Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
6148 serge 1
/*
2
 * The simplest mpeg audio layer 2 encoder
3
 * Copyright (c) 2000, 2001 Fabrice Bellard
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
 
22
/**
23
 * @file
24
 * The simplest mpeg audio layer 2 encoder.
25
 */
26
 
27
#include "libavutil/channel_layout.h"
28
 
29
#include "avcodec.h"
30
#include "internal.h"
31
#include "put_bits.h"
32
 
33
#define FRAC_BITS   15   /* fractional bits for sb_samples and dct */
34
#define WFRAC_BITS  14   /* fractional bits for window */
35
 
36
#include "mpegaudio.h"
37
#include "mpegaudiodsp.h"
38
 
39
/* currently, cannot change these constants (need to modify
40
   quantization stage) */
41
#define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
42
 
43
#define SAMPLES_BUF_SIZE 4096
44
 
45
typedef struct MpegAudioContext {
46
    PutBitContext pb;
47
    int nb_channels;
48
    int lsf;           /* 1 if mpeg2 low bitrate selected */
49
    int bitrate_index; /* bit rate */
50
    int freq_index;
51
    int frame_size; /* frame size, in bits, without padding */
52
    /* padding computation */
53
    int frame_frac, frame_frac_incr, do_padding;
54
    short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */
55
    int samples_offset[MPA_MAX_CHANNELS];       /* offset in samples_buf */
56
    int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT];
57
    unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */
58
    /* code to group 3 scale factors */
59
    unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
60
    int sblimit; /* number of used subbands */
61
    const unsigned char *alloc_table;
62
} MpegAudioContext;
63
 
64
/* define it to use floats in quantization (I don't like floats !) */
65
#define USE_FLOATS
66
 
67
#include "mpegaudiodata.h"
68
#include "mpegaudiotab.h"
69
 
70
static av_cold int MPA_encode_init(AVCodecContext *avctx)
71
{
72
    MpegAudioContext *s = avctx->priv_data;
73
    int freq = avctx->sample_rate;
74
    int bitrate = avctx->bit_rate;
75
    int channels = avctx->channels;
76
    int i, v, table;
77
    float a;
78
 
79
    if (channels <= 0 || channels > 2){
80
        av_log(avctx, AV_LOG_ERROR, "encoding %d channel(s) is not allowed in mp2\n", channels);
81
        return AVERROR(EINVAL);
82
    }
83
    bitrate = bitrate / 1000;
84
    s->nb_channels = channels;
85
    avctx->frame_size = MPA_FRAME_SIZE;
86
    avctx->delay      = 512 - 32 + 1;
87
 
88
    /* encoding freq */
89
    s->lsf = 0;
90
    for(i=0;i<3;i++) {
91
        if (avpriv_mpa_freq_tab[i] == freq)
92
            break;
93
        if ((avpriv_mpa_freq_tab[i] / 2) == freq) {
94
            s->lsf = 1;
95
            break;
96
        }
97
    }
98
    if (i == 3){
99
        av_log(avctx, AV_LOG_ERROR, "Sampling rate %d is not allowed in mp2\n", freq);
100
        return AVERROR(EINVAL);
101
    }
102
    s->freq_index = i;
103
 
104
    /* encoding bitrate & frequency */
105
    for(i=0;i<15;i++) {
106
        if (avpriv_mpa_bitrate_tab[s->lsf][1][i] == bitrate)
107
            break;
108
    }
109
    if (i == 15){
110
        av_log(avctx, AV_LOG_ERROR, "bitrate %d is not allowed in mp2\n", bitrate);
111
        return AVERROR(EINVAL);
112
    }
113
    s->bitrate_index = i;
114
 
115
    /* compute total header size & pad bit */
116
 
117
    a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
118
    s->frame_size = ((int)a) * 8;
119
 
120
    /* frame fractional size to compute padding */
121
    s->frame_frac = 0;
122
    s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
123
 
124
    /* select the right allocation table */
125
    table = ff_mpa_l2_select_table(bitrate, s->nb_channels, freq, s->lsf);
126
 
127
    /* number of used subbands */
128
    s->sblimit = ff_mpa_sblimit_table[table];
129
    s->alloc_table = ff_mpa_alloc_tables[table];
130
 
131
    av_dlog(avctx, "%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
132
            bitrate, freq, s->frame_size, table, s->frame_frac_incr);
133
 
134
    for(i=0;inb_channels;i++)
135
        s->samples_offset[i] = 0;
136
 
137
    for(i=0;i<257;i++) {
138
        int v;
139
        v = ff_mpa_enwindow[i];
140
#if WFRAC_BITS != 16
141
        v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
142
#endif
143
        filter_bank[i] = v;
144
        if ((i & 63) != 0)
145
            v = -v;
146
        if (i != 0)
147
            filter_bank[512 - i] = v;
148
    }
149
 
150
    for(i=0;i<64;i++) {
151
        v = (int)(exp2((3 - i) / 3.0) * (1 << 20));
152
        if (v <= 0)
153
            v = 1;
154
        scale_factor_table[i] = v;
155
#ifdef USE_FLOATS
156
        scale_factor_inv_table[i] = exp2(-(3 - i) / 3.0) / (float)(1 << 20);
157
#else
158
#define P 15
159
        scale_factor_shift[i] = 21 - P - (i / 3);
160
        scale_factor_mult[i] = (1 << P) * exp2((i % 3) / 3.0);
161
#endif
162
    }
163
    for(i=0;i<128;i++) {
164
        v = i - 64;
165
        if (v <= -3)
166
            v = 0;
167
        else if (v < 0)
168
            v = 1;
169
        else if (v == 0)
170
            v = 2;
171
        else if (v < 3)
172
            v = 3;
173
        else
174
            v = 4;
175
        scale_diff_table[i] = v;
176
    }
177
 
178
    for(i=0;i<17;i++) {
179
        v = ff_mpa_quant_bits[i];
180
        if (v < 0)
181
            v = -v;
182
        else
183
            v = v * 3;
184
        total_quant_bits[i] = 12 * v;
185
    }
186
 
187
    return 0;
188
}
189
 
190
/* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */
191
static void idct32(int *out, int *tab)
192
{
193
    int i, j;
194
    int *t, *t1, xr;
195
    const int *xp = costab32;
196
 
197
    for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
198
 
199
    t = tab + 30;
200
    t1 = tab + 2;
201
    do {
202
        t[0] += t[-4];
203
        t[1] += t[1 - 4];
204
        t -= 4;
205
    } while (t != t1);
206
 
207
    t = tab + 28;
208
    t1 = tab + 4;
209
    do {
210
        t[0] += t[-8];
211
        t[1] += t[1-8];
212
        t[2] += t[2-8];
213
        t[3] += t[3-8];
214
        t -= 8;
215
    } while (t != t1);
216
 
217
    t = tab;
218
    t1 = tab + 32;
219
    do {
220
        t[ 3] = -t[ 3];
221
        t[ 6] = -t[ 6];
222
 
223
        t[11] = -t[11];
224
        t[12] = -t[12];
225
        t[13] = -t[13];
226
        t[15] = -t[15];
227
        t += 16;
228
    } while (t != t1);
229
 
230
 
231
    t = tab;
232
    t1 = tab + 8;
233
    do {
234
        int x1, x2, x3, x4;
235
 
236
        x3 = MUL(t[16], FIX(SQRT2*0.5));
237
        x4 = t[0] - x3;
238
        x3 = t[0] + x3;
239
 
240
        x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5));
241
        x1 = MUL((t[8] - x2), xp[0]);
242
        x2 = MUL((t[8] + x2), xp[1]);
243
 
244
        t[ 0] = x3 + x1;
245
        t[ 8] = x4 - x2;
246
        t[16] = x4 + x2;
247
        t[24] = x3 - x1;
248
        t++;
249
    } while (t != t1);
250
 
251
    xp += 2;
252
    t = tab;
253
    t1 = tab + 4;
254
    do {
255
        xr = MUL(t[28],xp[0]);
256
        t[28] = (t[0] - xr);
257
        t[0] = (t[0] + xr);
258
 
259
        xr = MUL(t[4],xp[1]);
260
        t[ 4] = (t[24] - xr);
261
        t[24] = (t[24] + xr);
262
 
263
        xr = MUL(t[20],xp[2]);
264
        t[20] = (t[8] - xr);
265
        t[ 8] = (t[8] + xr);
266
 
267
        xr = MUL(t[12],xp[3]);
268
        t[12] = (t[16] - xr);
269
        t[16] = (t[16] + xr);
270
        t++;
271
    } while (t != t1);
272
    xp += 4;
273
 
274
    for (i = 0; i < 4; i++) {
275
        xr = MUL(tab[30-i*4],xp[0]);
276
        tab[30-i*4] = (tab[i*4] - xr);
277
        tab[   i*4] = (tab[i*4] + xr);
278
 
279
        xr = MUL(tab[ 2+i*4],xp[1]);
280
        tab[ 2+i*4] = (tab[28-i*4] - xr);
281
        tab[28-i*4] = (tab[28-i*4] + xr);
282
 
283
        xr = MUL(tab[31-i*4],xp[0]);
284
        tab[31-i*4] = (tab[1+i*4] - xr);
285
        tab[ 1+i*4] = (tab[1+i*4] + xr);
286
 
287
        xr = MUL(tab[ 3+i*4],xp[1]);
288
        tab[ 3+i*4] = (tab[29-i*4] - xr);
289
        tab[29-i*4] = (tab[29-i*4] + xr);
290
 
291
        xp += 2;
292
    }
293
 
294
    t = tab + 30;
295
    t1 = tab + 1;
296
    do {
297
        xr = MUL(t1[0], *xp);
298
        t1[0] = (t[0] - xr);
299
        t[0] = (t[0] + xr);
300
        t -= 2;
301
        t1 += 2;
302
        xp++;
303
    } while (t >= tab);
304
 
305
    for(i=0;i<32;i++) {
306
        out[i] = tab[bitinv32[i]];
307
    }
308
}
309
 
310
#define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS)
311
 
312
static void filter(MpegAudioContext *s, int ch, const short *samples, int incr)
313
{
314
    short *p, *q;
315
    int sum, offset, i, j;
316
    int tmp[64];
317
    int tmp1[32];
318
    int *out;
319
 
320
    offset = s->samples_offset[ch];
321
    out = &s->sb_samples[ch][0][0][0];
322
    for(j=0;j<36;j++) {
323
        /* 32 samples at once */
324
        for(i=0;i<32;i++) {
325
            s->samples_buf[ch][offset + (31 - i)] = samples[0];
326
            samples += incr;
327
        }
328
 
329
        /* filter */
330
        p = s->samples_buf[ch] + offset;
331
        q = filter_bank;
332
        /* maxsum = 23169 */
333
        for(i=0;i<64;i++) {
334
            sum = p[0*64] * q[0*64];
335
            sum += p[1*64] * q[1*64];
336
            sum += p[2*64] * q[2*64];
337
            sum += p[3*64] * q[3*64];
338
            sum += p[4*64] * q[4*64];
339
            sum += p[5*64] * q[5*64];
340
            sum += p[6*64] * q[6*64];
341
            sum += p[7*64] * q[7*64];
342
            tmp[i] = sum;
343
            p++;
344
            q++;
345
        }
346
        tmp1[0] = tmp[16] >> WSHIFT;
347
        for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT;
348
        for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT;
349
 
350
        idct32(out, tmp1);
351
 
352
        /* advance of 32 samples */
353
        offset -= 32;
354
        out += 32;
355
        /* handle the wrap around */
356
        if (offset < 0) {
357
            memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
358
                    s->samples_buf[ch], (512 - 32) * 2);
359
            offset = SAMPLES_BUF_SIZE - 512;
360
        }
361
    }
362
    s->samples_offset[ch] = offset;
363
}
364
 
365
static void compute_scale_factors(unsigned char scale_code[SBLIMIT],
366
                                  unsigned char scale_factors[SBLIMIT][3],
367
                                  int sb_samples[3][12][SBLIMIT],
368
                                  int sblimit)
369
{
370
    int *p, vmax, v, n, i, j, k, code;
371
    int index, d1, d2;
372
    unsigned char *sf = &scale_factors[0][0];
373
 
374
    for(j=0;j
375
        for(i=0;i<3;i++) {
376
            /* find the max absolute value */
377
            p = &sb_samples[i][0][j];
378
            vmax = abs(*p);
379
            for(k=1;k<12;k++) {
380
                p += SBLIMIT;
381
                v = abs(*p);
382
                if (v > vmax)
383
                    vmax = v;
384
            }
385
            /* compute the scale factor index using log 2 computations */
386
            if (vmax > 1) {
387
                n = av_log2(vmax);
388
                /* n is the position of the MSB of vmax. now
389
                   use at most 2 compares to find the index */
390
                index = (21 - n) * 3 - 3;
391
                if (index >= 0) {
392
                    while (vmax <= scale_factor_table[index+1])
393
                        index++;
394
                } else {
395
                    index = 0; /* very unlikely case of overflow */
396
                }
397
            } else {
398
                index = 62; /* value 63 is not allowed */
399
            }
400
 
401
            av_dlog(NULL, "%2d:%d in=%x %x %d\n",
402
                    j, i, vmax, scale_factor_table[index], index);
403
            /* store the scale factor */
404
            av_assert2(index >=0 && index <= 63);
405
            sf[i] = index;
406
        }
407
 
408
        /* compute the transmission factor : look if the scale factors
409
           are close enough to each other */
410
        d1 = scale_diff_table[sf[0] - sf[1] + 64];
411
        d2 = scale_diff_table[sf[1] - sf[2] + 64];
412
 
413
        /* handle the 25 cases */
414
        switch(d1 * 5 + d2) {
415
        case 0*5+0:
416
        case 0*5+4:
417
        case 3*5+4:
418
        case 4*5+0:
419
        case 4*5+4:
420
            code = 0;
421
            break;
422
        case 0*5+1:
423
        case 0*5+2:
424
        case 4*5+1:
425
        case 4*5+2:
426
            code = 3;
427
            sf[2] = sf[1];
428
            break;
429
        case 0*5+3:
430
        case 4*5+3:
431
            code = 3;
432
            sf[1] = sf[2];
433
            break;
434
        case 1*5+0:
435
        case 1*5+4:
436
        case 2*5+4:
437
            code = 1;
438
            sf[1] = sf[0];
439
            break;
440
        case 1*5+1:
441
        case 1*5+2:
442
        case 2*5+0:
443
        case 2*5+1:
444
        case 2*5+2:
445
            code = 2;
446
            sf[1] = sf[2] = sf[0];
447
            break;
448
        case 2*5+3:
449
        case 3*5+3:
450
            code = 2;
451
            sf[0] = sf[1] = sf[2];
452
            break;
453
        case 3*5+0:
454
        case 3*5+1:
455
        case 3*5+2:
456
            code = 2;
457
            sf[0] = sf[2] = sf[1];
458
            break;
459
        case 1*5+3:
460
            code = 2;
461
            if (sf[0] > sf[2])
462
              sf[0] = sf[2];
463
            sf[1] = sf[2] = sf[0];
464
            break;
465
        default:
466
            av_assert2(0); //cannot happen
467
            code = 0;           /* kill warning */
468
        }
469
 
470
        av_dlog(NULL, "%d: %2d %2d %2d %d %d -> %d\n", j,
471
                sf[0], sf[1], sf[2], d1, d2, code);
472
        scale_code[j] = code;
473
        sf += 3;
474
    }
475
}
476
 
477
/* The most important function : psycho acoustic module. In this
478
   encoder there is basically none, so this is the worst you can do,
479
   but also this is the simpler. */
480
static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
481
{
482
    int i;
483
 
484
    for(i=0;isblimit;i++) {
485
        smr[i] = (int)(fixed_smr[i] * 10);
486
    }
487
}
488
 
489
 
490
#define SB_NOTALLOCATED  0
491
#define SB_ALLOCATED     1
492
#define SB_NOMORE        2
493
 
494
/* Try to maximize the smr while using a number of bits inferior to
495
   the frame size. I tried to make the code simpler, faster and
496
   smaller than other encoders :-) */
497
static void compute_bit_allocation(MpegAudioContext *s,
498
                                   short smr1[MPA_MAX_CHANNELS][SBLIMIT],
499
                                   unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
500
                                   int *padding)
501
{
502
    int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
503
    int incr;
504
    short smr[MPA_MAX_CHANNELS][SBLIMIT];
505
    unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
506
    const unsigned char *alloc;
507
 
508
    memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
509
    memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
510
    memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
511
 
512
    /* compute frame size and padding */
513
    max_frame_size = s->frame_size;
514
    s->frame_frac += s->frame_frac_incr;
515
    if (s->frame_frac >= 65536) {
516
        s->frame_frac -= 65536;
517
        s->do_padding = 1;
518
        max_frame_size += 8;
519
    } else {
520
        s->do_padding = 0;
521
    }
522
 
523
    /* compute the header + bit alloc size */
524
    current_frame_size = 32;
525
    alloc = s->alloc_table;
526
    for(i=0;isblimit;i++) {
527
        incr = alloc[0];
528
        current_frame_size += incr * s->nb_channels;
529
        alloc += 1 << incr;
530
    }
531
    for(;;) {
532
        /* look for the subband with the largest signal to mask ratio */
533
        max_sb = -1;
534
        max_ch = -1;
535
        max_smr = INT_MIN;
536
        for(ch=0;chnb_channels;ch++) {
537
            for(i=0;isblimit;i++) {
538
                if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
539
                    max_smr = smr[ch][i];
540
                    max_sb = i;
541
                    max_ch = ch;
542
                }
543
            }
544
        }
545
        if (max_sb < 0)
546
            break;
547
        av_dlog(NULL, "current=%d max=%d max_sb=%d max_ch=%d alloc=%d\n",
548
                current_frame_size, max_frame_size, max_sb, max_ch,
549
                bit_alloc[max_ch][max_sb]);
550
 
551
        /* find alloc table entry (XXX: not optimal, should use
552
           pointer table) */
553
        alloc = s->alloc_table;
554
        for(i=0;i
555
            alloc += 1 << alloc[0];
556
        }
557
 
558
        if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
559
            /* nothing was coded for this band: add the necessary bits */
560
            incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
561
            incr += total_quant_bits[alloc[1]];
562
        } else {
563
            /* increments bit allocation */
564
            b = bit_alloc[max_ch][max_sb];
565
            incr = total_quant_bits[alloc[b + 1]] -
566
                total_quant_bits[alloc[b]];
567
        }
568
 
569
        if (current_frame_size + incr <= max_frame_size) {
570
            /* can increase size */
571
            b = ++bit_alloc[max_ch][max_sb];
572
            current_frame_size += incr;
573
            /* decrease smr by the resolution we added */
574
            smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
575
            /* max allocation size reached ? */
576
            if (b == ((1 << alloc[0]) - 1))
577
                subband_status[max_ch][max_sb] = SB_NOMORE;
578
            else
579
                subband_status[max_ch][max_sb] = SB_ALLOCATED;
580
        } else {
581
            /* cannot increase the size of this subband */
582
            subband_status[max_ch][max_sb] = SB_NOMORE;
583
        }
584
    }
585
    *padding = max_frame_size - current_frame_size;
586
    av_assert0(*padding >= 0);
587
}
588
 
589
/*
590
 * Output the mpeg audio layer 2 frame. Note how the code is small
591
 * compared to other encoders :-)
592
 */
593
static void encode_frame(MpegAudioContext *s,
594
                         unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
595
                         int padding)
596
{
597
    int i, j, k, l, bit_alloc_bits, b, ch;
598
    unsigned char *sf;
599
    int q[3];
600
    PutBitContext *p = &s->pb;
601
 
602
    /* header */
603
 
604
    put_bits(p, 12, 0xfff);
605
    put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */
606
    put_bits(p, 2, 4-2);  /* layer 2 */
607
    put_bits(p, 1, 1); /* no error protection */
608
    put_bits(p, 4, s->bitrate_index);
609
    put_bits(p, 2, s->freq_index);
610
    put_bits(p, 1, s->do_padding); /* use padding */
611
    put_bits(p, 1, 0);             /* private_bit */
612
    put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
613
    put_bits(p, 2, 0); /* mode_ext */
614
    put_bits(p, 1, 0); /* no copyright */
615
    put_bits(p, 1, 1); /* original */
616
    put_bits(p, 2, 0); /* no emphasis */
617
 
618
    /* bit allocation */
619
    j = 0;
620
    for(i=0;isblimit;i++) {
621
        bit_alloc_bits = s->alloc_table[j];
622
        for(ch=0;chnb_channels;ch++) {
623
            put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
624
        }
625
        j += 1 << bit_alloc_bits;
626
    }
627
 
628
    /* scale codes */
629
    for(i=0;isblimit;i++) {
630
        for(ch=0;chnb_channels;ch++) {
631
            if (bit_alloc[ch][i])
632
                put_bits(p, 2, s->scale_code[ch][i]);
633
        }
634
    }
635
 
636
    /* scale factors */
637
    for(i=0;isblimit;i++) {
638
        for(ch=0;chnb_channels;ch++) {
639
            if (bit_alloc[ch][i]) {
640
                sf = &s->scale_factors[ch][i][0];
641
                switch(s->scale_code[ch][i]) {
642
                case 0:
643
                    put_bits(p, 6, sf[0]);
644
                    put_bits(p, 6, sf[1]);
645
                    put_bits(p, 6, sf[2]);
646
                    break;
647
                case 3:
648
                case 1:
649
                    put_bits(p, 6, sf[0]);
650
                    put_bits(p, 6, sf[2]);
651
                    break;
652
                case 2:
653
                    put_bits(p, 6, sf[0]);
654
                    break;
655
                }
656
            }
657
        }
658
    }
659
 
660
    /* quantization & write sub band samples */
661
 
662
    for(k=0;k<3;k++) {
663
        for(l=0;l<12;l+=3) {
664
            j = 0;
665
            for(i=0;isblimit;i++) {
666
                bit_alloc_bits = s->alloc_table[j];
667
                for(ch=0;chnb_channels;ch++) {
668
                    b = bit_alloc[ch][i];
669
                    if (b) {
670
                        int qindex, steps, m, sample, bits;
671
                        /* we encode 3 sub band samples of the same sub band at a time */
672
                        qindex = s->alloc_table[j+b];
673
                        steps = ff_mpa_quant_steps[qindex];
674
                        for(m=0;m<3;m++) {
675
                            sample = s->sb_samples[ch][k][l + m][i];
676
                            /* divide by scale factor */
677
#ifdef USE_FLOATS
678
                            {
679
                                float a;
680
                                a = (float)sample * scale_factor_inv_table[s->scale_factors[ch][i][k]];
681
                                q[m] = (int)((a + 1.0) * steps * 0.5);
682
                            }
683
#else
684
                            {
685
                                int q1, e, shift, mult;
686
                                e = s->scale_factors[ch][i][k];
687
                                shift = scale_factor_shift[e];
688
                                mult = scale_factor_mult[e];
689
 
690
                                /* normalize to P bits */
691
                                if (shift < 0)
692
                                    q1 = sample << (-shift);
693
                                else
694
                                    q1 = sample >> shift;
695
                                q1 = (q1 * mult) >> P;
696
                                q[m] = ((q1 + (1 << P)) * steps) >> (P + 1);
697
                            }
698
#endif
699
                            if (q[m] >= steps)
700
                                q[m] = steps - 1;
701
                            av_assert2(q[m] >= 0 && q[m] < steps);
702
                        }
703
                        bits = ff_mpa_quant_bits[qindex];
704
                        if (bits < 0) {
705
                            /* group the 3 values to save bits */
706
                            put_bits(p, -bits,
707
                                     q[0] + steps * (q[1] + steps * q[2]));
708
                        } else {
709
                            put_bits(p, bits, q[0]);
710
                            put_bits(p, bits, q[1]);
711
                            put_bits(p, bits, q[2]);
712
                        }
713
                    }
714
                }
715
                /* next subband in alloc table */
716
                j += 1 << bit_alloc_bits;
717
            }
718
        }
719
    }
720
 
721
    /* padding */
722
    for(i=0;i
723
        put_bits(p, 1, 0);
724
 
725
    /* flush */
726
    flush_put_bits(p);
727
}
728
 
729
static int MPA_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
730
                            const AVFrame *frame, int *got_packet_ptr)
731
{
732
    MpegAudioContext *s = avctx->priv_data;
733
    const int16_t *samples = (const int16_t *)frame->data[0];
734
    short smr[MPA_MAX_CHANNELS][SBLIMIT];
735
    unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
736
    int padding, i, ret;
737
 
738
    for(i=0;inb_channels;i++) {
739
        filter(s, i, samples + i, s->nb_channels);
740
    }
741
 
742
    for(i=0;inb_channels;i++) {
743
        compute_scale_factors(s->scale_code[i], s->scale_factors[i],
744
                              s->sb_samples[i], s->sblimit);
745
    }
746
    for(i=0;inb_channels;i++) {
747
        psycho_acoustic_model(s, smr[i]);
748
    }
749
    compute_bit_allocation(s, smr, bit_alloc, &padding);
750
 
751
    if ((ret = ff_alloc_packet2(avctx, avpkt, MPA_MAX_CODED_FRAME_SIZE)) < 0)
752
        return ret;
753
 
754
    init_put_bits(&s->pb, avpkt->data, avpkt->size);
755
 
756
    encode_frame(s, bit_alloc, padding);
757
 
758
    if (frame->pts != AV_NOPTS_VALUE)
759
        avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->delay);
760
 
761
    avpkt->size = put_bits_count(&s->pb) / 8;
762
    *got_packet_ptr = 1;
763
    return 0;
764
}
765
 
766
static const AVCodecDefault mp2_defaults[] = {
767
    { "b",    "128k" },
768
    { NULL },
769
};
770
 
771
AVCodec ff_mp2_encoder = {
772
    .name                  = "mp2",
773
    .long_name             = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
774
    .type                  = AVMEDIA_TYPE_AUDIO,
775
    .id                    = AV_CODEC_ID_MP2,
776
    .priv_data_size        = sizeof(MpegAudioContext),
777
    .init                  = MPA_encode_init,
778
    .encode2               = MPA_encode_frame,
779
    .sample_fmts           = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
780
                                                            AV_SAMPLE_FMT_NONE },
781
    .supported_samplerates = (const int[]){
782
        44100, 48000,  32000, 22050, 24000, 16000, 0
783
    },
784
    .channel_layouts       = (const uint64_t[]){ AV_CH_LAYOUT_MONO,
785
                                                 AV_CH_LAYOUT_STEREO,
786
 
787
    .defaults              = mp2_defaults,
788
};