_size = dst_end - dst;
963
    nbytes = FFMIN(src_size, dst_size);
964
 
965
    memcpy(dst, src, nbytes);
966
    dst += nbytes;
967
 
968
    atempo->position[1] += (nbytes / atempo->stride);
969
 
970
    // pass-back the updated destination buffer pointer:
971
    *dst_ref = (uint8_t *)dst;
972
 
973
    return atempo->position[1] == stop_here ? 0 : AVERROR(EAGAIN);
974
}
975
 
976
static av_cold int init(AVFilterContext *ctx)
977
{
978
    ATempoContext *atempo = ctx->priv;
979
    atempo->format = AV_SAMPLE_FMT_NONE;
980
    atempo->state  = YAE_LOAD_FRAGMENT;
981
    return 0;
982
}
983
 
984
static av_cold void uninit(AVFilterContext *ctx)
985
{
986
    ATempoContext *atempo = ctx->priv;
987
    yae_release_buffers(atempo);
988
}
989
 
990
static int query_formats(AVFilterContext *ctx)
991
{
992
    AVFilterChannelLayouts *layouts = NULL;
993
    AVFilterFormats        *formats = NULL;
994
 
995
    // WSOLA necessitates an internal sliding window ring buffer
996
    // for incoming audio stream.
997
    //
998
    // Planar sample formats are too cumbersome to store in a ring buffer,
999
    // therefore planar sample formats are not supported.
1000
    //
1001
    static const enum AVSampleFormat sample_fmts[] = {
1002
        AV_SAMPLE_FMT_U8,
1003
        AV_SAMPLE_FMT_S16,
1004
        AV_SAMPLE_FMT_S32,
1005
        AV_SAMPLE_FMT_FLT,
1006
        AV_SAMPLE_FMT_DBL,
1007
        AV_SAMPLE_FMT_NONE
1008
    };
1009
 
1010
    layouts = ff_all_channel_layouts();
1011
    if (!layouts) {
1012
        return AVERROR(ENOMEM);
1013
    }
1014
    ff_set_common_channel_layouts(ctx, layouts);
1015
 
1016
    formats = ff_make_format_list(sample_fmts);
1017
    if (!formats) {
1018
        return AVERROR(ENOMEM);
1019
    }
1020
    ff_set_common_formats(ctx, formats);
1021
 
1022
    formats = ff_all_samplerates();
1023
    if (!formats) {
1024
        return AVERROR(ENOMEM);
1025
    }
1026
    ff_set_common_samplerates(ctx, formats);
1027
 
1028
    return 0;
1029
}
1030
 
1031
static int config_props(AVFilterLink *inlink)
1032
{
1033
    AVFilterContext  *ctx = inlink->dst;
1034
    ATempoContext *atempo = ctx->priv;
1035
 
1036
    enum AVSampleFormat format = inlink->format;
1037
    int sample_rate = (int)inlink->sample_rate;
1038
    int channels = av_get_channel_layout_nb_channels(inlink->channel_layout);
1039
 
1040
    ctx->outputs[0]->flags |= FF_LINK_FLAG_REQUEST_LOOP;
1041
 
1042
    return yae_reset(atempo, format, sample_rate, channels);
1043
}
1044
 
1045
static int push_samples(ATempoContext *atempo,
1046
                        AVFilterLink *outlink,
1047
                        int n_out)
1048
{
1049
    int ret;
1050
 
1051
    atempo->dst_buffer->sample_rate = outlink->sample_rate;
1052
    atempo->dst_buffer->nb_samples  = n_out;
1053
 
1054
    // adjust the PTS:
1055
    atempo->dst_buffer->pts =
1056
        av_rescale_q(atempo->nsamples_out,
1057
                     (AVRational){ 1, outlink->sample_rate },
1058
                     outlink->time_base);
1059
 
1060
    ret = ff_filter_frame(outlink, atempo->dst_buffer);
1061
    if (ret < 0)
1062
        return ret;
1063
    atempo->dst_buffer = NULL;
1064
    atempo->dst        = NULL;
1065
    atempo->dst_end    = NULL;
1066
 
1067
    atempo->nsamples_out += n_out;
1068
    return 0;
1069
}
1070
 
1071
static int filter_frame(AVFilterLink *inlink, AVFrame *src_buffer)
1072
{
1073
    AVFilterContext  *ctx = inlink->dst;
1074
    ATempoContext *atempo = ctx->priv;
1075
    AVFilterLink *outlink = ctx->outputs[0];
1076
 
1077
    int ret = 0;
1078
    int n_in = src_buffer->nb_samples;
1079
    int n_out = (int)(0.5 + ((double)n_in) / atempo->tempo);
1080
 
1081
    const uint8_t *src = src_buffer->data[0];
1082
    const uint8_t *src_end = src + n_in * atempo->stride;
1083
 
1084
    while (src < src_end) {
1085
        if (!atempo->dst_buffer) {
1086
            atempo->dst_buffer = ff_get_audio_buffer(outlink, n_out);
1087
            if (!atempo->dst_buffer)
1088
                return AVERROR(ENOMEM);
1089
            av_frame_copy_props(atempo->dst_buffer, src_buffer);
1090
 
1091
            atempo->dst = atempo->dst_buffer->data[0];
1092
            atempo->dst_end = atempo->dst + n_out * atempo->stride;
1093
        }
1094
 
1095
        yae_apply(atempo, &src, src_end, &atempo->dst, atempo->dst_end);
1096
 
1097
        if (atempo->dst == atempo->dst_end) {
1098
            int n_samples = ((atempo->dst - atempo->dst_buffer->data[0]) /
1099
                             atempo->stride);
1100
            ret = push_samples(atempo, outlink, n_samples);
1101
            if (ret < 0)
1102
                goto end;
1103
        }
1104
    }
1105
 
1106
    atempo->nsamples_in += n_in;
1107
end:
1108
    av_frame_free(&src_buffer);
1109
    return ret;
1110
}
1111
 
1112
static int request_frame(AVFilterLink *outlink)
1113
{
1114
    AVFilterContext  *ctx = outlink->src;
1115
    ATempoContext *atempo = ctx->priv;
1116
    int ret;
1117
 
1118
    ret = ff_request_frame(ctx->inputs[0]);
1119
 
1120
    if (ret == AVERROR_EOF) {
1121
        // flush the filter:
1122
        int n_max = atempo->ring;
1123
        int n_out;
1124
        int err = AVERROR(EAGAIN);
1125
 
1126
        while (err == AVERROR(EAGAIN)) {
1127
            if (!atempo->dst_buffer) {
1128
                atempo->dst_buffer = ff_get_audio_buffer(outlink, n_max);
1129
                if (!atempo->dst_buffer)
1130
                    return AVERROR(ENOMEM);
1131
 
1132
                atempo->dst = atempo->dst_buffer->data[0];
1133
                atempo->dst_end = atempo->dst + n_max * atempo->stride;
1134
            }
1135
 
1136
            err = yae_flush(atempo, &atempo->dst, atempo->dst_end);
1137
 
1138
            n_out = ((atempo->dst - atempo->dst_buffer->data[0]) /
1139
                     atempo->stride);
1140
 
1141
            if (n_out) {
1142
                ret = push_samples(atempo, outlink, n_out);
1143
            }
1144
        }
1145
 
1146
        av_frame_free(&atempo->dst_buffer);
1147
        atempo->dst     = NULL;
1148
        atempo->dst_end = NULL;
1149
 
1150
        return AVERROR_EOF;
1151
    }
1152
 
1153
    return ret;
1154
}
1155
 
1156
static int process_command(AVFilterContext *ctx,
1157
                           const char *cmd,
1158
                           const char *arg,
1159
                           char *res,
1160
                           int res_len,
1161
                           int flags)
1162
{
1163
    return !strcmp(cmd, "tempo") ? yae_set_tempo(ctx, arg) : AVERROR(ENOSYS);
1164
}
1165
 
1166
static const AVFilterPad atempo_inputs[] = {
1167
    {
1168
        .name         = "default",
1169
        .type         = AVMEDIA_TYPE_AUDIO,
1170
        .filter_frame = filter_frame,
1171
        .config_props = config_props,
1172
    },
1173
    { NULL }
1174
};
1175
 
1176
static const AVFilterPad atempo_outputs[] = {
1177
    {
1178
        .name          = "default",
1179
        .request_frame = request_frame,
1180
        .type          = AVMEDIA_TYPE_AUDIO,
1181
    },
1182
    { NULL }
1183
};
1184
 
1185
AVFilter avfilter_af_atempo = {
1186
    .name            = "atempo",
1187
    .description     = NULL_IF_CONFIG_SMALL("Adjust audio tempo."),
1188
    .init            = init,
1189
    .uninit          = uninit,
1190
    .query_formats   = query_formats,
1191
    .process_command = process_command,
1192
    .priv_size       = sizeof(ATempoContext),
1193
    .priv_class      = &atempo_class,
1194
    .inputs          = atempo_inputs,
1195
    .outputs         = atempo_outputs,
1196
};