Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
6148 serge 1
/*
2
 * Bink video decoder
3
 * Copyright (c) 2009 Konstantin Shishkov
4
 * Copyright (C) 2011 Peter Ross 
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22
 
23
#include "libavutil/attributes.h"
24
#include "libavutil/imgutils.h"
25
#include "libavutil/internal.h"
26
#include "avcodec.h"
27
#include "dsputil.h"
28
#include "binkdata.h"
29
#include "binkdsp.h"
30
#include "hpeldsp.h"
31
#include "internal.h"
32
#include "mathops.h"
33
 
34
#define BITSTREAM_READER_LE
35
#include "get_bits.h"
36
 
37
#define BINK_FLAG_ALPHA 0x00100000
38
#define BINK_FLAG_GRAY  0x00020000
39
 
40
static VLC bink_trees[16];
41
 
42
/**
43
 * IDs for different data types used in old version of Bink video codec
44
 */
45
enum OldSources {
46
    BINKB_SRC_BLOCK_TYPES = 0, ///< 8x8 block types
47
    BINKB_SRC_COLORS,          ///< pixel values used for different block types
48
    BINKB_SRC_PATTERN,         ///< 8-bit values for 2-colour pattern fill
49
    BINKB_SRC_X_OFF,           ///< X components of motion value
50
    BINKB_SRC_Y_OFF,           ///< Y components of motion value
51
    BINKB_SRC_INTRA_DC,        ///< DC values for intrablocks with DCT
52
    BINKB_SRC_INTER_DC,        ///< DC values for interblocks with DCT
53
    BINKB_SRC_INTRA_Q,         ///< quantizer values for intrablocks with DCT
54
    BINKB_SRC_INTER_Q,         ///< quantizer values for interblocks with DCT
55
    BINKB_SRC_INTER_COEFS,     ///< number of coefficients for residue blocks
56
 
57
    BINKB_NB_SRC
58
};
59
 
60
static const int binkb_bundle_sizes[BINKB_NB_SRC] = {
61
    4, 8, 8, 5, 5, 11, 11, 4, 4, 7
62
};
63
 
64
static const int binkb_bundle_signed[BINKB_NB_SRC] = {
65
    0, 0, 0, 1, 1, 0, 1, 0, 0, 0
66
};
67
 
68
static int32_t binkb_intra_quant[16][64];
69
static int32_t binkb_inter_quant[16][64];
70
 
71
/**
72
 * IDs for different data types used in Bink video codec
73
 */
74
enum Sources {
75
    BINK_SRC_BLOCK_TYPES = 0, ///< 8x8 block types
76
    BINK_SRC_SUB_BLOCK_TYPES, ///< 16x16 block types (a subset of 8x8 block types)
77
    BINK_SRC_COLORS,          ///< pixel values used for different block types
78
    BINK_SRC_PATTERN,         ///< 8-bit values for 2-colour pattern fill
79
    BINK_SRC_X_OFF,           ///< X components of motion value
80
    BINK_SRC_Y_OFF,           ///< Y components of motion value
81
    BINK_SRC_INTRA_DC,        ///< DC values for intrablocks with DCT
82
    BINK_SRC_INTER_DC,        ///< DC values for interblocks with DCT
83
    BINK_SRC_RUN,             ///< run lengths for special fill block
84
 
85
    BINK_NB_SRC
86
};
87
 
88
/**
89
 * data needed to decode 4-bit Huffman-coded value
90
 */
91
typedef struct Tree {
92
    int     vlc_num;  ///< tree number (in bink_trees[])
93
    uint8_t syms[16]; ///< leaf value to symbol mapping
94
} Tree;
95
 
96
#define GET_HUFF(gb, tree)  (tree).syms[get_vlc2(gb, bink_trees[(tree).vlc_num].table,\
97
                                                 bink_trees[(tree).vlc_num].bits, 1)]
98
 
99
/**
100
 * data structure used for decoding single Bink data type
101
 */
102
typedef struct Bundle {
103
    int     len;       ///< length of number of entries to decode (in bits)
104
    Tree    tree;      ///< Huffman tree-related data
105
    uint8_t *data;     ///< buffer for decoded symbols
106
    uint8_t *data_end; ///< buffer end
107
    uint8_t *cur_dec;  ///< pointer to the not yet decoded part of the buffer
108
    uint8_t *cur_ptr;  ///< pointer to the data that is not read from buffer yet
109
} Bundle;
110
 
111
/*
112
 * Decoder context
113
 */
114
typedef struct BinkContext {
115
    AVCodecContext *avctx;
116
    DSPContext     dsp;
117
    HpelDSPContext hdsp;
118
    BinkDSPContext bdsp;
119
    AVFrame        *last;
120
    int            version;              ///< internal Bink file version
121
    int            has_alpha;
122
    int            swap_planes;
123
    unsigned       frame_num;
124
 
125
    Bundle         bundle[BINKB_NB_SRC]; ///< bundles for decoding all data types
126
    Tree           col_high[16];         ///< trees for decoding high nibble in "colours" data type
127
    int            col_lastval;          ///< value of last decoded high nibble in "colours" data type
128
} BinkContext;
129
 
130
/**
131
 * Bink video block types
132
 */
133
enum BlockTypes {
134
    SKIP_BLOCK = 0, ///< skipped block
135
    SCALED_BLOCK,   ///< block has size 16x16
136
    MOTION_BLOCK,   ///< block is copied from previous frame with some offset
137
    RUN_BLOCK,      ///< block is composed from runs of colours with custom scan order
138
    RESIDUE_BLOCK,  ///< motion block with some difference added
139
    INTRA_BLOCK,    ///< intra DCT block
140
    FILL_BLOCK,     ///< block is filled with single colour
141
    INTER_BLOCK,    ///< motion block with DCT applied to the difference
142
    PATTERN_BLOCK,  ///< block is filled with two colours following custom pattern
143
    RAW_BLOCK,      ///< uncoded 8x8 block
144
};
145
 
146
/**
147
 * Initialize length in all bundles.
148
 *
149
 * @param c     decoder context
150
 * @param width plane width
151
 * @param bw    plane width in 8x8 blocks
152
 */
153
static void init_lengths(BinkContext *c, int width, int bw)
154
{
155
    width = FFALIGN(width, 8);
156
 
157
    c->bundle[BINK_SRC_BLOCK_TYPES].len = av_log2((width >> 3) + 511) + 1;
158
 
159
    c->bundle[BINK_SRC_SUB_BLOCK_TYPES].len = av_log2((width >> 4) + 511) + 1;
160
 
161
    c->bundle[BINK_SRC_COLORS].len = av_log2(bw*64 + 511) + 1;
162
 
163
    c->bundle[BINK_SRC_INTRA_DC].len =
164
    c->bundle[BINK_SRC_INTER_DC].len =
165
    c->bundle[BINK_SRC_X_OFF].len =
166
    c->bundle[BINK_SRC_Y_OFF].len = av_log2((width >> 3) + 511) + 1;
167
 
168
    c->bundle[BINK_SRC_PATTERN].len = av_log2((bw << 3) + 511) + 1;
169
 
170
    c->bundle[BINK_SRC_RUN].len = av_log2(bw*48 + 511) + 1;
171
}
172
 
173
/**
174
 * Allocate memory for bundles.
175
 *
176
 * @param c decoder context
177
 */
178
static av_cold int init_bundles(BinkContext *c)
179
{
180
    int bw, bh, blocks;
181
    int i;
182
 
183
    bw = (c->avctx->width  + 7) >> 3;
184
    bh = (c->avctx->height + 7) >> 3;
185
    blocks = bw * bh;
186
 
187
    for (i = 0; i < BINKB_NB_SRC; i++) {
188
        c->bundle[i].data = av_malloc(blocks * 64);
189
        if (!c->bundle[i].data)
190
            return AVERROR(ENOMEM);
191
        c->bundle[i].data_end = c->bundle[i].data + blocks * 64;
192
    }
193
 
194
    return 0;
195
}
196
 
197
/**
198
 * Free memory used by bundles.
199
 *
200
 * @param c decoder context
201
 */
202
static av_cold void free_bundles(BinkContext *c)
203
{
204
    int i;
205
    for (i = 0; i < BINKB_NB_SRC; i++)
206
        av_freep(&c->bundle[i].data);
207
}
208
 
209
/**
210
 * Merge two consequent lists of equal size depending on bits read.
211
 *
212
 * @param gb   context for reading bits
213
 * @param dst  buffer where merged list will be written to
214
 * @param src  pointer to the head of the first list (the second lists starts at src+size)
215
 * @param size input lists size
216
 */
217
static void merge(GetBitContext *gb, uint8_t *dst, uint8_t *src, int size)
218
{
219
    uint8_t *src2 = src + size;
220
    int size2 = size;
221
 
222
    do {
223
        if (!get_bits1(gb)) {
224
            *dst++ = *src++;
225
            size--;
226
        } else {
227
            *dst++ = *src2++;
228
            size2--;
229
        }
230
    } while (size && size2);
231
 
232
    while (size--)
233
        *dst++ = *src++;
234
    while (size2--)
235
        *dst++ = *src2++;
236
}
237
 
238
/**
239
 * Read information about Huffman tree used to decode data.
240
 *
241
 * @param gb   context for reading bits
242
 * @param tree pointer for storing tree data
243
 */
244
static void read_tree(GetBitContext *gb, Tree *tree)
245
{
246
    uint8_t tmp1[16] = { 0 }, tmp2[16], *in = tmp1, *out = tmp2;
247
    int i, t, len;
248
 
249
    tree->vlc_num = get_bits(gb, 4);
250
    if (!tree->vlc_num) {
251
        for (i = 0; i < 16; i++)
252
            tree->syms[i] = i;
253
        return;
254
    }
255
    if (get_bits1(gb)) {
256
        len = get_bits(gb, 3);
257
        for (i = 0; i <= len; i++) {
258
            tree->syms[i] = get_bits(gb, 4);
259
            tmp1[tree->syms[i]] = 1;
260
        }
261
        for (i = 0; i < 16 && len < 16 - 1; i++)
262
            if (!tmp1[i])
263
                tree->syms[++len] = i;
264
    } else {
265
        len = get_bits(gb, 2);
266
        for (i = 0; i < 16; i++)
267
            in[i] = i;
268
        for (i = 0; i <= len; i++) {
269
            int size = 1 << i;
270
            for (t = 0; t < 16; t += size << 1)
271
                merge(gb, out + t, in + t, size);
272
            FFSWAP(uint8_t*, in, out);
273
        }
274
        memcpy(tree->syms, in, 16);
275
    }
276
}
277
 
278
/**
279
 * Prepare bundle for decoding data.
280
 *
281
 * @param gb          context for reading bits
282
 * @param c           decoder context
283
 * @param bundle_num  number of the bundle to initialize
284
 */
285
static void read_bundle(GetBitContext *gb, BinkContext *c, int bundle_num)
286
{
287
    int i;
288
 
289
    if (bundle_num == BINK_SRC_COLORS) {
290
        for (i = 0; i < 16; i++)
291
            read_tree(gb, &c->col_high[i]);
292
        c->col_lastval = 0;
293
    }
294
    if (bundle_num != BINK_SRC_INTRA_DC && bundle_num != BINK_SRC_INTER_DC)
295
        read_tree(gb, &c->bundle[bundle_num].tree);
296
    c->bundle[bundle_num].cur_dec =
297
    c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data;
298
}
299
 
300
/**
301
 * common check before starting decoding bundle data
302
 *
303
 * @param gb context for reading bits
304
 * @param b  bundle
305
 * @param t  variable where number of elements to decode will be stored
306
 */
307
#define CHECK_READ_VAL(gb, b, t) \
308
    if (!b->cur_dec || (b->cur_dec > b->cur_ptr)) \
309
        return 0; \
310
    t = get_bits(gb, b->len); \
311
    if (!t) { \
312
        b->cur_dec = NULL; \
313
        return 0; \
314
    } \
315
 
316
static int read_runs(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
317
{
318
    int t, v;
319
    const uint8_t *dec_end;
320
 
321
    CHECK_READ_VAL(gb, b, t);
322
    dec_end = b->cur_dec + t;
323
    if (dec_end > b->data_end) {
324
        av_log(avctx, AV_LOG_ERROR, "Run value went out of bounds\n");
325
        return AVERROR_INVALIDDATA;
326
    }
327
    if (get_bits1(gb)) {
328
        v = get_bits(gb, 4);
329
        memset(b->cur_dec, v, t);
330
        b->cur_dec += t;
331
    } else {
332
        while (b->cur_dec < dec_end)
333
            *b->cur_dec++ = GET_HUFF(gb, b->tree);
334
    }
335
    return 0;
336
}
337
 
338
static int read_motion_values(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
339
{
340
    int t, sign, v;
341
    const uint8_t *dec_end;
342
 
343
    CHECK_READ_VAL(gb, b, t);
344
    dec_end = b->cur_dec + t;
345
    if (dec_end > b->data_end) {
346
        av_log(avctx, AV_LOG_ERROR, "Too many motion values\n");
347
        return AVERROR_INVALIDDATA;
348
    }
349
    if (get_bits1(gb)) {
350
        v = get_bits(gb, 4);
351
        if (v) {
352
            sign = -get_bits1(gb);
353
            v = (v ^ sign) - sign;
354
        }
355
        memset(b->cur_dec, v, t);
356
        b->cur_dec += t;
357
    } else {
358
        while (b->cur_dec < dec_end) {
359
            v = GET_HUFF(gb, b->tree);
360
            if (v) {
361
                sign = -get_bits1(gb);
362
                v = (v ^ sign) - sign;
363
            }
364
            *b->cur_dec++ = v;
365
        }
366
    }
367
    return 0;
368
}
369
 
370
static const uint8_t bink_rlelens[4] = { 4, 8, 12, 32 };
371
 
372
static int read_block_types(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
373
{
374
    int t, v;
375
    int last = 0;
376
    const uint8_t *dec_end;
377
 
378
    CHECK_READ_VAL(gb, b, t);
379
    dec_end = b->cur_dec + t;
380
    if (dec_end > b->data_end) {
381
        av_log(avctx, AV_LOG_ERROR, "Too many block type values\n");
382
        return AVERROR_INVALIDDATA;
383
    }
384
    if (get_bits1(gb)) {
385
        v = get_bits(gb, 4);
386
        memset(b->cur_dec, v, t);
387
        b->cur_dec += t;
388
    } else {
389
        while (b->cur_dec < dec_end) {
390
            v = GET_HUFF(gb, b->tree);
391
            if (v < 12) {
392
                last = v;
393
                *b->cur_dec++ = v;
394
            } else {
395
                int run = bink_rlelens[v - 12];
396
 
397
                if (dec_end - b->cur_dec < run)
398
                    return AVERROR_INVALIDDATA;
399
                memset(b->cur_dec, last, run);
400
                b->cur_dec += run;
401
            }
402
        }
403
    }
404
    return 0;
405
}
406
 
407
static int read_patterns(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
408
{
409
    int t, v;
410
    const uint8_t *dec_end;
411
 
412
    CHECK_READ_VAL(gb, b, t);
413
    dec_end = b->cur_dec + t;
414
    if (dec_end > b->data_end) {
415
        av_log(avctx, AV_LOG_ERROR, "Too many pattern values\n");
416
        return AVERROR_INVALIDDATA;
417
    }
418
    while (b->cur_dec < dec_end) {
419
        v  = GET_HUFF(gb, b->tree);
420
        v |= GET_HUFF(gb, b->tree) << 4;
421
        *b->cur_dec++ = v;
422
    }
423
 
424
    return 0;
425
}
426
 
427
static int read_colors(GetBitContext *gb, Bundle *b, BinkContext *c)
428
{
429
    int t, sign, v;
430
    const uint8_t *dec_end;
431
 
432
    CHECK_READ_VAL(gb, b, t);
433
    dec_end = b->cur_dec + t;
434
    if (dec_end > b->data_end) {
435
        av_log(c->avctx, AV_LOG_ERROR, "Too many color values\n");
436
        return AVERROR_INVALIDDATA;
437
    }
438
    if (get_bits1(gb)) {
439
        c->col_lastval = GET_HUFF(gb, c->col_high[c->col_lastval]);
440
        v = GET_HUFF(gb, b->tree);
441
        v = (c->col_lastval << 4) | v;
442
        if (c->version < 'i') {
443
            sign = ((int8_t) v) >> 7;
444
            v = ((v & 0x7F) ^ sign) - sign;
445
            v += 0x80;
446
        }
447
        memset(b->cur_dec, v, t);
448
        b->cur_dec += t;
449
    } else {
450
        while (b->cur_dec < dec_end) {
451
            c->col_lastval = GET_HUFF(gb, c->col_high[c->col_lastval]);
452
            v = GET_HUFF(gb, b->tree);
453
            v = (c->col_lastval << 4) | v;
454
            if (c->version < 'i') {
455
                sign = ((int8_t) v) >> 7;
456
                v = ((v & 0x7F) ^ sign) - sign;
457
                v += 0x80;
458
            }
459
            *b->cur_dec++ = v;
460
        }
461
    }
462
    return 0;
463
}
464
 
465
/** number of bits used to store first DC value in bundle */
466
#define DC_START_BITS 11
467
 
468
static int read_dcs(AVCodecContext *avctx, GetBitContext *gb, Bundle *b,
469
                    int start_bits, int has_sign)
470
{
471
    int i, j, len, len2, bsize, sign, v, v2;
472
    int16_t *dst     = (int16_t*)b->cur_dec;
473
    int16_t *dst_end = (int16_t*)b->data_end;
474
 
475
    CHECK_READ_VAL(gb, b, len);
476
    v = get_bits(gb, start_bits - has_sign);
477
    if (v && has_sign) {
478
        sign = -get_bits1(gb);
479
        v = (v ^ sign) - sign;
480
    }
481
    if (dst_end - dst < 1)
482
        return AVERROR_INVALIDDATA;
483
    *dst++ = v;
484
    len--;
485
    for (i = 0; i < len; i += 8) {
486
        len2 = FFMIN(len - i, 8);
487
        if (dst_end - dst < len2)
488
            return AVERROR_INVALIDDATA;
489
        bsize = get_bits(gb, 4);
490
        if (bsize) {
491
            for (j = 0; j < len2; j++) {
492
                v2 = get_bits(gb, bsize);
493
                if (v2) {
494
                    sign = -get_bits1(gb);
495
                    v2 = (v2 ^ sign) - sign;
496
                }
497
                v += v2;
498
                *dst++ = v;
499
                if (v < -32768 || v > 32767) {
500
                    av_log(avctx, AV_LOG_ERROR, "DC value went out of bounds: %d\n", v);
501
                    return AVERROR_INVALIDDATA;
502
                }
503
            }
504
        } else {
505
            for (j = 0; j < len2; j++)
506
                *dst++ = v;
507
        }
508
    }
509
 
510
    b->cur_dec = (uint8_t*)dst;
511
    return 0;
512
}
513
 
514
/**
515
 * Retrieve next value from bundle.
516
 *
517
 * @param c      decoder context
518
 * @param bundle bundle number
519
 */
520
static inline int get_value(BinkContext *c, int bundle)
521
{
522
    int ret;
523
 
524
    if (bundle < BINK_SRC_X_OFF || bundle == BINK_SRC_RUN)
525
        return *c->bundle[bundle].cur_ptr++;
526
    if (bundle == BINK_SRC_X_OFF || bundle == BINK_SRC_Y_OFF)
527
        return (int8_t)*c->bundle[bundle].cur_ptr++;
528
    ret = *(int16_t*)c->bundle[bundle].cur_ptr;
529
    c->bundle[bundle].cur_ptr += 2;
530
    return ret;
531
}
532
 
533
static av_cold void binkb_init_bundle(BinkContext *c, int bundle_num)
534
{
535
    c->bundle[bundle_num].cur_dec =
536
    c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data;
537
    c->bundle[bundle_num].len = 13;
538
}
539
 
540
static av_cold void binkb_init_bundles(BinkContext *c)
541
{
542
    int i;
543
    for (i = 0; i < BINKB_NB_SRC; i++)
544
        binkb_init_bundle(c, i);
545
}
546
 
547
static int binkb_read_bundle(BinkContext *c, GetBitContext *gb, int bundle_num)
548
{
549
    const int bits = binkb_bundle_sizes[bundle_num];
550
    const int mask = 1 << (bits - 1);
551
    const int issigned = binkb_bundle_signed[bundle_num];
552
    Bundle *b = &c->bundle[bundle_num];
553
    int i, len;
554
 
555
    CHECK_READ_VAL(gb, b, len);
556
    if (b->data_end - b->cur_dec < len * (1 + (bits > 8)))
557
        return AVERROR_INVALIDDATA;
558
    if (bits <= 8) {
559
        if (!issigned) {
560
            for (i = 0; i < len; i++)
561
                *b->cur_dec++ = get_bits(gb, bits);
562
        } else {
563
            for (i = 0; i < len; i++)
564
                *b->cur_dec++ = get_bits(gb, bits) - mask;
565
        }
566
    } else {
567
        int16_t *dst = (int16_t*)b->cur_dec;
568
 
569
        if (!issigned) {
570
            for (i = 0; i < len; i++)
571
                *dst++ = get_bits(gb, bits);
572
        } else {
573
            for (i = 0; i < len; i++)
574
                *dst++ = get_bits(gb, bits) - mask;
575
        }
576
        b->cur_dec = (uint8_t*)dst;
577
    }
578
    return 0;
579
}
580
 
581
static inline int binkb_get_value(BinkContext *c, int bundle_num)
582
{
583
    int16_t ret;
584
    const int bits = binkb_bundle_sizes[bundle_num];
585
 
586
    if (bits <= 8) {
587
        int val = *c->bundle[bundle_num].cur_ptr++;
588
        return binkb_bundle_signed[bundle_num] ? (int8_t)val : val;
589
    }
590
    ret = *(int16_t*)c->bundle[bundle_num].cur_ptr;
591
    c->bundle[bundle_num].cur_ptr += 2;
592
    return ret;
593
}
594
 
595
/**
596
 * Read 8x8 block of DCT coefficients.
597
 *
598
 * @param gb       context for reading bits
599
 * @param block    place for storing coefficients
600
 * @param scan     scan order table
601
 * @param quant_matrices quantization matrices
602
 * @return 0 for success, negative value in other cases
603
 */
604
static int read_dct_coeffs(GetBitContext *gb, int32_t block[64], const uint8_t *scan,
605
                           const int32_t quant_matrices[16][64], int q)
606
{
607
    int coef_list[128];
608
    int mode_list[128];
609
    int i, t, bits, ccoef, mode, sign;
610
    int list_start = 64, list_end = 64, list_pos;
611
    int coef_count = 0;
612
    int coef_idx[64];
613
    int quant_idx;
614
    const int32_t *quant;
615
 
616
    coef_list[list_end] = 4;  mode_list[list_end++] = 0;
617
    coef_list[list_end] = 24; mode_list[list_end++] = 0;
618
    coef_list[list_end] = 44; mode_list[list_end++] = 0;
619
    coef_list[list_end] = 1;  mode_list[list_end++] = 3;
620
    coef_list[list_end] = 2;  mode_list[list_end++] = 3;
621
    coef_list[list_end] = 3;  mode_list[list_end++] = 3;
622
 
623
    for (bits = get_bits(gb, 4) - 1; bits >= 0; bits--) {
624
        list_pos = list_start;
625
        while (list_pos < list_end) {
626
            if (!(mode_list[list_pos] | coef_list[list_pos]) || !get_bits1(gb)) {
627
                list_pos++;
628
                continue;
629
            }
630
            ccoef = coef_list[list_pos];
631
            mode  = mode_list[list_pos];
632
            switch (mode) {
633
            case 0:
634
                coef_list[list_pos] = ccoef + 4;
635
                mode_list[list_pos] = 1;
636
            case 2:
637
                if (mode == 2) {
638
                    coef_list[list_pos]   = 0;
639
                    mode_list[list_pos++] = 0;
640
                }
641
                for (i = 0; i < 4; i++, ccoef++) {
642
                    if (get_bits1(gb)) {
643
                        coef_list[--list_start] = ccoef;
644
                        mode_list[  list_start] = 3;
645
                    } else {
646
                        if (!bits) {
647
                            t = 1 - (get_bits1(gb) << 1);
648
                        } else {
649
                            t = get_bits(gb, bits) | 1 << bits;
650
                            sign = -get_bits1(gb);
651
                            t = (t ^ sign) - sign;
652
                        }
653
                        block[scan[ccoef]] = t;
654
                        coef_idx[coef_count++] = ccoef;
655
                    }
656
                }
657
                break;
658
            case 1:
659
                mode_list[list_pos] = 2;
660
                for (i = 0; i < 3; i++) {
661
                    ccoef += 4;
662
                    coef_list[list_end]   = ccoef;
663
                    mode_list[list_end++] = 2;
664
                }
665
                break;
666
            case 3:
667
                if (!bits) {
668
                    t = 1 - (get_bits1(gb) << 1);
669
                } else {
670
                    t = get_bits(gb, bits) | 1 << bits;
671
                    sign = -get_bits1(gb);
672
                    t = (t ^ sign) - sign;
673
                }
674
                block[scan[ccoef]] = t;
675
                coef_idx[coef_count++] = ccoef;
676
                coef_list[list_pos]   = 0;
677
                mode_list[list_pos++] = 0;
678
                break;
679
            }
680
        }
681
    }
682
 
683
    if (q == -1) {
684
        quant_idx = get_bits(gb, 4);
685
    } else {
686
        quant_idx = q;
687
        if (quant_idx > 15U) {
688
            av_log(NULL, AV_LOG_ERROR, "quant_index %d out of range\n", quant_idx);
689
            return AVERROR_INVALIDDATA;
690
        }
691
    }
692
 
693
    quant = quant_matrices[quant_idx];
694
 
695
    block[0] = (block[0] * quant[0]) >> 11;
696
    for (i = 0; i < coef_count; i++) {
697
        int idx = coef_idx[i];
698
        block[scan[idx]] = (block[scan[idx]] * quant[idx]) >> 11;
699
    }
700
 
701
    return 0;
702
}
703
 
704
/**
705
 * Read 8x8 block with residue after motion compensation.
706
 *
707
 * @param gb          context for reading bits
708
 * @param block       place to store read data
709
 * @param masks_count number of masks to decode
710
 * @return 0 on success, negative value in other cases
711
 */
712
static int read_residue(GetBitContext *gb, int16_t block[64], int masks_count)
713
{
714
    int coef_list[128];
715
    int mode_list[128];
716
    int i, sign, mask, ccoef, mode;
717
    int list_start = 64, list_end = 64, list_pos;
718
    int nz_coeff[64];
719
    int nz_coeff_count = 0;
720
 
721
    coef_list[list_end] =  4; mode_list[list_end++] = 0;
722
    coef_list[list_end] = 24; mode_list[list_end++] = 0;
723
    coef_list[list_end] = 44; mode_list[list_end++] = 0;
724
    coef_list[list_end] =  0; mode_list[list_end++] = 2;
725
 
726
    for (mask = 1 << get_bits(gb, 3); mask; mask >>= 1) {
727
        for (i = 0; i < nz_coeff_count; i++) {
728
            if (!get_bits1(gb))
729
                continue;
730
            if (block[nz_coeff[i]] < 0)
731
                block[nz_coeff[i]] -= mask;
732
            else
733
                block[nz_coeff[i]] += mask;
734
            masks_count--;
735
            if (masks_count < 0)
736
                return 0;
737
        }
738
        list_pos = list_start;
739
        while (list_pos < list_end) {
740
            if (!(coef_list[list_pos] | mode_list[list_pos]) || !get_bits1(gb)) {
741
                list_pos++;
742
                continue;
743
            }
744
            ccoef = coef_list[list_pos];
745
            mode  = mode_list[list_pos];
746
            switch (mode) {
747
            case 0:
748
                coef_list[list_pos] = ccoef + 4;
749
                mode_list[list_pos] = 1;
750
            case 2:
751
                if (mode == 2) {
752
                    coef_list[list_pos]   = 0;
753
                    mode_list[list_pos++] = 0;
754
                }
755
                for (i = 0; i < 4; i++, ccoef++) {
756
                    if (get_bits1(gb)) {
757
                        coef_list[--list_start] = ccoef;
758
                        mode_list[  list_start] = 3;
759
                    } else {
760
                        nz_coeff[nz_coeff_count++] = bink_scan[ccoef];
761
                        sign = -get_bits1(gb);
762
                        block[bink_scan[ccoef]] = (mask ^ sign) - sign;
763
                        masks_count--;
764
                        if (masks_count < 0)
765
                            return 0;
766
                    }
767
                }
768
                break;
769
            case 1:
770
                mode_list[list_pos] = 2;
771
                for (i = 0; i < 3; i++) {
772
                    ccoef += 4;
773
                    coef_list[list_end]   = ccoef;
774
                    mode_list[list_end++] = 2;
775
                }
776
                break;
777
            case 3:
778
                nz_coeff[nz_coeff_count++] = bink_scan[ccoef];
779
                sign = -get_bits1(gb);
780
                block[bink_scan[ccoef]] = (mask ^ sign) - sign;
781
                coef_list[list_pos]   = 0;
782
                mode_list[list_pos++] = 0;
783
                masks_count--;
784
                if (masks_count < 0)
785
                    return 0;
786
                break;
787
            }
788
        }
789
    }
790
 
791
    return 0;
792
}
793
 
794
/**
795
 * Copy 8x8 block from source to destination, where src and dst may be overlapped
796
 */
797
static inline void put_pixels8x8_overlapped(uint8_t *dst, uint8_t *src, int stride)
798
{
799
    uint8_t tmp[64];
800
    int i;
801
    for (i = 0; i < 8; i++)
802
        memcpy(tmp + i*8, src + i*stride, 8);
803
    for (i = 0; i < 8; i++)
804
        memcpy(dst + i*stride, tmp + i*8, 8);
805
}
806
 
807
static int binkb_decode_plane(BinkContext *c, AVFrame *frame, GetBitContext *gb,
808
                              int plane_idx, int is_key, int is_chroma)
809
{
810
    int blk, ret;
811
    int i, j, bx, by;
812
    uint8_t *dst, *ref, *ref_start, *ref_end;
813
    int v, col[2];
814
    const uint8_t *scan;
815
    int xoff, yoff;
816
    LOCAL_ALIGNED_16(int16_t, block, [64]);
817
    LOCAL_ALIGNED_16(int32_t, dctblock, [64]);
818
    int coordmap[64];
819
    int ybias = is_key ? -15 : 0;
820
    int qp;
821
 
822
    const int stride = frame->linesize[plane_idx];
823
    int bw = is_chroma ? (c->avctx->width  + 15) >> 4 : (c->avctx->width  + 7) >> 3;
824
    int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3;
825
 
826
    binkb_init_bundles(c);
827
    ref_start = frame->data[plane_idx];
828
    ref_end   = frame->data[plane_idx] + (bh * frame->linesize[plane_idx] + bw) * 8;
829
 
830
    for (i = 0; i < 64; i++)
831
        coordmap[i] = (i & 7) + (i >> 3) * stride;
832
 
833
    for (by = 0; by < bh; by++) {
834
        for (i = 0; i < BINKB_NB_SRC; i++) {
835
            if ((ret = binkb_read_bundle(c, gb, i)) < 0)
836
                return ret;
837
        }
838
 
839
        dst  = frame->data[plane_idx]  + 8*by*stride;
840
        for (bx = 0; bx < bw; bx++, dst += 8) {
841
            blk = binkb_get_value(c, BINKB_SRC_BLOCK_TYPES);
842
            switch (blk) {
843
            case 0:
844
                break;
845
            case 1:
846
                scan = bink_patterns[get_bits(gb, 4)];
847
                i = 0;
848
                do {
849
                    int mode, run;
850
 
851
                    mode = get_bits1(gb);
852
                    run = get_bits(gb, binkb_runbits[i]) + 1;
853
 
854
                    i += run;
855
                    if (i > 64) {
856
                        av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
857
                        return AVERROR_INVALIDDATA;
858
                    }
859
                    if (mode) {
860
                        v = binkb_get_value(c, BINKB_SRC_COLORS);
861
                        for (j = 0; j < run; j++)
862
                            dst[coordmap[*scan++]] = v;
863
                    } else {
864
                        for (j = 0; j < run; j++)
865
                            dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS);
866
                    }
867
                } while (i < 63);
868
                if (i == 63)
869
                    dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS);
870
                break;
871
            case 2:
872
                memset(dctblock, 0, sizeof(*dctblock) * 64);
873
                dctblock[0] = binkb_get_value(c, BINKB_SRC_INTRA_DC);
874
                qp = binkb_get_value(c, BINKB_SRC_INTRA_Q);
875
                read_dct_coeffs(gb, dctblock, bink_scan, (const int32_t (*)[64])binkb_intra_quant, qp);
876
                c->bdsp.idct_put(dst, stride, dctblock);
877
                break;
878
            case 3:
879
                xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
880
                yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
881
                ref = dst + xoff + yoff * stride;
882
                if (ref < ref_start || ref + 8*stride > ref_end) {
883
                    av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
884
                } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
885
                    c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
886
                } else {
887
                    put_pixels8x8_overlapped(dst, ref, stride);
888
                }
889
                c->dsp.clear_block(block);
890
                v = binkb_get_value(c, BINKB_SRC_INTER_COEFS);
891
                read_residue(gb, block, v);
892
                c->dsp.add_pixels8(dst, block, stride);
893
                break;
894
            case 4:
895
                xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
896
                yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
897
                ref = dst + xoff + yoff * stride;
898
                if (ref < ref_start || ref + 8 * stride > ref_end) {
899
                    av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
900
                } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
901
                    c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
902
                } else {
903
                    put_pixels8x8_overlapped(dst, ref, stride);
904
                }
905
                memset(dctblock, 0, sizeof(*dctblock) * 64);
906
                dctblock[0] = binkb_get_value(c, BINKB_SRC_INTER_DC);
907
                qp = binkb_get_value(c, BINKB_SRC_INTER_Q);
908
                read_dct_coeffs(gb, dctblock, bink_scan, (const int32_t (*)[64])binkb_inter_quant, qp);
909
                c->bdsp.idct_add(dst, stride, dctblock);
910
                break;
911
            case 5:
912
                v = binkb_get_value(c, BINKB_SRC_COLORS);
913
                c->dsp.fill_block_tab[1](dst, v, stride, 8);
914
                break;
915
            case 6:
916
                for (i = 0; i < 2; i++)
917
                    col[i] = binkb_get_value(c, BINKB_SRC_COLORS);
918
                for (i = 0; i < 8; i++) {
919
                    v = binkb_get_value(c, BINKB_SRC_PATTERN);
920
                    for (j = 0; j < 8; j++, v >>= 1)
921
                        dst[i*stride + j] = col[v & 1];
922
                }
923
                break;
924
            case 7:
925
                xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
926
                yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
927
                ref = dst + xoff + yoff * stride;
928
                if (ref < ref_start || ref + 8 * stride > ref_end) {
929
                    av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
930
                } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
931
                    c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
932
                } else {
933
                    put_pixels8x8_overlapped(dst, ref, stride);
934
                }
935
                break;
936
            case 8:
937
                for (i = 0; i < 8; i++)
938
                    memcpy(dst + i*stride, c->bundle[BINKB_SRC_COLORS].cur_ptr + i*8, 8);
939
                c->bundle[BINKB_SRC_COLORS].cur_ptr += 64;
940
                break;
941
            default:
942
                av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk);
943
                return AVERROR_INVALIDDATA;
944
            }
945
        }
946
    }
947
    if (get_bits_count(gb) & 0x1F) //next plane data starts at 32-bit boundary
948
        skip_bits_long(gb, 32 - (get_bits_count(gb) & 0x1F));
949
 
950
    return 0;
951
}
952
 
953
static int bink_decode_plane(BinkContext *c, AVFrame *frame, GetBitContext *gb,
954
                             int plane_idx, int is_chroma)
955
{
956
    int blk, ret;
957
    int i, j, bx, by;
958
    uint8_t *dst, *prev, *ref, *ref_start, *ref_end;
959
    int v, col[2];
960
    const uint8_t *scan;
961
    int xoff, yoff;
962
    LOCAL_ALIGNED_16(int16_t, block, [64]);
963
    LOCAL_ALIGNED_16(uint8_t, ublock, [64]);
964
    LOCAL_ALIGNED_16(int32_t, dctblock, [64]);
965
    int coordmap[64];
966
 
967
    const int stride = frame->linesize[plane_idx];
968
    int bw = is_chroma ? (c->avctx->width  + 15) >> 4 : (c->avctx->width  + 7) >> 3;
969
    int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3;
970
    int width = c->avctx->width >> is_chroma;
971
 
972
    init_lengths(c, FFMAX(width, 8), bw);
973
    for (i = 0; i < BINK_NB_SRC; i++)
974
        read_bundle(gb, c, i);
975
 
976
    ref_start = c->last->data[plane_idx] ? c->last->data[plane_idx]
977
                                         : frame->data[plane_idx];
978
    ref_end   = ref_start
979
                + (bw - 1 + c->last->linesize[plane_idx] * (bh - 1)) * 8;
980
 
981
    for (i = 0; i < 64; i++)
982
        coordmap[i] = (i & 7) + (i >> 3) * stride;
983
 
984
    for (by = 0; by < bh; by++) {
985
        if ((ret = read_block_types(c->avctx, gb, &c->bundle[BINK_SRC_BLOCK_TYPES])) < 0)
986
            return ret;
987
        if ((ret = read_block_types(c->avctx, gb, &c->bundle[BINK_SRC_SUB_BLOCK_TYPES])) < 0)
988
            return ret;
989
        if ((ret = read_colors(gb, &c->bundle[BINK_SRC_COLORS], c)) < 0)
990
            return ret;
991
        if ((ret = read_patterns(c->avctx, gb, &c->bundle[BINK_SRC_PATTERN])) < 0)
992
            return ret;
993
        if ((ret = read_motion_values(c->avctx, gb, &c->bundle[BINK_SRC_X_OFF])) < 0)
994
            return ret;
995
        if ((ret = read_motion_values(c->avctx, gb, &c->bundle[BINK_SRC_Y_OFF])) < 0)
996
            return ret;
997
        if ((ret = read_dcs(c->avctx, gb, &c->bundle[BINK_SRC_INTRA_DC], DC_START_BITS, 0)) < 0)
998
            return ret;
999
        if ((ret = read_dcs(c->avctx, gb, &c->bundle[BINK_SRC_INTER_DC], DC_START_BITS, 1)) < 0)
1000
            return ret;
1001
        if ((ret = read_runs(c->avctx, gb, &c->bundle[BINK_SRC_RUN])) < 0)
1002
            return ret;
1003
 
1004
        if (by == bh)
1005
            break;
1006
        dst  = frame->data[plane_idx]  + 8*by*stride;
1007
        prev = (c->last->data[plane_idx] ? c->last->data[plane_idx]
1008
                                         : frame->data[plane_idx]) + 8*by*stride;
1009
        for (bx = 0; bx < bw; bx++, dst += 8, prev += 8) {
1010
            blk = get_value(c, BINK_SRC_BLOCK_TYPES);
1011
            // 16x16 block type on odd line means part of the already decoded block, so skip it
1012
            if ((by & 1) && blk == SCALED_BLOCK) {
1013
                bx++;
1014
                dst  += 8;
1015
                prev += 8;
1016
                continue;
1017
            }
1018
            switch (blk) {
1019
            case SKIP_BLOCK:
1020
                c->hdsp.put_pixels_tab[1][0](dst, prev, stride, 8);
1021
                break;
1022
            case SCALED_BLOCK:
1023
                blk = get_value(c, BINK_SRC_SUB_BLOCK_TYPES);
1024
                switch (blk) {
1025
                case RUN_BLOCK:
1026
                    scan = bink_patterns[get_bits(gb, 4)];
1027
                    i = 0;
1028
                    do {
1029
                        int run = get_value(c, BINK_SRC_RUN) + 1;
1030
 
1031
                        i += run;
1032
                        if (i > 64) {
1033
                            av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
1034
                            return AVERROR_INVALIDDATA;
1035
                        }
1036
                        if (get_bits1(gb)) {
1037
                            v = get_value(c, BINK_SRC_COLORS);
1038
                            for (j = 0; j < run; j++)
1039
                                ublock[*scan++] = v;
1040
                        } else {
1041
                            for (j = 0; j < run; j++)
1042
                                ublock[*scan++] = get_value(c, BINK_SRC_COLORS);
1043
                        }
1044
                    } while (i < 63);
1045
                    if (i == 63)
1046
                        ublock[*scan++] = get_value(c, BINK_SRC_COLORS);
1047
                    break;
1048
                case INTRA_BLOCK:
1049
                    memset(dctblock, 0, sizeof(*dctblock) * 64);
1050
                    dctblock[0] = get_value(c, BINK_SRC_INTRA_DC);
1051
                    read_dct_coeffs(gb, dctblock, bink_scan, bink_intra_quant, -1);
1052
                    c->bdsp.idct_put(ublock, 8, dctblock);
1053
                    break;
1054
                case FILL_BLOCK:
1055
                    v = get_value(c, BINK_SRC_COLORS);
1056
                    c->dsp.fill_block_tab[0](dst, v, stride, 16);
1057
                    break;
1058
                case PATTERN_BLOCK:
1059
                    for (i = 0; i < 2; i++)
1060
                        col[i] = get_value(c, BINK_SRC_COLORS);
1061
                    for (j = 0; j < 8; j++) {
1062
                        v = get_value(c, BINK_SRC_PATTERN);
1063
                        for (i = 0; i < 8; i++, v >>= 1)
1064
                            ublock[i + j*8] = col[v & 1];
1065
                    }
1066
                    break;
1067
                case RAW_BLOCK:
1068
                    for (j = 0; j < 8; j++)
1069
                        for (i = 0; i < 8; i++)
1070
                            ublock[i + j*8] = get_value(c, BINK_SRC_COLORS);
1071
                    break;
1072
                default:
1073
                    av_log(c->avctx, AV_LOG_ERROR, "Incorrect 16x16 block type %d\n", blk);
1074
                    return AVERROR_INVALIDDATA;
1075
                }
1076
                if (blk != FILL_BLOCK)
1077
                c->bdsp.scale_block(ublock, dst, stride);
1078
                bx++;
1079
                dst  += 8;
1080
                prev += 8;
1081
                break;
1082
            case MOTION_BLOCK:
1083
                xoff = get_value(c, BINK_SRC_X_OFF);
1084
                yoff = get_value(c, BINK_SRC_Y_OFF);
1085
                ref = prev + xoff + yoff * stride;
1086
                if (ref < ref_start || ref > ref_end) {
1087
                    av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n",
1088
                           bx*8 + xoff, by*8 + yoff);
1089
                    return AVERROR_INVALIDDATA;
1090
                }
1091
                c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
1092
                break;
1093
            case RUN_BLOCK:
1094
                scan = bink_patterns[get_bits(gb, 4)];
1095
                i = 0;
1096
                do {
1097
                    int run = get_value(c, BINK_SRC_RUN) + 1;
1098
 
1099
                    i += run;
1100
                    if (i > 64) {
1101
                        av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
1102
                        return AVERROR_INVALIDDATA;
1103
                    }
1104
                    if (get_bits1(gb)) {
1105
                        v = get_value(c, BINK_SRC_COLORS);
1106
                        for (j = 0; j < run; j++)
1107
                            dst[coordmap[*scan++]] = v;
1108
                    } else {
1109
                        for (j = 0; j < run; j++)
1110
                            dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS);
1111
                    }
1112
                } while (i < 63);
1113
                if (i == 63)
1114
                    dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS);
1115
                break;
1116
            case RESIDUE_BLOCK:
1117
                xoff = get_value(c, BINK_SRC_X_OFF);
1118
                yoff = get_value(c, BINK_SRC_Y_OFF);
1119
                ref = prev + xoff + yoff * stride;
1120
                if (ref < ref_start || ref > ref_end) {
1121
                    av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n",
1122
                           bx*8 + xoff, by*8 + yoff);
1123
                    return AVERROR_INVALIDDATA;
1124
                }
1125
                c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
1126
                c->dsp.clear_block(block);
1127
                v = get_bits(gb, 7);
1128
                read_residue(gb, block, v);
1129
                c->dsp.add_pixels8(dst, block, stride);
1130
                break;
1131
            case INTRA_BLOCK:
1132
                memset(dctblock, 0, sizeof(*dctblock) * 64);
1133
                dctblock[0] = get_value(c, BINK_SRC_INTRA_DC);
1134
                read_dct_coeffs(gb, dctblock, bink_scan, bink_intra_quant, -1);
1135
                c->bdsp.idct_put(dst, stride, dctblock);
1136
                break;
1137
            case FILL_BLOCK:
1138
                v = get_value(c, BINK_SRC_COLORS);
1139
                c->dsp.fill_block_tab[1](dst, v, stride, 8);
1140
                break;
1141
            case INTER_BLOCK:
1142
                xoff = get_value(c, BINK_SRC_X_OFF);
1143
                yoff = get_value(c, BINK_SRC_Y_OFF);
1144
                ref = prev + xoff + yoff * stride;
1145
                if (ref < ref_start || ref > ref_end) {
1146
                    av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n",
1147
                           bx*8 + xoff, by*8 + yoff);
1148
                    return -1;
1149
                }
1150
                c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
1151
                memset(dctblock, 0, sizeof(*dctblock) * 64);
1152
                dctblock[0] = get_value(c, BINK_SRC_INTER_DC);
1153
                read_dct_coeffs(gb, dctblock, bink_scan, bink_inter_quant, -1);
1154
                c->bdsp.idct_add(dst, stride, dctblock);
1155
                break;
1156
            case PATTERN_BLOCK:
1157
                for (i = 0; i < 2; i++)
1158
                    col[i] = get_value(c, BINK_SRC_COLORS);
1159
                for (i = 0; i < 8; i++) {
1160
                    v = get_value(c, BINK_SRC_PATTERN);
1161
                    for (j = 0; j < 8; j++, v >>= 1)
1162
                        dst[i*stride + j] = col[v & 1];
1163
                }
1164
                break;
1165
            case RAW_BLOCK:
1166
                for (i = 0; i < 8; i++)
1167
                    memcpy(dst + i*stride, c->bundle[BINK_SRC_COLORS].cur_ptr + i*8, 8);
1168
                c->bundle[BINK_SRC_COLORS].cur_ptr += 64;
1169
                break;
1170
            default:
1171
                av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk);
1172
                return AVERROR_INVALIDDATA;
1173
            }
1174
        }
1175
    }
1176
    if (get_bits_count(gb) & 0x1F) //next plane data starts at 32-bit boundary
1177
        skip_bits_long(gb, 32 - (get_bits_count(gb) & 0x1F));
1178
 
1179
    return 0;
1180
}
1181
 
1182
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
1183
{
1184
    BinkContext * const c = avctx->priv_data;
1185
    AVFrame *frame = data;
1186
    GetBitContext gb;
1187
    int plane, plane_idx, ret;
1188
    int bits_count = pkt->size << 3;
1189
 
1190
    if (c->version > 'b') {
1191
        if ((ret = ff_get_buffer(avctx, frame, AV_GET_BUFFER_FLAG_REF)) < 0)
1192
            return ret;
1193
    } else {
1194
        if ((ret = ff_reget_buffer(avctx, c->last)) < 0)
1195
            return ret;
1196
        if ((ret = av_frame_ref(frame, c->last)) < 0)
1197
            return ret;
1198
    }
1199
 
1200
    init_get_bits(&gb, pkt->data, bits_count);
1201
    if (c->has_alpha) {
1202
        if (c->version >= 'i')
1203
            skip_bits_long(&gb, 32);
1204
        if ((ret = bink_decode_plane(c, frame, &gb, 3, 0)) < 0)
1205
            return ret;
1206
    }
1207
    if (c->version >= 'i')
1208
        skip_bits_long(&gb, 32);
1209
 
1210
    c->frame_num++;
1211
 
1212
    for (plane = 0; plane < 3; plane++) {
1213
        plane_idx = (!plane || !c->swap_planes) ? plane : (plane ^ 3);
1214
 
1215
        if (c->version > 'b') {
1216
            if ((ret = bink_decode_plane(c, frame, &gb, plane_idx, !!plane)) < 0)
1217
                return ret;
1218
        } else {
1219
            if ((ret = binkb_decode_plane(c, frame, &gb, plane_idx,
1220
                                          c->frame_num == 1, !!plane)) < 0)
1221
                return ret;
1222
        }
1223
        if (get_bits_count(&gb) >= bits_count)
1224
            break;
1225
    }
1226
    emms_c();
1227
 
1228
    if (c->version > 'b') {
1229
        av_frame_unref(c->last);
1230
        if ((ret = av_frame_ref(c->last, frame)) < 0)
1231
            return ret;
1232
    }
1233
 
1234
    *got_frame = 1;
1235
 
1236
    /* always report that the buffer was completely consumed */
1237
    return pkt->size;
1238
}
1239
 
1240
/**
1241
 * Caclulate quantization tables for version b
1242
 */
1243
static av_cold void binkb_calc_quant(void)
1244
{
1245
    uint8_t inv_bink_scan[64];
1246
    static const int s[64]={
1247
        1073741824,1489322693,1402911301,1262586814,1073741824, 843633538, 581104888, 296244703,
1248
        1489322693,2065749918,1945893874,1751258219,1489322693,1170153332, 806015634, 410903207,
1249
        1402911301,1945893874,1832991949,1649649171,1402911301,1102260336, 759250125, 387062357,
1250
        1262586814,1751258219,1649649171,1484645031,1262586814, 992008094, 683307060, 348346918,
1251
        1073741824,1489322693,1402911301,1262586814,1073741824, 843633538, 581104888, 296244703,
1252
         843633538,1170153332,1102260336, 992008094, 843633538, 662838617, 456571181, 232757969,
1253
         581104888, 806015634, 759250125, 683307060, 581104888, 456571181, 314491699, 160326478,
1254
         296244703, 410903207, 387062357, 348346918, 296244703, 232757969, 160326478,  81733730,
1255
    };
1256
    int i, j;
1257
#define C (1LL<<30)
1258
    for (i = 0; i < 64; i++)
1259
        inv_bink_scan[bink_scan[i]] = i;
1260
 
1261
    for (j = 0; j < 16; j++) {
1262
        for (i = 0; i < 64; i++) {
1263
            int k = inv_bink_scan[i];
1264
            binkb_intra_quant[j][k] = binkb_intra_seed[i] * (int64_t)s[i] *
1265
                                        binkb_num[j]/(binkb_den[j] * (C>>12));
1266
            binkb_inter_quant[j][k] = binkb_inter_seed[i] * (int64_t)s[i] *
1267
                                        binkb_num[j]/(binkb_den[j] * (C>>12));
1268
        }
1269
    }
1270
}
1271
 
1272
static av_cold int decode_init(AVCodecContext *avctx)
1273
{
1274
    BinkContext * const c = avctx->priv_data;
1275
    static VLC_TYPE table[16 * 128][2];
1276
    static int binkb_initialised = 0;
1277
    int i, ret;
1278
    int flags;
1279
 
1280
    c->version = avctx->codec_tag >> 24;
1281
    if (avctx->extradata_size < 4) {
1282
        av_log(avctx, AV_LOG_ERROR, "Extradata missing or too short\n");
1283
        return AVERROR_INVALIDDATA;
1284
    }
1285
    flags = AV_RL32(avctx->extradata);
1286
    c->has_alpha = flags & BINK_FLAG_ALPHA;
1287
    c->swap_planes = c->version >= 'h';
1288
    if (!bink_trees[15].table) {
1289
        for (i = 0; i < 16; i++) {
1290
            const int maxbits = bink_tree_lens[i][15];
1291
            bink_trees[i].table = table + i*128;
1292
            bink_trees[i].table_allocated = 1 << maxbits;
1293
            init_vlc(&bink_trees[i], maxbits, 16,
1294
                     bink_tree_lens[i], 1, 1,
1295
                     bink_tree_bits[i], 1, 1, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
1296
        }
1297
    }
1298
    c->avctx = avctx;
1299
 
1300
    c->last = av_frame_alloc();
1301
    if (!c->last)
1302
        return AVERROR(ENOMEM);
1303
 
1304
    if ((ret = av_image_check_size(avctx->width, avctx->height, 0, avctx)) < 0)
1305
        return ret;
1306
 
1307
    avctx->pix_fmt = c->has_alpha ? AV_PIX_FMT_YUVA420P : AV_PIX_FMT_YUV420P;
1308
 
1309
    ff_dsputil_init(&c->dsp, avctx);
1310
    ff_hpeldsp_init(&c->hdsp, avctx->flags);
1311
    ff_binkdsp_init(&c->bdsp);
1312
 
1313
    if ((ret = init_bundles(c)) < 0) {
1314
        free_bundles(c);
1315
        return ret;
1316
    }
1317
 
1318
    if (c->version == 'b') {
1319
        if (!binkb_initialised) {
1320
            binkb_calc_quant();
1321
            binkb_initialised = 1;
1322
        }
1323
    }
1324
 
1325
    return 0;
1326
}
1327
 
1328
static av_cold int decode_end(AVCodecContext *avctx)
1329
{
1330
    BinkContext * const c = avctx->priv_data;
1331
 
1332
    av_frame_free(&c->last);
1333
 
1334
    free_bundles(c);
1335
    return 0;
1336
}
1337
 
1338
static void flush(AVCodecContext *avctx)
1339
{
1340
    BinkContext * const c = avctx->priv_data;
1341
 
1342
    c->frame_num = 0;
1343
}
1344
 
1345
AVCodec ff_bink_decoder = {
1346
    .name           = "binkvideo",
1347
    .long_name      = NULL_IF_CONFIG_SMALL("Bink video"),
1348
    .type           = AVMEDIA_TYPE_VIDEO,
1349
    .id             = AV_CODEC_ID_BINKVIDEO,
1350
    .priv_data_size = sizeof(BinkContext),
1351
    .init           = decode_init,
1352
    .close          = decode_end,
1353
    .decode         = decode_frame,
1354
    .flush          = flush,
1355
    .capabilities   = CODEC_CAP_DR1,
1356
};